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Conditions for equality of Hausdorff and packing
measures on Rn

Abstract

This note answers the question, for which Hausdorff functions h may
the h-Hausdorff and h-packing measures agree on some subset A of Rn,
and be positive and finite. We show that these conditions imply that h is
a regular density function, in the sense of Preiss, and that for each such
function there is a subset of Rn on which the h-Hausdorff and h-packing
measures agree and are positive and finite.

In [8] and [10], Taylor and Tricot introduced a new family of measures,
namely packing measures, which complement the well-known Hausdorff mea-
sures. For any Hausdorff function, that is, any non-decreasing function h :
(0,∞) → (0,∞) with h(0+) = 0, we may define the Hausdorff and packing
measures associated with this function.

In [7], Saint Raymond and Tricot considered the implications of equality
on subsets of Rn of the Hausdorff and packing measures associated with some
function h(r) = rs. They showed that if the two measures are positive and finite
on some subset A of Rn, then they agree on A if and only if s is an integer and
A is s-rectifiable.

In this note we extend the above result. We show that the Hausdorff functions
h for which there may exist a subset of Rn on which Hausdorff and packing
measures are equal, and positive and finite, are precisely those named regular
density functions by D. Preiss, (see [6]). For this work we use theorems which
adapt and extend the standard density-type theorems, and draw heavily on the
concepts and results of [6] and [4].

We now review the definitions and results needed for what follows. For
definitions of Hausdorff measure, Hh , we refer the reader to [3, 4.9].

By a packing of a subset S of Rn we mean a finite or countable collection of
closed balls {B(xi, ri) : xi ∈ S} such that, for each i 6= j,

B(xi, ri) ∩B(xj , rj) = ∅.
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A δ-packing is a packing such that for each i, diam B(xi, ri) ≤ δ.
If h is a Hausdorff function then Ph(S), the h-packing measure of S, may be

defined thus;

Phδ (S) = sup
{∑

h(diam B(xi, ri)) : {B(xi, ri)} a δ-packing of S
}
,

Ph0 (S) = lim
δ→0

Phδ (S),

Ph(S) = inf

{ ∞∑
1

Ph0 (Si) : S ⊂
∞⋃
1

Si

}
.

We shall write Hs and Ps for the measures constructed from the function
h(r) = rs.

By a measure µ we shall mean a non-zero Borel regular outer measure on Rn,
such that the Borel sets are µ measurable. If µ is also locally finite we shall call
µ a Radon measure. We note that µ is locally finite if and only if every compact
subset of Rn has finite µ-measure. By B(x, r) and U(x, r) we shall mean the
closed and open balls, respectively, centered at x with radius r, by ∂B(x, r)
the boundary of these balls, and by B(A, r) the set of all points at distance no
greater than r from the set A. We write spt µ for the smallest closed subset
C of Rn such that µ (Rn \ C) = 0, and µ|A for the measure on Rn defined by
µ|A(S) = µ(A ∩ S) for each subset S of Rn. In the definitions and notation
below we follow [3] and [6].

(i) If h is a Hausdorff function, µ measures Rn, and x ∈ Rn, we define D
h
(µ, x)

and Dh(µ, x), the upper and lower h-densities of µ at x, by the formulae

D
h
(µ, x) = lim sup

r↘0
µB(x, r)/h(2r)

and
Dh(µ, x) = lim inf

r↘0
µB(x, r)/h(2r).

If the upper and lower h-densities of µ at x coincide and are positive and
finite, we denote their common value by Dh(µ, x), and say that x is an
h-density point of µ.

A Hausdorff function h is said to be a density function (in Rn) if there is a
measure µ over Rn such that µ almost every x ∈ Rn is an h-density point
of µ.

A density function h will be called regular (in the sense of Preiss) if
limr↘0 h(tr)/h(r) exists for each t > 0. We refer the reader to [6, 6.5]
for a complete characterization of regular density functions in terms of
limiting conditions near zero.
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(ii) We shall use the notation limk→∞ µk = µ, or µk → µ for the usual notion
of weak convergence of measures, see for example [3, 1.21].

(iii) If T : Rn → Rm is Borel measurable and µ measures Rn, we define T [µ],
the image of µ under T , by

T [µ](E) = µ(T−1(E)) for every Borel set E ⊆ Rm.

Let x ∈ Rn and r ∈ R \ {0}. We define the map Tx,r : Rn → Rn by
Tx,r(z) = (z − x)/r.

(iv) Let µ measure Rn and x ∈ Rn. We say that a locally finite measure ψ is a
tangent measure of µ at x if there are sequences rk ↘ 0 and ck > 0 such
that ψ = limk→∞ ckTx,rk [µ], and write ψ ∈ Tan(µ, x). (Tangent measures
in this form were introduced by D. Preiss in [6].)

(v) A measure µ on Rn is said to be uniformly distributed if µB(x, r) =
µB(y, r) <∞ whenever x, y ∈ spt µ and 0 < r <∞.

(vi) Let µ be a Radon measure on Rn. Then x ∈ spt µ is called a symmetric
point of µ if for every ρ > 0∫

B(x,ρ)

z dµ(z) = xµB(x, ρ).

(vii) A Radon measure µ on Rn is called flat if µ = cHm|V for some c > 0 and
some m-dimensional affine subspace V of Rn, (1 ≤ m ≤ n).

We now have all the concepts required to state both the theorem of Saint
Raymond and Tricot, (see [7]), for functions h(r) = rs, and the results from [6]
and [4] that we will need.

Theorem 1 If A ⊆ Rn satisfies Ps(A) < ∞, then Hs(A) = Ps(A) if and only
if the density Ds(Hs|A, x) exists and equals 1 for Ps almost all x ∈ A. (This in
turn implies that s is an integer, and that A is s-rectifiable.)

Lemma 1 Let X be a separable metric space, and let h be a regular density
function. Then Hh(A) ≤ Ph(A) for all subsets A of X.

A proof of the above lemma for the functions h(r) = rs may be found in
[3, 5.12]. Since the proof given there also works for regular density functions,
we omit the proof of Lemma 1. For the proofs of Lemma 2 and Theorem 2 we
refer the reader to [6, 1.11(4), 2.12] respectively. Theorem 3 follows from the
definition of a regular density function and [6, 4.11(1), 4.11(4)], and Theorem 4
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from [6, 6.1(5), 4.7(1)]. The reader may wish to note that in [6], the notation
Mn is used for the set of all flat measures on Rn, see [6, 3.7(1)], and Un for the
set of all uniformly distributed measures on Rn which have 0 in their support,
see [6, 3.1(2)]. Theorem 5 is proved in [4].

Lemma 2 If µk → µ are measures on Rn then for each compact set D ⊂ Rn
and each open set G ⊂ Rn,

µ(D) ≥ lim sup
k→∞

µk(D),

µ(G) ≤ lim inf
k→∞

µk(G).

Theorem 2 Let µ measure Rn. Then µ almost every x ∈ Rn is a point of
translational invariance of Tan(µ, x), that is, µ almost every x ∈ Rn has the
following property: Whenever ψ ∈ Tan(µ, x) and u ∈ spt ψ then

Tu,1[ψ] ∈ Tan(µ, x).

Theorem 3 If µ measures Rn, h is a regular density function, and µ almost
every point of Rn is an h-density point of µ, then at µ almost every point x
of Rn, every tangent measure to µ at x is flat. Conversely, if µ almost every
point of Rn is an h-density point of µ, and at µ almost every point of Rn, every
tangent measure to µ at x is flat, then h is a regular density function.

Theorem 4 If µ is a locally finite measure on Rn and almost every point of
Rn is an h-density point of µ, then at almost every point of Rn, every tangent
measure ψ to µ at x is uniformly distributed, with 0 ∈ spt ψ.

Theorem 5 Let µ be a Radon measure on Rn. If for µ almost every point x
in Rn, every tangent measure to µ at x has 0 as a symmetric point, then at µ
almost every point x in Rn, every tangent measure to µ at x is flat.

To prove our result for more general Hausdorff functions h we need two simple
density lemmas for the measures Hh and Ph, which replace the standard density
lemmas for Hs and Ps. We state Lemma 3 without proof, referring the reader
to [3, 6.10]. The result proved there is again only for functions h(r) = rs, but
generalizes without trouble to all other Hausdorff functions.

Lemma 3 If A ⊆ Rn satisfies 0 < Ph(A) < ∞, then for Ph|A almost every
x ∈ Rn,

Dh
(
Ph|A, x

)
≥ 1.

The proof of Lemma 4 requires the following covering theorem, which is due
to Morse, see [5].
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Theorem 6 Let µ be a Radon measure in Rn, A ⊆ Rn, 0 ≤ α < 1, and let B
be a family of closed balls in Rn such that for each point y of A and each r > 0
we may find a ball B(x, s) ∈ B with s ≤ r and y ∈ B(x, αs). Then there is a
countable collection of disjoint balls {Bi} ⊆ B such that µ (A \

⋃
iBi) = 0.

Lemma 4 Let A ⊆ Rn satisfy Hh(A) < ∞. Then, for Hh|A almost every x,
for any 0 < α < 1 and t > 1 there is r > 0 such that, for every s ≤ r and every
y ∈ B(x, αs),

Hh (B (y, s) ∩A)

h(2s)
≤ t.

In particular,

D
h
(Hh|A, x) ≤ 1.

Proof. Since Hh is regular we may assume that A is Hh measurable. For
0 < α < 1 and t > 1 write

Aα,t = {x ∈ A : for each r > 0, there are s ≤ r and y ∈ U(x, αs)

such that Hh (A ∩B (y, s)) > th(2s)}.

It is sufficient to show that Hh (Aα,t) = 0 for any 0 < α < 1 and t > 1.
Fix 0 < α < 1 and t > 1, choose ε > 0, and let K be a compact subset of

Aα,t satisfying Hh(K) ≥ (1 − ε)Hh (Aα,t). We may now choose δi ↘ 0, and
use Theorem 6 to choose disjoint balls {Bi,j}∞j=1 = {B (yi,j , ri,j)}∞j=1 for each i,
such that

(i) K ∩B (yi,j , αri,j) 6= ∅,

(ii) ri,j ≤ δi/2,

(iii) Hh (A ∩Bi,j) > th (2ri,j) ,

(iv) Hh (K \ ∪jBi,j) = 0.

If y ∈
⋃
i≥k
⋃
j Bi,j , then dist(K, y) < δk. So if y ∈

⋂
k≥1

⋃
i≥k
⋃
j Bi,j , then

dist(K, y) = 0, so y ∈ K. Therefore

Hh(Aα,t) ≥Hh(K) ≥ Hh
⋂
k≥1

⋃
i≥k

⋃
j

Bi,j


= lim
k→∞

Hh
A ∩ ⋃

i≥k

⋃
j

Bi,j

 ≥ lim sup
k→∞

Hh
A ∩⋃

j

Bk,j
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= lim sup
k→∞

∞∑
j=1

Hh (A ∩Bk,j) > lim sup
k→∞

t

∞∑
j=1

h (2rk,j)

≥t lim sup
k→∞

Hh
δk

K ∩⋃
j

Bk,j

 = tHh (K)

≥t (1− ε)Hh (Aα,t) .

Letting ε↘ 0, we see that Hh (Aα,t) = 0. The second statement of the lemma
follows immediately.

Theorem 7 Let A ⊆ Rn, and µ = Ph|A = Hh|A be a positive finite measure.
Then, for µ almost every x ∈ A, every tangent measure to µ at x is flat and h
is a regular density function.

Proof. Write A∗ for those points of A which are exceptional points of neither
Lemma 3 nor Lemma 4, at which all tangent measures have 0 in their support
and are uniformly distributed, and which are points of translational invariance
of Tan(µ, x). Then µ(A∗) = µ(A), and every point of A∗ is an h-density point
of µ.

Fix x ∈ A∗. We now show that for each z ∈ Rn, each ρ > 0, and each tangent
measure ψ to µ at x,

ψB(z, ρ) ≤ ψB(0, ρ). (1)

Fix ψ ∈ Tan(µ, x) and ρ > 0. Since ψ is uniformly distributed and 0 ∈ spt ψ, it
only remains to show the required inequality for z 6∈ spt ψ.

We first suppose that z ∈ U(0, ρ). Since

ψ = lim
k→∞

ckTx,rk [µ],

we have by Lemma 2 that

ψU(z, ρ) ≤ lim inf
k→∞

ckµU(x+ rkz, rkρ).

Since z ∈ B(0, αρ) for some α < 1, since x is an exceptional point of neither
Lemma 3 nor Lemma 4, and since x+rkz ∈ U(x, rkρ), we see that for each t > 1
there is a number k1 such that if k > k1 then

µU(x+ rkz, rkρ) ≤ µB(x+ rkz, rkρ) ≤ tµB(x, rkρ).

Therefore

ψU(z, ρ) ≤ lim inf
k→∞

ckµU(x+ rkz, rkρ) ≤ lim sup
k→∞

ckµB(x, rkρ) ≤ ψB(0, ρ).
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Replacing ρ by ρ+ δ/2 in the above calculations, we see that

ψU(z, ρ+ δ/2) ≤ ψB(0, ρ+ δ/2).

The measure ψ is Radon, so for each ε > 0 we may find δ > 0 such that

ψU(0, ρ+ δ) ≤ ψB(0, ρ) + ε,

so

ψB(z, ρ) ≤ ψU(z, ρ+ δ/2) ≤ ψB(0, ρ+ δ/2) ≤ ψU(0, ρ+ δ) ≤ ψB(0, ρ) + ε.

The choice of ε > 0 was arbitrary, so

ψB(z, ρ) ≤ ψB(0, ρ).

Now suppose that z ∈ ∂B(0, ρ); then for each ρ1 > ρ we have z ∈ U(0, ρ1), and
ψB(z, ρ1) ≤ ψB(0, ρ1). Therefore

ψB(z, ρ) ≤ ψB(0, ρ1) for each ρ1 > ρ,

and

ψB(z, ρ) ≤ lim
ρ1→ρ

ψB(0, ρ1) = ψ

( ⋂
ρ1>ρ

B(0, ρ1)

)
= ψB(0, ρ).

The third case we must consider is that where z /∈ B(0, ρ). IfB(z, ρ)∩spt ψ =
∅, the inequality ψB(z, ρ) ≤ ψB(0, ρ) is obvious. If B(z, ρ)∩ spt ψ 6= ∅, we may
choose w ∈ B(z, ρ) ∩ spt ψ and use the fact that x is a point of translational
invariance of Tan(µ, x) to see that

Tw,1[ψ]B(z − w, ρ) ≤ Tw,1[ψ]B(0, ρ),

and so

ψB(z, ρ) ≤ ψB(w, ρ) ≤ ψB(0, ρ).

So every measure ψ in Tan(µ, x) indeed satisfies inequality (1).

It is now not hard to show that 0 is a symmetric point of each measure
ψ ∈ Tan(µ, x).

Fix ψ in Tan(µ, x) and let ρ > 0. For y ∈ Rn, define

F (y) =

∫ (
ρ2 − ‖z − y‖2

)
χB(y,ρ)(z)dψ(z).
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Then by Fubini’s Theorem and equation (1),

F (y) =

∫ ∞
0

ψ
{
z :
(
ρ2 − ‖z − y‖2

)
χB(y,ρ)(z) > t

}
dt

=

∫ ρ2

0

ψB
(
y,
√
ρ2 − t

)
dt

≤
∫ ρ2

0

ψB
(

0,
√
ρ2 − t

)
dt = F (0).

Since F is easily seen to be differentiable on B(y, ρ), this implies that 0 is
a maximum for F and that ∇F (0) = −2

∫
B(0,ρ)

z dψ(z) = 0, that is, 0 is a

symmetric point of ψ. The result then follows from Theorem 5 and the second
implication of Theorem 3.

Lemma 5 If µ is a Radon measure on Rn, A is a compact subset of Rn, h is a
regular density function, and Dh (µ, x) ≥ 1 for all x ∈ A, then µ(A) ≥ Ph(A).

Proof. Since µ is Radon, µ(A) <∞. For t < 1 and δ > 0 write

At,δ = {x ∈ A : µB (x, r) ≥ t h(2r) whenever r ≤ δ/2} .

Fix t < 1 and δ > 0, then for every 0 < η ≤ δ,

µB(At,δ, η) ≥ tPhη (At,δ) ,

µ (Clos At,δ) ≥ tPh0 (At,δ) = tPh0 (Clos At,δ) ,

since if {B(xi, ri)} is an η-packing of At,δ, then µB (xi, ri) ≥ t h(2ri), and the
compact set B(At,δ, η) contains the disjoint union

⋃
B(xi, ri). (The last equality

just uses the well-known fact, see for example [3, 5.10], that if h is a regular
density function, then Ph0 (S) = Ph0 (Clos S) for each subset S of Rn.)

By assumption, A =
⋃
δ>0 Clos(At,δ) for each t < 1. The measures µ and

Ph are Borel regular and At,1/n ⊆ At,1/(n+1) for each n, so for each t < 1,

Ph(A) =Ph(

∞⋃
n=1

Clos At,1/n) = lim
n→∞

Ph(Clos At,1/n)

≤ lim
n→∞

Ph0 (Clos At,1/n) ≤ t−1 lim
n→∞

µ
(
Clos At,1/n

)
=t−1µ(

∞⋃
n=1

Clos At,1/n) = t−1µ(A).

Since t < 1 was arbitrary, we have µ(A) ≥ Ph(A), as required.
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Lemma 6 If µ is a Radon measure on Rn and for each x ∈ A, D
h

(µ, x) ≤ 1
and all tangent measures to µ at x are flat, then for each x ∈ A,

lim
ε↘0

(
sup

{
µ(D)

h(diam D)
: x ∈ D, diam(D) < ε, D compact, convex

})
≤ 1.

Proof. Suppose not, then for some x ∈ A, without loss of generality x = 0, we
may find numbers ck > 0, t > 1, rk ↘ 0, compact convex sets Dk of diameter
1 and containing x, m ∈ {1, . . . , n} and an m-dimensional linear subspace V of
Rn, such that

(i) Dk → D (a nonempty compact convex set with diam(D) ≤ 1) in the
Hausdorff metric,

(ii) ckTx,rk [µ]→ Hm|V ∈ Tan(µ, x),

(iii) µ(rkDk)/h(rk) ≥ t for each k.

Write Ek = Clos
(⋃

l≥kDl

)
, then Ek+1 ⊆ Ek and Hm|V (Ek) → Hm|V (D).

Also,
µ(rlEl) ≥ µ(rlDl) ≥ t h(rl), for each l.

Since
Hm|V = lim

l→∞
clTx,rl [µ],

we may use Lemma 2 to see that

Hm|V (Ek) ≥ lim sup
l→∞

clµ(rlEk) for each k.

Choose k1 so large that whenever k ≥ k1,

Hm|V (Ek) ≤ (1 + t)

2
Hm|V (D).

Then, using the isodiametric inequality, for each k ≥ k1 we have

(1 + t)

2
Hm|VB(0, 1/2) ≥ (1 + t)

2
Hm|V (D) ≥ lim sup

l→∞
clµ(rlEk).

Since Ek+1 ⊆ Ek for each k,

lim sup
l→∞

clµ(rlEk) ≥ lim sup
l→∞

clµ(rlEl).

Therefore

(1 + t)

2
Hm|VB(0, 1/2) ≥ lim sup

l→∞
clµ(rlEl) ≥ lim sup

l→∞
clt h(rl).
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Since by assumption D
h
(µ, x) ≤ 1 for each x ∈ A,

lim sup
l→∞

µ (B(x, rl/2))h(rl)
−1 ≤ 1.

Therefore

(1 + t)

2
Hm|VB(0, 1/2) ≥t lim sup

l→∞
clµB(x, rl/2)

≥t lim inf
l→∞

clµU(x, rl/2)

≥tHm|V (U (0, 1/2)) .

So t ≤ (1 + t)/2, and t ≤ 1, which is a contradiction.

Lemma 7 If µ is a Radon measure on Rn and A ⊆ Rn such that for every point
of A

lim
ε↘0

(
sup

{
µ(D)

h(diam D)
: x ∈ D, diam(D) < ε, D compact, convex

})
≤ 1,

then
µ(A) ≤ Hh(A).

For a proof of this lemma we refer the reader to [2, 2.10.17(2)].
We are now in a position to prove our main result.

Theorem 8 If A ⊆ Rn and µ = Hh|A = Ph|A is a positive finite measure,
then h is a regular density function and µ has h-density 1 almost everywhere.
Conversely, for each regular density function h, there is a positive finite measure
µ on Rn with h-density 1 almost everywhere, such that µ = Hh|A = Ph|A for
some A ⊆ Rn.

Proof. Lemmas 3 and 4 together imply that if µ = Hh|A = Ph|A, and µ is
positive and finite, then µ has density 1 almost everywhere. Theorem 7 implies
that h is regular.

In [6, 6.5], for each regular density function h there is given a construction of
a Radon measure µ on Rn which has positive finite constant h-density µ almost
everywhere in Rn. We normalize µ to have h-density 1 almost everywhere and
write D for the set where the h-density of µ is 1. Now D is a Gδ set with
µ(D) > 0, so we may find a compact subset C of D with µ(C) > 0. Then
Lemma 5 tells us that µ|C(S) ≥ Ph|C(S) for all closed subsets S of Rn.

Theorem 3 ensures that, for µ|C almost every x, every tangent measure to µ|C
at x is flat, and so we may use Lemmas 6 and 7 to show that µ|C(S) ≤ Hh|C(S)
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for all measurable subsets S of Rn. Since h is regular Lemma 1 implies that
Hh(A) ≤ Ph(A) for all A ⊆ Rn. Therefore Ph|C , µ|C and Hh|C agree on
closed, and therefore on all, subsets of Rn.
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