H. Joyce, Department of Mathematics, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland e-mail: joyce@@tarzan.math.jyu.fi

Conditions for equality of Hausdorff and packing measures on \mathbb{R}^n

Abstract

This note answers the question, for which Hausdorff functions h may the h-Hausdorff and h-packing measures agree on some subset A of \mathbb{R}^n , and be positive and finite. We show that these conditions imply that h is a *regular density function*, in the sense of Preiss, and that for each such function there is a subset of \mathbb{R}^n on which the h-Hausdorff and h-packing measures agree and are positive and finite.

In [8] and [10], Taylor and Tricot introduced a new family of measures, namely *packing measures*, which complement the well-known Hausdorff measures. For any *Hausdorff function*, that is, any non-decreasing function $h : (0, \infty) \to (0, \infty)$ with h(0+) = 0, we may define the Hausdorff and packing measures associated with this function.

In [7], Saint Raymond and Tricot considered the implications of equality on subsets of \mathbb{R}^n of the Hausdorff and packing measures associated with some function $h(r) = r^s$. They showed that if the two measures are positive and finite on some subset A of \mathbb{R}^n , then they agree on A if and only if s is an integer and A is *s*-rectifiable.

In this note we extend the above result. We show that the Hausdorff functions h for which there may exist a subset of \mathbb{R}^n on which Hausdorff and packing measures are equal, and positive and finite, are precisely those named *regular* density functions by D. Preiss, (see [6]). For this work we use theorems which adapt and extend the standard density-type theorems, and draw heavily on the concepts and results of [6] and [4].

We now review the definitions and results needed for what follows. For definitions of Hausdorff measure, \mathcal{H}^h , we refer the reader to [3, 4.9].

By a *packing* of a subset S of \mathbb{R}^n we mean a finite or countable collection of closed balls $\{B(x_i, r_i) : x_i \in S\}$ such that, for each $i \neq j$,

$$B(x_i, r_i) \cap B(x_j, r_j) = \emptyset$$

Key Words: Measure and Integration

Mathematical Reviews subject classification: Primary: 28A75

Received by the editors July 21, 1995

A δ -packing is a packing such that for each *i*, diam $B(x_i, r_i) \leq \delta$.

If h is a Hausdorff function then $\mathcal{P}^{h}(S)$, the h-packing measure of S, may be defined thus;

$$\begin{split} P^h_{\delta}(S) &= \sup\left\{\sum h(\text{diam } B(x_i, r_i)) : \{B(x_i, r_i)\} \text{ a } \delta\text{-packing of } S\right\}\\ P^h_0(S) &= \lim_{\delta \to 0} P^h_{\delta}(S),\\ \mathcal{P}^h(S) &= \inf\left\{\sum_{1}^{\infty} P^h_0(S_i) : S \subset \bigcup_{1}^{\infty} S_i\right\}. \end{split}$$

We shall write \mathcal{H}^s and \mathcal{P}^s for the measures constructed from the function $h(r) = r^s$.

By a measure μ we shall mean a non-zero Borel regular outer measure on \mathbb{R}^n , such that the Borel sets are μ measurable. If μ is also locally finite we shall call μ a Radon measure. We note that μ is locally finite if and only if every compact subset of \mathbb{R}^n has finite μ -measure. By B(x,r) and U(x,r) we shall mean the closed and open balls, respectively, centered at x with radius r, by $\partial B(x,r)$ the boundary of these balls, and by B(A,r) the set of all points at distance no greater than r from the set A. We write spt μ for the smallest closed subset C of \mathbb{R}^n such that $\mu(\mathbb{R}^n \setminus C) = 0$, and $\mu|_A$ for the measure on \mathbb{R}^n defined by $\mu|_A(S) = \mu(A \cap S)$ for each subset S of \mathbb{R}^n . In the definitions and notation below we follow [3] and [6].

(i) If h is a Hausdorff function, μ measures \mathbb{R}^n , and $x \in \mathbb{R}^n$, we define $\overline{D}^h(\mu, x)$ and $\underline{D}^h(\mu, x)$, the upper and lower h-densities of μ at x, by the formulae

$$\overline{D}^{h}(\mu, x) = \limsup_{r \searrow 0} \mu B(x, r) / h(2r)$$

and

$$\underline{D}^{h}(\mu, x) = \liminf_{r \searrow 0} \mu B(x, r) / h(2r).$$

If the upper and lower *h*-densities of μ at x coincide and are positive and finite, we denote their common value by $D^h(\mu, x)$, and say that x is an *h*-density point of μ .

A Hausdorff function h is said to be a *density function* (in \mathbb{R}^n) if there is a measure μ over \mathbb{R}^n such that μ almost every $x \in \mathbb{R}^n$ is an h-density point of μ .

A density function h will be called *regular* (in the sense of Preiss) if $\lim_{r \searrow 0} h(tr)/h(r)$ exists for each t > 0. We refer the reader to [6, 6.5] for a complete characterization of regular density functions in terms of limiting conditions near zero.

- (ii) We shall use the notation $\lim_{k\to\infty} \mu_k = \mu$, or $\mu_k \to \mu$ for the usual notion of weak convergence of measures, see for example [3, 1.21].
- (iii) If $T : \mathbb{R}^n \to \mathbb{R}^m$ is Borel measurable and μ measures \mathbb{R}^n , we define $T[\mu]$, the image of μ under T, by

 $T[\mu](E) = \mu(T^{-1}(E))$ for every Borel set $E \subseteq \mathbb{R}^m$.

Let $x \in \mathbb{R}^n$ and $r \in \mathbb{R} \setminus \{0\}$. We define the map $T_{x,r} : \mathbb{R}^n \to \mathbb{R}^n$ by $T_{x,r}(z) = (z-x)/r$.

- (iv) Let μ measure \mathbb{R}^n and $x \in \mathbb{R}^n$. We say that a locally finite measure ψ is a tangent measure of μ at x if there are sequences $r_k \searrow 0$ and $c_k > 0$ such that $\psi = \lim_{k \to \infty} c_k T_{x,r_k}[\mu]$, and write $\psi \in \operatorname{Tan}(\mu, x)$. (Tangent measures in this form were introduced by D. Preiss in [6].)
- (v) A measure μ on \mathbb{R}^n is said to be uniformly distributed if $\mu B(x,r) = \mu B(y,r) < \infty$ whenever $x, y \in \text{spt } \mu$ and $0 < r < \infty$.
- (vi) Let μ be a Radon measure on \mathbb{R}^n . Then $x \in \text{spt } \mu$ is called a *symmetric* point of μ if for every $\rho > 0$

$$\int_{B(x,\rho)} z \, d\mu(z) = x \mu B(x,\rho).$$

(vii) A Radon measure μ on \mathbb{R}^n is called *flat* if $\mu = c\mathcal{H}^m|_V$ for some c > 0 and some *m*-dimensional affine subspace V of \mathbb{R}^n , $(1 \le m \le n)$.

We now have all the concepts required to state both the theorem of Saint Raymond and Tricot, (see [7]), for functions $h(r) = r^s$, and the results from [6] and [4] that we will need.

Theorem 1 If $A \subseteq \mathbb{R}^n$ satisfies $\mathcal{P}^s(A) < \infty$, then $\mathcal{H}^s(A) = \mathcal{P}^s(A)$ if and only if the density $D^s(\mathcal{H}^s|_A, x)$ exists and equals 1 for \mathcal{P}^s almost all $x \in A$. (This in turn implies that s is an integer, and that A is s-rectifiable.)

Lemma 1 Let X be a separable metric space, and let h be a regular density function. Then $\mathcal{H}^h(A) \leq \mathcal{P}^h(A)$ for all subsets A of X.

A proof of the above lemma for the functions $h(r) = r^s$ may be found in [3, 5.12]. Since the proof given there also works for regular density functions, we omit the proof of Lemma 1. For the proofs of Lemma 2 and Theorem 2 we refer the reader to [6, 1.11(4), 2.12] respectively. Theorem 3 follows from the definition of a regular density function and [6, 4.11(1), 4.11(4)], and Theorem 4

144

from [6, 6.1(5), 4.7(1)]. The reader may wish to note that in [6], the notation \mathcal{M}_n is used for the set of all flat measures on \mathbb{R}^n , see [6, 3.7(1)], and \mathcal{U}_n for the set of all uniformly distributed measures on \mathbb{R}^n which have 0 in their support, see [6, 3.1(2)]. Theorem 5 is proved in [4].

Lemma 2 If $\mu_k \to \mu$ are measures on \mathbb{R}^n then for each compact set $D \subset \mathbb{R}^n$ and each open set $G \subset \mathbb{R}^n$,

$$\mu(D) \ge \limsup_{k \to \infty} \mu_k(D),$$

$$\mu(G) \le \liminf_{k \to \infty} \mu_k(G).$$

Theorem 2 Let μ measure \mathbb{R}^n . Then μ almost every $x \in \mathbb{R}^n$ is a point of translational invariance of $\operatorname{Tan}(\mu, x)$, that is, μ almost every $x \in \mathbb{R}^n$ has the following property: Whenever $\psi \in \operatorname{Tan}(\mu, x)$ and $u \in \operatorname{spt} \psi$ then

$$T_{u,1}[\psi] \in \operatorname{Tan}(\mu, x).$$

Theorem 3 If μ measures \mathbb{R}^n , h is a regular density function, and μ almost every point of \mathbb{R}^n is an h-density point of μ , then at μ almost every point xof \mathbb{R}^n , every tangent measure to μ at x is flat. Conversely, if μ almost every point of \mathbb{R}^n is an h-density point of μ , and at μ almost every point of \mathbb{R}^n , every tangent measure to μ at x is flat, then h is a regular density function.

Theorem 4 If μ is a locally finite measure on \mathbb{R}^n and almost every point of \mathbb{R}^n is an h-density point of μ , then at almost every point of \mathbb{R}^n , every tangent measure ψ to μ at x is uniformly distributed, with $0 \in \text{spt } \psi$.

Theorem 5 Let μ be a Radon measure on \mathbb{R}^n . If for μ almost every point x in \mathbb{R}^n , every tangent measure to μ at x has 0 as a symmetric point, then at μ almost every point x in \mathbb{R}^n , every tangent measure to μ at x is flat.

To prove our result for more general Hausdorff functions h we need two simple density lemmas for the measures \mathcal{H}^h and \mathcal{P}^h , which replace the standard density lemmas for \mathcal{H}^s and \mathcal{P}^s . We state Lemma 3 without proof, referring the reader to [3, 6.10]. The result proved there is again only for functions $h(r) = r^s$, but generalizes without trouble to all other Hausdorff functions.

Lemma 3 If $A \subseteq \mathbb{R}^n$ satisfies $0 < \mathcal{P}^h(A) < \infty$, then for $\mathcal{P}^h|_A$ almost every $x \in \mathbb{R}^n$,

 $\underline{D}^h\left(\mathcal{P}^h|_A, x\right) \ge 1.$

The proof of Lemma 4 requires the following covering theorem, which is due to Morse, see [5].

Theorem 6 Let μ be a Radon measure in \mathbb{R}^n , $A \subseteq \mathbb{R}^n$, $0 \le \alpha < 1$, and let \mathcal{B} be a family of closed balls in \mathbb{R}^n such that for each point y of A and each r > 0 we may find a ball $B(x, s) \in \mathcal{B}$ with $s \le r$ and $y \in B(x, \alpha s)$. Then there is a countable collection of disjoint balls $\{B_i\} \subseteq \mathcal{B}$ such that $\mu(A \setminus \bigcup_i B_i) = 0$.

Lemma 4 Let $A \subseteq \mathbb{R}^n$ satisfy $\mathcal{H}^h(A) < \infty$. Then, for $\mathcal{H}^h|_A$ almost every x, for any $0 < \alpha < 1$ and t > 1 there is r > 0 such that, for every $s \leq r$ and every $y \in B(x, \alpha s)$,

$$\frac{\mathcal{H}^{h}\left(B\left(y,s\right)\cap A\right)}{h(2s)} \leq t.$$

In particular,

$$\overline{D}^h(\mathcal{H}^h|_A, x) \le 1.$$

PROOF. Since \mathcal{H}^h is regular we may assume that A is \mathcal{H}^h measurable. For $0 < \alpha < 1$ and t > 1 write

$$A_{\alpha,t} = \{ x \in A : \text{for each } r > 0, \text{ there are } s \leq r \text{ and } y \in U(x, \alpha s) \\ \text{such that } \mathcal{H}^h \left(A \cap B \left(y, s \right) \right) > t h(2s) \}.$$

It is sufficient to show that $\mathcal{H}^{h}(A_{\alpha,t}) = 0$ for any $0 < \alpha < 1$ and t > 1.

Fix $0 < \alpha < 1$ and t > 1, choose $\varepsilon > 0$, and let K be a compact subset of $A_{\alpha,t}$ satisfying $\mathcal{H}^h(K) \ge (1-\varepsilon)\mathcal{H}^h(A_{\alpha,t})$. We may now choose $\delta_i \searrow 0$, and use Theorem 6 to choose disjoint balls $\{B_{i,j}\}_{j=1}^{\infty} = \{B(y_{i,j}, r_{i,j})\}_{j=1}^{\infty}$ for each i, such that

- (i) $K \cap B(y_{i,j}, \alpha r_{i,j}) \neq \emptyset$,
- (ii) $r_{i,j} \leq \delta_i/2$,
- (iii) $\mathcal{H}^h(A \cap B_{i,j}) > t h(2r_{i,j}),$
- (iv) $\mathcal{H}^h(K \setminus \bigcup_j B_{i,j}) = 0.$

If $y \in \bigcup_{i \ge k} \bigcup_j B_{i,j}$, then $\operatorname{dist}(K, y) < \delta_k$. So if $y \in \bigcap_{k \ge 1} \bigcup_{i \ge k} \bigcup_j B_{i,j}$, then $\operatorname{dist}(K, y) = 0$, so $y \in K$. Therefore

$$\mathcal{H}^{h}(A_{\alpha,t}) \geq \mathcal{H}^{h}(K) \geq \mathcal{H}^{h}\left(\bigcap_{k\geq 1} \bigcup_{i\geq k} \bigcup_{j} B_{i,j}\right)$$
$$= \lim_{k\to\infty} \mathcal{H}^{h}\left(A \cap \bigcup_{i\geq k} \bigcup_{j} B_{i,j}\right) \geq \limsup_{k\to\infty} \mathcal{H}^{h}\left(A \cap \bigcup_{j} B_{k,j}\right)$$

Hausdorff and Packing Measures on \mathbb{R}^n

$$= \limsup_{k \to \infty} \sum_{j=1}^{\infty} \mathcal{H}^{h} \left(A \cap B_{k,j} \right) > \limsup_{k \to \infty} t \sum_{j=1}^{\infty} h\left(2r_{k,j} \right)$$
$$\geq t \limsup_{k \to \infty} \mathcal{H}^{h}_{\delta_{k}} \left(K \cap \bigcup_{j} B_{k,j} \right) = t \mathcal{H}^{h} \left(K \right)$$
$$\geq t \left(1 - \varepsilon \right) \mathcal{H}^{h} \left(A_{\alpha,t} \right).$$

Letting $\varepsilon \searrow 0$, we see that $\mathcal{H}^{h}(A_{\alpha,t}) = 0$. The second statement of the lemma follows immediately.

Theorem 7 Let $A \subseteq \mathbb{R}^n$, and $\mu = \mathcal{P}^h|_A = \mathcal{H}^h|_A$ be a positive finite measure. Then, for μ almost every $x \in A$, every tangent measure to μ at x is flat and h is a regular density function.

PROOF. Write A^* for those points of A which are exceptional points of neither Lemma 3 nor Lemma 4, at which all tangent measures have 0 in their support and are uniformly distributed, and which are points of translational invariance of $\operatorname{Tan}(\mu, x)$. Then $\mu(A^*) = \mu(A)$, and every point of A^* is an *h*-density point of μ .

Fix $x \in A^*$. We now show that for each $z \in \mathbb{R}^n$, each $\rho > 0$, and each tangent measure ψ to μ at x,

$$\psi B(z,\rho) \le \psi B(0,\rho). \tag{1}$$

Fix $\psi \in \text{Tan}(\mu, x)$ and $\rho > 0$. Since ψ is uniformly distributed and $0 \in \text{spt } \psi$, it only remains to show the required inequality for $z \notin \text{spt } \psi$.

We first suppose that $z \in U(0, \rho)$. Since

$$\psi = \lim_{k \to \infty} c_k T_{x, r_k}[\mu],$$

we have by Lemma 2 that

$$\psi U(z,\rho) \le \liminf_{k\to\infty} c_k \mu U(x+r_k z,r_k \rho).$$

Since $z \in B(0, \alpha \rho)$ for some $\alpha < 1$, since x is an exceptional point of neither Lemma 3 nor Lemma 4, and since $x + r_k z \in U(x, r_k \rho)$, we see that for each t > 1there is a number k_1 such that if $k > k_1$ then

$$\mu U(x + r_k z, r_k \rho) \le \mu B(x + r_k z, r_k \rho) \le t \mu B(x, r_k \rho).$$

Therefore

$$\psi U(z,\rho) \le \liminf_{k \to \infty} c_k \mu U(x+r_k z, r_k \rho) \le \limsup_{k \to \infty} c_k \mu B(x, r_k \rho) \le \psi B(0,\rho).$$

Replacing ρ by $\rho + \delta/2$ in the above calculations, we see that

$$\psi U(z, \rho + \delta/2) \le \psi B(0, \rho + \delta/2).$$

The measure ψ is Radon, so for each $\varepsilon > 0$ we may find $\delta > 0$ such that

$$\psi U(0, \rho + \delta) \le \psi B(0, \rho) + \varepsilon,$$

 \mathbf{SO}

$$\psi B(z,\rho) \le \psi U(z,\rho+\delta/2) \le \psi B(0,\rho+\delta/2) \le \psi U(0,\rho+\delta) \le \psi B(0,\rho) + \varepsilon.$$

The choice of $\varepsilon > 0$ was arbitrary, so

$$\psi B(z,\rho) \le \psi B(0,\rho).$$

Now suppose that $z \in \partial B(0, \rho)$; then for each $\rho_1 > \rho$ we have $z \in U(0, \rho_1)$, and $\psi B(z, \rho_1) \leq \psi B(0, \rho_1)$. Therefore

$$\psi B(z,\rho) \le \psi B(0,\rho_1)$$
 for each $\rho_1 > \rho$,

and

$$\psi B(z,\rho) \leq \lim_{\rho_1 \to \rho} \psi B(0,\rho_1) = \psi \left(\bigcap_{\rho_1 > \rho} B(0,\rho_1) \right) = \psi B(0,\rho).$$

The third case we must consider is that where $z \notin B(0, \rho)$. If $B(z, \rho) \cap \text{spt } \psi = \emptyset$, the inequality $\psi B(z, \rho) \leq \psi B(0, \rho)$ is obvious. If $B(z, \rho) \cap \text{spt } \psi \neq \emptyset$, we may choose $w \in B(z, \rho) \cap \text{spt } \psi$ and use the fact that x is a point of translational invariance of $\text{Tan}(\mu, x)$ to see that

$$T_{w,1}[\psi]B(z-w,\rho) \le T_{w,1}[\psi]B(0,\rho),$$

and so

$$\psi B(z,\rho) \le \psi B(w,\rho) \le \psi B(0,\rho).$$

So every measure ψ in $\operatorname{Tan}(\mu, x)$ indeed satisfies inequality (1).

It is now not hard to show that 0 is a symmetric point of each measure $\psi \in Tan(\mu, x)$.

Fix ψ in Tan (μ, x) and let $\rho > 0$. For $y \in \mathbb{R}^n$, define

$$F(y) = \int \left(\rho^2 - \|z - y\|^2\right) \chi_{B(y,\rho)}(z) d\psi(z).$$

Then by Fubini's Theorem and equation (1),

$$F(y) = \int_0^\infty \psi \left\{ z : \left(\rho^2 - \|z - y\|^2 \right) \chi_{B(y,\rho)}(z) > t \right\} dt$$

= $\int_0^{\rho^2} \psi B \left(y, \sqrt{\rho^2 - t} \right) dt$
 $\leq \int_0^{\rho^2} \psi B \left(0, \sqrt{\rho^2 - t} \right) dt = F(0).$

Since F is easily seen to be differentiable on $B(y,\rho)$, this implies that 0 is a maximum for F and that $\nabla F(0) = -2 \int_{B(0,\rho)} z \, d\psi(z) = 0$, that is, 0 is a symmetric point of ψ . The result then follows from Theorem 5 and the second implication of Theorem 3.

Lemma 5 If μ is a Radon measure on \mathbb{R}^n , A is a compact subset of \mathbb{R}^n , h is a regular density function, and $\underline{D}^h(\mu, x) \geq 1$ for all $x \in A$, then $\mu(A) \geq \mathcal{P}^h(A)$.

PROOF. Since μ is Radon, $\mu(A) < \infty$. For t < 1 and $\delta > 0$ write

$$A_{t,\delta} = \{x \in A : \mu B(x,r) \ge t h(2r) \text{ whenever } r \le \delta/2\}.$$

Fix t < 1 and $\delta > 0$, then for every $0 < \eta \leq \delta$,

$$\mu B(A_{t,\delta},\eta) \geq t P_{\eta}^{h}(A_{t,\delta}),$$

$$\mu (\operatorname{Clos} A_{t,\delta}) \geq t P_{0}^{h}(A_{t,\delta}) = t P_{0}^{h} (\operatorname{Clos} A_{t,\delta}),$$

since if $\{B(x_i, r_i)\}$ is an η -packing of $A_{t,\delta}$, then $\mu B(x_i, r_i) \ge t h(2r_i)$, and the compact set $B(A_{t,\delta}, \eta)$ contains the disjoint union $\bigcup B(x_i, r_i)$. (The last equality just uses the well-known fact, see for example [3, 5.10], that if h is a regular density function, then $P_0^h(S) = P_0^h(\text{Clos } S)$ for each subset S of \mathbb{R}^n .) By assumption, $A = \bigcup_{\delta>0} \text{Clos}(A_{t,\delta})$ for each t < 1. The measures μ and

By assumption, $A = \bigcup_{\delta>0} \operatorname{Clos}(A_{t,\delta})$ for each t < 1. The measures μ and \mathcal{P}^h are Borel regular and $A_{t,1/n} \subseteq A_{t,1/(n+1)}$ for each n, so for each t < 1,

$$\mathcal{P}^{h}(A) = \mathcal{P}^{h}(\bigcup_{n=1}^{\infty} \operatorname{Clos} A_{t,1/n}) = \lim_{n \to \infty} \mathcal{P}^{h}(\operatorname{Clos} A_{t,1/n})$$
$$\leq \lim_{n \to \infty} P_{0}^{h}(\operatorname{Clos} A_{t,1/n}) \leq t^{-1} \lim_{n \to \infty} \mu\left(\operatorname{Clos} A_{t,1/n}\right)$$
$$= t^{-1}\mu(\bigcup_{n=1}^{\infty} \operatorname{Clos} A_{t,1/n}) = t^{-1}\mu(A).$$

Since t < 1 was arbitrary, we have $\mu(A) \ge \mathcal{P}^h(A)$, as required.

Lemma 6 If μ is a Radon measure on \mathbb{R}^n and for each $x \in A$, $\overline{D}^h(\mu, x) \leq 1$ and all tangent measures to μ at x are flat, then for each $x \in A$,

$$\lim_{\varepsilon\searrow 0}\left(\sup\left\{\frac{\mu(D)}{h(\mathrm{diam}\ D)}:x\in D,\ \mathrm{diam}(D)<\varepsilon,\ D\ compact,\ convex\right\}\right)\leq 1.$$

PROOF. Suppose not, then for some $x \in A$, without loss of generality x = 0, we may find numbers $c_k > 0$, t > 1, $r_k \searrow 0$, compact convex sets D_k of diameter 1 and containing $x, m \in \{1, \ldots, n\}$ and an *m*-dimensional linear subspace V of \mathbb{R}^n , such that

- (i) $D_k \to D$ (a nonempty compact convex set with diam $(D) \leq 1$) in the Hausdorff metric,
- (ii) $c_k T_{x,r_k}[\mu] \to \mathcal{H}^m|_V \in \operatorname{Tan}(\mu, x),$
- (iii) $\mu(r_k D_k)/h(r_k) \ge t$ for each k.

Write $E_k = \operatorname{Clos}\left(\bigcup_{l\geq k} D_l\right)$, then $E_{k+1} \subseteq E_k$ and $\mathcal{H}^m|_V(E_k) \to \mathcal{H}^m|_V(D)$. Also,

$$\mu(r_l E_l) \ge \mu(r_l D_l) \ge t h(r_l)$$
, for each l .

Since

$$\mathcal{H}^m|_V = \lim_{l \to \infty} c_l T_{x, r_l}[\mu],$$

we may use Lemma 2 to see that

$$\mathcal{H}^m|_V(E_k) \ge \limsup_{l \to \infty} c_l \mu(r_l E_k)$$
 for each k .

Choose k_1 so large that whenever $k \ge k_1$,

$$\mathcal{H}^m|_V(E_k) \le \frac{(1+t)}{2} \mathcal{H}^m|_V(D).$$

Then, using the isodiametric inequality, for each $k \ge k_1$ we have

$$\frac{(1+t)}{2}\mathcal{H}^m|_V B(0,1/2) \ge \frac{(1+t)}{2}\mathcal{H}^m|_V(D) \ge \limsup_{l \to \infty} c_l \mu(r_l E_k).$$

Since $E_{k+1} \subseteq E_k$ for each k,

$$\limsup_{l \to \infty} c_l \mu(r_l E_k) \ge \limsup_{l \to \infty} c_l \mu(r_l E_l).$$

Therefore

$$\frac{(1+t)}{2}\mathcal{H}^m|_V B(0,1/2) \ge \limsup_{l \to \infty} c_l \mu(r_l E_l) \ge \limsup_{l \to \infty} c_l t h(r_l).$$

Since by assumption $\overline{D}^h(\mu, x) \leq 1$ for each $x \in A$,

$$\limsup_{l \to \infty} \mu\left(B(x, r_l/2)\right) h(r_l)^{-1} \le 1$$

Therefore

$$\frac{(1+t)}{2}\mathcal{H}^{m}|_{V}B(0,1/2) \geq t \limsup_{l \to \infty} c_{l}\mu B(x,r_{l}/2)$$
$$\geq t \liminf_{l \to \infty} c_{l}\mu U(x,r_{l}/2)$$
$$> t\mathcal{H}^{m}|_{V} (U(0,1/2)).$$

So $t \leq (1+t)/2$, and $t \leq 1$, which is a contradiction.

Lemma 7 If μ is a Radon measure on \mathbb{R}^n and $A \subseteq \mathbb{R}^n$ such that for every point of A

$$\lim_{\varepsilon \searrow 0} \left(\sup \left\{ \frac{\mu(D)}{h(\operatorname{diam} D)} : x \in D, \ \operatorname{diam}(D) < \varepsilon, \ D \ compact, \ convex \right\} \right) \le 1,$$

then

$$\mu(A) \le \mathcal{H}^h(A).$$

For a proof of this lemma we refer the reader to [2, 2.10.17(2)]. We are now in a position to prove our main result.

Theorem 8 If $A \subseteq \mathbb{R}^n$ and $\mu = \mathcal{H}^h|_A = \mathcal{P}^h|_A$ is a positive finite measure, then h is a regular density function and μ has h-density 1 almost everywhere. Conversely, for each regular density function h, there is a positive finite measure μ on \mathbb{R}^n with h-density 1 almost everywhere, such that $\mu = \mathcal{H}^h|_A = \mathcal{P}^h|_A$ for some $A \subseteq \mathbb{R}^n$.

PROOF. Lemmas 3 and 4 together imply that if $\mu = \mathcal{H}^h|_A = \mathcal{P}^h|_A$, and μ is positive and finite, then μ has density 1 almost everywhere. Theorem 7 implies that h is regular.

In [6, 6.5], for each regular density function h there is given a construction of a Radon measure μ on \mathbb{R}^n which has positive finite constant h-density μ almost everywhere in \mathbb{R}^n . We normalize μ to have h-density 1 almost everywhere and write D for the set where the h-density of μ is 1. Now D is a G_{δ} set with $\mu(D) > 0$, so we may find a compact subset C of D with $\mu(C) > 0$. Then Lemma 5 tells us that $\mu|_C(S) \geq \mathcal{P}^h|_C(S)$ for all closed subsets S of \mathbb{R}^n .

Theorem 3 ensures that, for $\mu|_C$ almost every x, every tangent measure to $\mu|_C$ at x is flat, and so we may use Lemmas 6 and 7 to show that $\mu|_C(S) \leq \mathcal{H}^h|_C(S)$

for all measurable subsets S of \mathbb{R}^n . Since h is regular Lemma 1 implies that $\mathcal{H}^h(A) \leq \mathcal{P}^h(A)$ for all $A \subseteq \mathbb{R}^n$. Therefore $\mathcal{P}^h|_C$, $\mu|_C$ and $\mathcal{H}^h|_C$ agree on closed, and therefore on all, subsets of \mathbb{R}^n .

Acknowledgment I would like to thank D. Preiss for much advice and many extremely useful discussions, and for suggesting this problem to me. I would also like to thank the referees for some useful suggestions and improvements.

References

- K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications. John Wiley, 1990.
- [2] H. Federer, Geometric Measure Theory. Springer-Verlag, 1969.
- [3] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, 1995.
- [4] P. Mattila and D. Preiss, Rectifiable measures in ℝⁿ and existence of principal values for singular integrals. J. London Math. Soc. (2) 52 (1995), 482–496.
- [5] A. P. Morse, Perfect Blankets. Trans. Amer. Math. Soc. 61 (1947), 418–442.
- [6] D. Preiss, Geometry of measures in ℝⁿ: Distributions, rectifiability and densities. Ann. Math. 125 (1987), 537–643.
- [7] X. Saint Raymond and C. Tricot, Packing regularity of sets in n-space. Math. Proc. Camb. Phil. Soc. 103 (1988), 133–145.
- [8] S. J. Taylor and C. Tricot, Packing measure and its evaluation for Brownian paths. Trans. Amer. Math. Soc. 288 (1985), 679–699.
- [9] S. J. Taylor and C. Tricot, The packing measure of rectifiable subsets of the plane. Math. Proc. Camb. Phil. Soc. 99 (1986), 285–296.
- [10] C. Tricot, Two definitions of fractional dimension. Math. Proc. Camb. Phil. Soc. 91 (1982), 57–74.