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THE DUAL OF THE
HENSTOCK-KURZWEIL SPACE

Abstract

We prove that if T is a continuous linear functional on the space D of
Henstock-Kurzweil integrable functions on [a1, b1]× · · · × [am, bm], then
there exists a function g of strong bounded variation on [a1, b1]× · · · ×
[am, bm] such that

T (f) = (HK)

∫
. . .

∫
[a1,b1]×···×[am,bm]

f(x1, . . . , xm)g(x1, . . . , xm) dx1 . . . dxm .

1 Introduction

A well known theorem of Zygmund-Alexiewicz (see [10], [5] or [11], [1]) says
that T is a continuous linear functional on the space of Henstock-Kurzweil
integrable functions on [a, b] if and only if there exists a function g : [a, b] 7→ R1

of essentially bounded variation such that

T (f) = (HK)

∫ b

a

f(x)g(x) dx .

In the multidimensional case, Kurzweil [4] proved that if g : [a1, b1]× · · · ×
[am, bm] 7→ R1 is a function of strong bounded variation, then

T (f) = (HK)
∫
...

∫
[a1,b1]×···×[am,bm]

f(x1, . . . , xm)g(x1, . . . , xm)dx1 . . . dxm . (1)
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is a continuous linear functional on the space D of Henstock-Kurzweil in-
tegrable functions on [a1, b1] × · · · × [am, bm]. This led Mikusiński and Os-
taszewski [9] to ask whether (1) gives the general form of a continuous linear
functional on D ?

In this paper, we answer their question in the affirmative by using the
theory of LH integral.

To simplify notation we give the proofs only in the two-dimensional case.

2 Definitions and Remarks

Definition 2.1 Let E = [a, b] × [c, d] be a rectangle in two-dimensional Eu-
clidean space R2. A division D of E is a collection D = {(I1, (ξ1, η1)), · · · ,
(Ip, (ξp, ηp))} where I1,. . .,Ip are nonoverlapping rectangles, (ξ1, η1),. . .,(ξp, ηp)
are points, ∪pi=1Ii = E, and (ξi, ηi) ∈ Ii for i = 1, 2, . . . , p. For brevity, we
write D = {(I, (ξ, η))} where I denotes a typical rectangle in D and (ξ, η) is
the associated point of I. If δ is a positive function on E, then a division D
of E is called δ-fine whenever d(Ii) < δ(ξi, ηi) for i = 1, 2, . . . , p, where d(Ii)
denotes the length of the diagonal line of Ii.

Definition 2.2 (see [5], [3]). A function f defined on a rectangle E is said
to be Henstock-Kurzweil integrable to A if for every ε > 0 there is a positive
function δ on E such that for any δ-fine division D = {(I, (ξ, η))} of E, we
have ∣∣∣((D)

∑
f(ξ, η)|I|

)
−A

∣∣∣ < ε .

Here |I| is the area (or measure) of I and (D)
∑
f(ξ, η)|I| the sum of f(ξ, η)|I|

for all (I, (ξ, η)) ∈ D.

Definition 2.3 Let {Xn} be a sequence of closed subsets of a rectangle E =
[a, b]×[c, d] with Xn ⊂ Xn+1 for all n, and ∪∞n=1Xn = E. A function f defined
on E is said to fulfill the condition (L) on {Xn} if f is Lebesgue integrable on
each Xn and

(L)

∫ ∫
Xn∩([a,x]×[c,y])

f(s, t) ds dt

converges uniformly on E. Also, f is said to fulfill the condition (H) on {Xn}
if for each n there exists δn(ξ, η) > 0 satisfying S((ξ, η), δn(ξ, η)) ⊂ E \ Xn

when (ξ, η) ∈ E \Xn such that limn→∞ τn = 0, where S((ξ, η), δn(ξ, η)) is an
open circular disc with center (ξ, η) and radius δn(ξ, η),

τn(x, y) = sup

∣∣∣∣∣∣(D)
∑

(ξ,η)/∈Xn

f(ξ, η)|I|

∣∣∣∣∣∣ ,
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(the supremum being taken over all δn-fine divisions D = (I, (ξ, η)) of [a, x]×
[c, y] and the sum is over (I, (ξ, η)) in D with (ξ, η) /∈ Xn), and

τn = sup
(x,y)∈E

τn(x, y) .

Definition 2.4 A function f is said to be LH integrable on E = [a, b]× [c, d]
if there exists a sequence of closed subsets Xn of E with Xn ⊂ Xn+1 for all n
and ∪∞n=1Xn = E such that f fulfills both the condition (L) and the condition
(H) on {Xn}. The (LH) integral of f on E is given by

(LH)

∫ ∫
E

f(x, y) dx dy = lim
n→∞

(L)

∫ ∫
Xn

f(x, y) dx dy .

Write F (x, y) for the LH primitive of f(x, y) on E.

Remark 2.5 a) Obviously, if f is Lebesgue integrable on a rectangle E,
then f is LH integrable on E.

b) In the one-dimensional case, the LH integral is equivalent to the Henstock-
Kurzweil integral (see [8]).

Definition 2.6 (see [7]). Let F be a function defined on E = [a, b] × [c, d],
I = [α1, β1]× [α2, β2] ⊂ E.

• We define F (I) = F (α1, α2) + F (β1, β2)− F (α1, β2)− F (β1, α2). Then
F (I) is called the value of F on the rectangle I.

• Let X ⊂ E. A function F defined on E is said to be AC∗∗(X) if for
every ε > 0 there are a δ(x, y) > 0 and a η > 0 such that for any
two δ-fine partial divisions of E with the associated points in X, namely
D1 = {(I1, (x1, y1)} and D2 = {I2, (x2, y2)} with x1, x2 ∈ X satisfying
(D1 \D2)

∑
|I| < η we have |(D1 \D2)

∑
F (I)| < ε.

• A function F defined on E is said to be ACG∗∗ if E = ∪∞i=1Xi so that
each Xi is closed in E and F is AC∗∗(Xi) for each i.

Definition 2.7 (see [6]). Let G be an open set in E. An elementary set I is
called a nonabsolute subset of G if there exists δ(x, y) > 0 for (x, y) ∈ E such
that I is the complement of a δ-fine cover of E \G. A δ-fine cover of E \G is
the union of the rectangles I1, I2, . . . , Ik such that {(Ii, (xi, yi))} is δ-fine with
(xi, yi) ∈ E \G and the union contains E \G. We say that I is a nonabsolute
subset of G involving δ.
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Definition 2.8 Let D be the space of all LH integrable functions on E. We
define a norm in D as follows:

‖f‖D = sup

{∣∣∣∣∣
∫ ∫

[a,x]×[c,y]
f(s, t) ds dt

∣∣∣∣∣ : (x, y) ∈ E

}
.

As usual, we regard two functions f and g as identical if f(x, y) = g(x, y)
almost everywhere on E. Then D is a normed linear space and we call it the
LH space.

Remark 2.9 It follows from the definition of LH integration that the L space
(the family of all Lebesgue integrable functions on E), which is a subspace of
D, is dense in space D.

3 Equivalence of Integrals

In the one-dimensional Euclidean space, by means of a category argument
and by using the Harnack extension, we proved that the LH integral and
the Henstock-Kurzweil integral are equivalent [8]. In [6] Lee reformulated
Harnack extension for the Henstock-Kurzweil integral in Rn. To prove that
the LH integral and the Henstock-Kurzweil integral are equivalent in R2, we
need to reformulate the Harnack extension for the LH integral in R2.

The following Harnack extension differs slightly from that given in [6].

Lemma 3.1 (Harnack extension) If the following conditions are satisfied:

(i) f is Lebesgue integrable on a closed subset X of E;

(ii) f is LH integrable on every elementary subset I of E \X;

(iii) there is a function F0 on E such that for every ε > 0 there exists δ(x, y) >
0 such that for any nonabsolute subset Q of E \X involving δ we have∣∣∣∣∣(LH)

∫ ∫
([a,x]×[c,y])∩Q

f(s, t) ds dt− F0(x, y)

∣∣∣∣∣ < ε for all (x, y) ∈ E ,

then f is LH integrable on E and

(LH)

∫ ∫
E

f(x, y) dx dy = (L)

∫ ∫
X

f(x, y) dx dy + F0(E) .
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Proof. For each positive integer n, choose an open subset On such that
On ⊃ X, |On − X| < 1/n and On ⊃ On+1. In view of (iii), there exists
δn(ξ, η) > 0. (We may assume that δn(ξ, η) satisfies S((ξ, η), δn(ξ, η)) ⊂ E \X
when (ξ, η) ∈ E \X and S((ξ, η), δn(ξ, η)) ⊂ On when (ξ, η) ∈ X.) such that
for any nonabsolute subset Qn of E \X involving δn we have∣∣∣∣∣

∫ ∫
([a,x]×[c,y])∩Qn

f(s, t) ds dt− F0(x, y)

∣∣∣∣∣ < 1

2n
for all (x, y) ∈ E , (2)

We choose a sequence {Qn} of nonabsolute subsets of E \X such that (2) hold
and Qn ⊂ Qn+1 for each n. Note that Qn is the union of finitely many open
rectangles and |Qn| > |E \X| − 1/n. The rest of the proof follows the same
way as that of Lemma 4 of [8], only note that put X0 = ∩∞n=1(E \Qn). �

We therefore have the following assertion.

Theorem 3.2 If f is Henstock-Kurzweil integrable on E, then it is LH inte-
grable there and

(LH)

∫ ∫
E

f(x, y) dx dy = (HK)

∫ ∫
E

f(x, y) dx dy .

Proof. We shall use a standard category argument (see [8]). Let F be the
Henstock-Kurzweil primitive of f on E. We say a point (x, y) is regular if there
is a rectangle I ⊂ E containing (x, y) as an interior point such that f is LH
integrable on I with F as its LH primitive on I. Because F is ACG∗∗ on E
(see [7]) and by the Baire category theorem, f is Lebesgue and therefore LH
integrable on some rectangle in E. In other words, the set of regular points is
nonempty. Let P be the set of all non regular points in E. Then P is closed
and we shall prove that indeed P is empty. Suppose P is not empty. Again,
in view of the Baire category theorem, there is a portion P0 of P such that
F is AC∗∗(P0). Let J0 = [a0, b0] × [c0, d0] be the smallest closed rectangle
containing P0. Then f is Lebesgue integrable on P0. Now, put

F0(x, y) = (HK)

∫ ∫
(J0\P0)∩([a0,x]×[c0,y])

f(s, t) ds dt .

Obviously, F0 is still AC∗∗(P0) and therefore for every ε > o there exist
a δ1(x, y) > 0 and a η > 0 such that for any two δ1-fine partial divisions
of J0 with the associated points in P0, namely, D1 = {(I1, (x1, y1))} and
D2 = {(I2, (x2, y2))} with (x1, y1), (x2, y2) ∈ P0 satisfying (D1 \D2)

∑
|I| < η

we have
|(D1 \D2)

∑
F0(I)| < ε

2
. (3)
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Since f − fχ
P0

is Henstock-Kurzweil integrable on J0 with the primitive F0,
it follows from Henstock Lemma [3] that for a given ε > 0 there is δ2(x, y) > 0
(we may assume S((x, y), δ2(x, y)) ⊂ J0 \ P0 when (x, y) ∈ J0 \ P0) such that
for any δ2-fine partial division D = {(I, (x, y))} of J0 with (x, y) ∈ P0 we have∣∣∣(D)

∑
((f(x, y)− fχ

P0
(x, y))|I| − F0(I))

∣∣∣ < ε

2

i.e., ∣∣∣(D)
∑

F0(I)
∣∣∣ < ε

2
. (4)

Let {Iij} be an rectangular net division of J0, where a0 = x0 < x1 < · · · <
xm = b0, c0 = y0 < y1 < · · · < yn = d0,

sup
1≤i≤m
1≤j≤n

{(xi − xi−1), (yj − yj−1)} < η

2[(b0 − a0) + (d0 − c0)]
,

and Iij = [xi−1, xi]× [yj−1, yj ] for i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

Define δ(x, y) as follows:
If xi−1 < x < xi, yj−1 < y < yj , let

2δ(x, y) = min{δ1(x, y), δ2(x, y), (x− xi−1), (xi − x), (y − yj−1), (yj − y)}.

If x = xi, yj−1 < y < yj , let

2δ(x, y) = min{δ1(x, y), δ2(x, y), (x− xi−1), (xi+1 − x), (y − yj−1), (yj − y)}.

If xi−1 < x < xi, y = yj , let

2δ(x, y) = min{δ1(x, y), δ2(x, y), (x− xi−1), (xi − x), (y − yj−1), (yj+1 − y)}.

If x = xi, y = yj , let

2δ(x, y) = min{δ1(x, y), δ2(x, y), (x− xi−1), (xi+1− x), (y− yj−1), (yj+1− y)}.

Then for any δ-fine division D of J0, write D = D
′∪D′′ , where D

′
denotes the

partial division of D for which the associated points in P0 and D
′′

otherwise.
By (3) and (4) we obtain∣∣∣(D′)∑F0(I ∩ ([a0, x]× [c0, y]))

∣∣∣ < ε for all (x, y) ∈ J0 . (5)

Put Q =
∑
I∈D′′ I. Thus (5) implies∣∣∣∣∣

∫ ∫
Q∩([a0,x]×[c0,y])

f(s, t) ds dt− F0(x, y)

∣∣∣∣∣ < ε for all (x, y) ∈ E .
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It follows from Lemma 3.1 that the function f is LH integrable on J0 and we
have

(LH)

∫ ∫
J0

f(x, y)dxdy =

(L)

∫ ∫
P0

f(x, y)dxdy + F0(J0) = (HK)

∫ ∫
J0

f(x, y)dxdy

which is a contradiction. Hence the proof is complete. �

Theorem 3.3 If f is LH integrable on E, then it is Henstock-Kurzweil inte-
grable there.

Proof. The proof follows as that in [8] (p. 524). �

Thus, from Theorem 3.2 and Theorem 3.3 we get that the Henstock-Kurzweil
integral and the LH integral are equivalent in R2. In addition the LH space
D can also be said to be the Henstock-Kurzweil space.

4 The General Form of a Continuous Linear Functional
on the Space D

Definition 4.1 Let E = [a, b]× [c, d] be a rectangle in R2.

• A function g : E 7→ R1 is said to be of bounded variation if supni=1 |g(Ii)|
< +∞, where the supremum is taken over all partitions of E into a
finite collection of nonoverlapping nondegenerate closed rectangles Ii,
i = 1, 2, . . . , n. Let us denote sup

∑n
i=1 |g(Ii)| by V (g(x, y);E).

• A function g : E 7→ R1 is said to be of strong bounded variation if g is
of bounded variation on E, and for every x ∈ [a, b], g(x, · ) is of bounded
variation, for every y ∈ [c, d], g( · , y) is of bounded variation.

Remark 4.2 a) In Definition 4.1, “all partitions {Ii}1≤i≤n of E” can be
replaced by “all rectangular net partitions {Iij}1≤i≤m,1≤j≤n of E, where
a = x0 < x1 < · · · < xm = b, c = y0 < y1 < · · · < yn = d and
Iij = [xi−1, xi]× [yj−1, yj ] for i = 1, 2, . . . ,m; j = 1, 2, . . . , n”.

b) In Definition 4.1, the condition “for every x ∈ [a, b], g(x, · ) is of bounded
variation, for every y ∈ [c, d], g( · , y) is of bounded variation” can be
replaced by the condition “for some x ∈ [a, b], g(x, · ) is of bounded
variation and for some y ∈ [c, d], g( · , y) is of bounded variation”.



112 Liu Genqian

Definition 4.3 A function G is said to satisfy the Lipschitz condition on a
rectangle E if there is a constant L > 0 such that |G(I)| < L|I| for any
sub-rectangle I of E where G(I) is the value of G on I.

Definition 4.4 A function G is said to be of strong bounded slope variation
on a rectangle E if the following conditions are satisfied:

1. There is a constant M > 0 such that∑
1≤i≤m−1
1≤j≤n−1

∣∣∣∣G(Iij)

|Iij |
+
G(Ii+1,j+1)

|Ii+1,j+1|
− G(Ii,j+1)

|Ii,j+1|
− G(Ii+1,j)

|Ii+1,j |

∣∣∣∣ ≤M
for all rectangular net partitions {Iij}1≤i≤m,1≤j≤n of E, where E =
[a, b] × [c, d], a = x0 < x1 < · · · < xm = b, c = y0 < y1 < · · · < yn = d,
Iij = [xi−1, xi]× [yj−1, yj ] for i = 1, 2, . . . ,m; j = 1, 2, . . . , n, and G(Iij)
is the value of G on Iij;

2. There is a M1 such that for all {Ii}1≤i≤m we have

m−1∑
i=1

∣∣∣∣G(Ii)

|Ii|
− G(Ii+1)

|Ii+1|

∣∣∣∣ ≤M1

where Ii = [xi−1, xi] × [y1, y2], a = x0 < x1 < · · · < xm = b, c ≤ y1 ≤
y2 ≤ d, and G(Ii) is the value of G on Ii;

3. There is a M2 such that for all {Jj}1≤j≤n we have

n−1∑
i=1

∣∣∣∣G(Jj)

|Jj |
− G(Jj+1)

|Ij+1|

∣∣∣∣ ≤M2

where Jj = [x1, x2] × [yj−1, yj ], a ≤ x1 < x2 ≤ b, c = y0 < y1 < · · · <
yn = d, and G(Jj) is the value of G on Jj;

Lemma 4.5 Let Q be a subset of E and the measure of Q zero. Let g be a
function on E \Q. If there exists a constant M > 0 such that∑

1≤i≤m
1≤j≤n

|g(Iij)| ≤M for any {Iij} of E

(where a = x0 < x1 < · · · < xm = b, c = y0 < y1 < · · · < yn = d,
Iij = [xi−1, xi] × [yj−1, yj ], i = 1, 2, . . . ,m; j = 1, 2, . . . , n, and (xi, yi) /∈ Q),
then there is a function h of bounded variation on E such that g(x, y) = h(x, y)
for almost all (x, y) ∈ E.
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Proof. For the sake of brevity we assume that g(x, y) = 0 for all (x, y) ∈ E1,
where E1 = ([a, b]× [c, c

′
]) ∪ ([a, a

′
]× [c

′
, d]) and a < a

′
< b, c < c

′
< d.

Step 1. First, we define h on E. For each (x, y) ∈ E, take a = x0 < x1 <
· · · < xm < · · · < x; c = y0 < y1 < · · · < yn < · · · < y, (xn, yn) → (x, y) and
(xi, yi) /∈ Q for i = 1, 2, . . .; j = 1, 2, . . . . Because∑

1≤i≤∞
1≤j≤∞

|g([xi−1, xi]× [yj−1, yj ])|

converges, g(x0, yn) = g(xn, y0) = 0, and

g(xn, yn) =
∑

1≤i≤n
1≤j≤n

|g([xi−1, xi]× [yj−1, yj ])| ,

thus limn→∞ g(xn, yn) exists. Let h(x, y) = limn→∞ g(xn, yn). We can show
that h(x, y) is well-defined. In fact, if (x′n, y

′
n) is another sequence of such

points (where a = x′0 < x′1 < · · · < x′m < · · · < x; c = y′0 < y′1 < · · · < y′n <
· · · < y, (x′n, y

′
n) → (x, y) and (x′i, y

′
j) /∈ Q for i = 1, 2, . . .; j = 1, 2, . . .), then

we choose sub-sequences {(xnk
, ynk

)} and {(x′nk
, y′nk

)} from {(xn, yn)} and
{(x′n, y′n)} respectively such that xnk

< x′nk
< xnk+1

, ynk
< y′nk

< ynk+1
for

k = 1, 2, . . .. We can easily see that limk→∞ g(xnk
, ynk

) = limk→∞ g(x′nk
, y′nk

) .
Therefore h(x, y) is well-defined on E.
Step 2. We show that h is equal to g almost everywhere. Put N = {(x, y) ∈
E : h(x, y) 6= g(x, y)}. Consequently, Q ⊂ N ⊂ E, and the two-dimensional
measure of N is zero. (Suppose that the two-dimensional measure of N isn’t
zero; it follows from Fubini theorem that there is a straight line ` : {(x, y) :
y = y + d−c

b−ax} such that the one-dimensional measure of Q ∩ ` is zero, and
the one-dimensional measure of N ∩ ` isn’t zero. Let g0 be the restriction
of g to the straight line `. Then the one-dimensional measure of the relative
discontinuities of g0 (We can regard g0 as an one variable function.) on (E \
Q)∩` isn’t zero. On the other hand, since g0 is a function of bounded variation
on the set ((E \Q) ∩ `) \ Z, (Where Z ⊂ `, and the one-dimensional measure
of Z is zero.) the set of all relative discontinuities of g0 on ((E \ Q) ∩ `) \ Z
is at most countable. This is a contradiction.) Therefore h(x, y) = g(x, y) for
almost all (x, y) ∈ E.
Step 3. We show that h is of bounded variation on E. For any rectangular net
partition {Iij}1≤i≤m,1≤j≤n of E, where a = x0 < x1 < · · · < xm = b; c = y0 <
y1 < · · · < yn = d, Iij = [xi−1, xi]× [yj−1, yj ]. It follows from Step 1 that we

can choose {(x(k)i , y
(k)
j )} satisfying xi−1 < x

(1)
i < x

(2)
i < · · · < x

(k)
i < · · · < xi,

yj−1 < y
(1)
j < y

(2)
j < · · · < y

(k)
j < · · · < yj , limk→∞(x

(k)
i , y

(k)
j )→ (xi, yj), and
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(x
(0)
i , y

(k)
j ) = (a, y

(k)
j ), (x

(k)
i , y

(0)
j ) = (x

(k)
i , c) such that

lim
k→∞

g(x
(k)
i , y

(k)
j ) = h(xi, yj) (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) .

Hence∑
1≤i≤m
1≤j≤n

|h(Iij)| =
∑

1≤i≤m
1≤j≤n

|h(xi−1, yj−1) + h(xi, yj)− h(xi−1, yj)− h(xi, yj−1)|

=
∑

1≤i≤m
1≤j≤n

∣∣∣∣ lim
k→∞

g(x
(k)
i−1, y

(k)
j−1) + lim

k→∞
g(x

(k)
i , y

(k)
j )

− lim
k→∞

g(x
(k)
i−1, y

(k)
j )− lim

k→∞
g(x

(k)
i , y

(k)
j−1)

∣∣∣∣ =

lim
k→∞

 ∑
1≤i≤m
1≤j≤n

∣∣∣g(x
(k)
i−1, y

(k)
j−1)+g(x

(k)
i , y

(k)
j )−g(x

(k)
i−1, y

(k)
j )−g(x

(k)
i , y

(k)
j−1)

∣∣∣
 ≤M

Thus h is of bounded variation on E. �

Theorem 4.6 If function G satisfies the Lipschitz condition and is of strong
bounded slope variation on rectangle E, then G is the primitive of a function
of strong bounded variation on E.

Proof. Suppose G satisfies the Lipschitz condition on E = [a, b] × [c, d].
Let Ii, i = 1, 2, . . . , n, be a finite sequence of non-overlapping rectangles.
Then

∑n
i=1 |G(Ii)| ≤

∑n
i=1 L|Ii| = L

∑n
i=1 |Ii|. From this, we obtain that G

is of bounded variation on E, and therefore D(G(x, y)) exists at almost all
(x, y) ∈ E, where the derivative D(G(x, y)) is a regular derivation (see [2], p.
103). Write

g(x, y) = D(G(x, y)) for (x, y) ∈ E \Q ,

where Q is the set of all points at which D(G(x, y)) doesn’t exist.
First , for any rectangular net partition of E with vertices of all rectangles

belonging to E \ Q, without loss of generality, we may assume that all the
points of intersection of rectangular lines are {x2i−1, y2j−1)}1≤i≤m,1≤j≤n, and
(x2i−1, y2j−1) ∈ E \Q for i = 1, 2, . . . ,m; j = 1, 2, . . . , n, where a = x1 < x3 <
· · · < x2m−1 = b, c = y1 < y3 < · · · < x2n−1 = d.

At each point (x, y) ∈ E \Q, we have

G(I)

|I|
→ g(x, y) as d(I)→ 0 ,
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where (x, y) ∈ I and d(I) denotes the length of the diagonal of I. Then given
ε > 0 there is a σ > 0 such that for any regular rectangle I (i.e., the ratio of
the shortest and the longest sides of I is some fixed number, say between 1/λ
and λ), (x2i−1, y2j−1) ∈ I and d(I) < σ, we have∣∣∣∣G(I)

|I|
− g(x2i−1, y2j−1)

∣∣∣∣ < ε

4mn
, i = 1, 2, . . . ,m; j = 1, 2, . . . , n .

Now, divide E finer by adding straight lines

{(x, y) |x = x
′′

1 , c ≤ y ≤ d},

{(x, y) |x = x
′

3, c ≤ y ≤ d},

{(x, y) |x = x
′′

3 , c ≤ y ≤ d},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{(x, y) |x = x
′′

2m−3, c ≤ y ≤ d},

{(x, y) |x = x
′

2m−1, c ≤ y ≤ d},

{(x, y) | a ≤ x ≤ b, y = y
′′

1 },

{(x, y) | a ≤ x ≤ b, y = y
′

3},

{(x, y) | a ≤ x ≤ b, y = y
′′

3 },

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{(x, y) | a ≤ x ≤ b, y = y
′′

2n−3},

{(x, y) | a ≤ x ≤ b, y = y
′

2n−1}

to the above rectangular net partition, in which x
′′

2i−1 < x
′

2i+1, y
′′

2j−1 < y
′

2j+1

and x
′′

2i−1 − x2i−1 = x2i+1 − x
′

2i+1 = y
′′

2j−1 − y2j−1 = y2j+1 − y
′

2j+1 = σ/4,
i = 1, 2, . . . ,m− 1; j = 1, 2, . . . , n− 1. Write

I2i−1,2j−1 = [x
′

2i−1, x
′′

2i−1]× [y
′

2j−1, y
′′

2j−1],

I2i,2j−1 = [x
′′

2i−1, x
′

2i+1]× [y
′

2j−1, y
′′

2j−1],

I2i−1,2j = [x
′

2i−1, x
′′

2i−1]× [y
′′

2j−1, y
′

2j+1],

I2i,2j = [x
′′

2i−1, x
′

2i+1]× [y
′′

2j−1, y
′

2j+1].

(Note that x
′

2i−1 is replaced by x2i−1 and y
′

2j−1 by y2j−1 when i = 1, and x
′′

2i−1
is replaced by x2i−1 and y

′′

2j−1 by y2j−1 when i = m.) We get a rectangular
net partition of E. Hence
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∑
1≤i≤m−1
1≤j≤n−1

|g(x2i−1, y2j−1)+g(x2i+1, y2j+1)−g(x2i−1, y2j+1)−g(x2i+1, y2j−1)|

≤
∑

1≤i≤m−1
1≤j≤n−1

∣∣∣G(I2i−1,2j−1)
|I2i−1,2j−1| +

G(I2i+1,2j+1)
|I2i+1,2j+1| +

G(I2i−1,2j+1)
|I2i−1,2j+1| +

G(I2i+1,2j−1)
|I2i+1,2j−1|

∣∣∣
+
∑

1≤i≤m−1
1≤j≤n−1

ε
mn

≤
∑

1≤i≤m−1
1≤j≤n−1

(∣∣∣G(I2i−1,2j−1)
|I2i−1,2j−1| +

G(I2i,2j)
|I2i,2j | −

G(I2i−1,2j)
|I2i−1,2j | −

G(I2i,2j−1)
|I2i,2j−1|

∣∣∣
+
∣∣∣G(I2i−1,2j)
|I2i−1,2j | +

G(I2i,2j+1)
|I2i,2j+1| −

G(I2i−1,2j+1)
|I2i−1,2j+1| −

G(I2i,2j)
|I2i,2j |

∣∣∣
+
∣∣∣G(I2i,2j−1)
|I2i,2j−1| +

G(I2i+1,2j)
|I2i+1,2j | −

G(I2i,2j)
|I2i,2j | −

G(I2i+1,2j−1)
|I2i+1,2j−1|

∣∣∣
+
∣∣∣G(I2i,2j)
|I2i,2j | +

G(I2i+1,2j+1)
|I2i+1,2j+1| −

G(I2i,2j+1)
|I2i,2j+1| −

G(I2i+1,2j)
|I2i+1,2j |

∣∣∣)+ ε =

∑
1≤i≤2m−2
1≤j≤2n−2

∣∣∣G(Iij)
|Iij | +

G(Ii+1,j+1)
|Ii+1,j+1| −

G(Ii,j+1)
|Ii,j+1| −

G(Ii+1,j)
|Ii+1,j |

∣∣∣+ ε ≤M + ε .

It follows from Lemma 4.5 that there is a function h of bounded variation on
E such that g is equal to h almost everywhere.

Next we show that for each y ∈ [c, d], h( · , y) is of bounded variation, and so
is h(x, · ) for each x ∈ [a, b]. We can choose a straight line {(x, y) : a ≤ x ≤ b,
y = y ∈ (c, d)}, at which D(G(x, y)) exists almost everywhere. Without loss
of generality, take a = x1 < x3 < · · · < x2m−1 = b, and (x2i−1, y) ∈ E \Q for
i = 1, 2, . . . ,m. Then given ε > 0, there is a σ > 0 such that for any regular
rectangle I, (x2i−1, y) ∈ I and d(I) < σ, we have∣∣∣∣G(I)

|I|
− g(x2i−1, y)

∣∣∣∣ < ε

2m
, i = 1, 2, . . . ,m .

Let x
′′

2i−1 < x
′

2i+1, y1 < y < y2, x
′′

2i−1 − x2i−1 = x2i+1 − x
′

2i+1 = y − y1 =

y2 − y = σ/4, i = 1, 2, . . . ,m − 1. Write I2i−1 = [x
′

2i−1, x
′′

2i−1] × [y1, y2],

I2i = [x
′′

2i−1, x
′

2i+1]× [y1, y2] (note that x
′

2i−1 is replaced by x2i−1 when i = 1,

and x
′′

2i−1 is replaced by x2i−1 when i = m). Hence

m−1∑
i=1

|g(x2i−1, y)− g(x2i+1, y)| ≤
m−1∑
i=1

∣∣∣∣G(I2i−1)

|I2i−1|
− G(I2i+1)

|I2i+1|

∣∣∣∣+

m−1∑
i=1

ε

m
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≤
m−1∑
i=1

(∣∣∣∣G(I2i−1)

|I2i−1|
− G(I2i)

|I2i|

∣∣∣∣+

∣∣∣∣G(I2i)

|I2i|
− G(I2i+1)

|I2i+1|

∣∣∣∣)+ ε

=

(
2m−2∑
i=1

∣∣∣∣G(Ii)

|Ii|
− G(Ii+1)

|Ii+1|

∣∣∣∣
)

+ ε ≤ M1 + ε .

As in Lemma 4.5, we can prove that

lim
xn↗x

g(xn, y) = h(x, y) for each x ∈ [a, b] ,

h(x, y) = g(x, y) for almost all x ∈ [a, b] ,

and further h( · , y) is of bounded variation. By Remark 4.2, b) it follows
that h( · , y) is of bounded variation for each y ∈ [c, d]. Similarly h(x, · ) is
of bounded variation for each x ∈ [a, b]. Therefore h is a function of strong
bounded variation on E, and G is the primitive of h. �

In [4], Kurzweil proved that if g is of strong bounded variation on E, then
T (f) =

∫ ∫
E
f(x, y)g(x, y) dx dy defines a continuous linear functional on the

LH space D. Conversely, we have the following assertion.

Theorem 4.7 If T is a continuous linear functional on the LH space D, then

T (f) =

∫ ∫
E

f(x, y)g(x, y) dx dy

for all f ∈ D and for some g of strong bounded variation on rectangle the
E = [a, b]× [c, d].

Proof. Put G(x, y) = T (χ
[a,x]×[c,y]

), where χ
[a,x]×[c,y]

denotes the character-
istic function of [a, x]× [c, y].

First, take a rectangular net partition {Iij}1≤i≤m,1≤j≤n of E. Then by the
linearity of T we obtain

∑
1≤i≤m−1
1≤j≤n−1

∣∣∣∣G(Iij)

|Iij |
+
G(Ii+1,j+1)

|Ii+1,j+1|
− G(Ii,j+1)

|Ii,j+1|
− G(Ii+1,j)

|Ii+1,j |

∣∣∣∣ =
∑

1≤i≤m−1
1≤j≤n−1

|T (φij)|

where

φij =
1

|Iij |
χ

Iij
+

1

|Ii+1,j+1|
χ

Ii+1,j+1
− 1

|Ii,j+1|
χ

Ii,j+1
− 1

|Ii+1,j |
χ

Ii+1,j
.
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Further by the boundedness of T we obtain

∑
1≤i≤m−1
1≤j≤n−1

|T (φij)| = T

 ∑
1≤i≤m−1
1≤j≤n−1

εijφij

 ≤ ‖T‖
‖ ∑

1≤i≤m−1
1≤j≤n−1

εijφij‖

 ≤ 4‖T‖

where ε denotes +1 or −1 as the case may be.
Next, for any {Ii}1≤i≤m where Ii = [xi−1, xi] × [y1, y2], a = x0 < x1 <

· · · < xm = b and c ≤ y1 < y2 ≤ d,

m−1∑
i=1

∣∣∣∣G(Ii)

|Ii|
− G(Ii+1)

|Ii+1|

∣∣∣∣ =

m−1∑
i=1

|T (φi)|

where φi = 1
|Ii|χIi

− 1
|Ii+1|χIi+1

. Further by the boundedness of T we obtain

m−1∑
i=1

|T (φi)| = T

(
m−1∑
i=1

εiφi

)
≤ ‖T‖

(
‖
m−1∑
i=1

εiφi‖

)
≤ 2‖T‖ .

Similarly, for all {Ji}1≤j≤n we have

n−1∑
j=1

∣∣∣∣G(Jj)

|Jj |
− G(Jj+1)

|Jj+1|

∣∣∣∣ ≤ 2‖T‖ ,

where Jj = [x1, x2] × [yj−1, yj ], a ≤ x1 < x2 ≤ b, c = y0 < y1 < · · · <
yn = d. Consequently, G is of strong bounded slope variation on E. Put
I = [x1, x2] × [y1, y2], where a ≤ x1 < x2 ≤ b, c ≤ y1 < y2 ≤ d. By the
linearity of T , we obtain

G(I) = T
(
χ

[a,x1]×[c,y1]
+ χ

[a,x2]×[c,y2]
− χ

[a,x2]×[c,y1]
− χ

[a,x1]×[c,y2]

)
= T

(
χ

[x1,x2]×[y1,y2]

)
.

Therefore |G(I)| ≤ ‖T‖ · |I|. That is, G satisfies the Lipschitz condition on E.
It follows from Theorem 4.6 that G is the primitive of a function g which is
of strong bounded variation on E. Therefore the representation holds for step
functions and so does the representation for a Lebesgue integrable function.

Let f be LH integrable on E. In view of the definition of the LH inte-
gral, there is a sequence of closed subsets {Xn} of E such that f fulfills both
condition (L) and condition (H) on {Xn}. Write

fn(x, y) =

{
f(x, y) , when (x, y) ∈ Xn

0 , when (x, y) ∈ E \Xn .



The Dual of the Henstock-Kurzweil Space 119

Then fn, n = 1, 2, . . ., are Lebesgue integrable on E, and the primitives Fn of
fn converge uniformly on E. It follows from the integration by parts formula
proved by Kurzweil in [4] that∫ ∫

E

(f(x, y)− fn(x, y)) g(x, y) dx dy =

∫ ∫
E

(F (x, y)− Fn(x, y)) dg(x, y)

−
∫ b

a

(F (t, d)− Fn(t, d)) dg(t, d) +

∫ b

a

(F (t, c)− Fn(t, c)) dg(t, c)

−
∫ d

c

(F (b, t)− Fn(b, t) dg(b, t) +

∫ d

c

(F (a, t)− Fn(a, t)) dg(a, t)

+ (F (b, d)− Fn(b, d))g(b, d)− (F (b, c)− Fn(b, c))g(b, c)

− (F (a, d)− Fn(a, d))g(a, d) + (F (a, c)− Fn(a, c))g(a, c) .

Thus ∣∣∣∣∫ ∫
E

(f(x, y)− fn(x, y)) g(x, y) dx dy

∣∣∣∣
≤
(

max
(x,y)∈E

|F (x, y)− Fn(x, y)|
)
V (g(x, y);E)

+

(
max
a≤t≤b

|F (t, d)− Fn(t, d)|
)
V (g(t, d); [a, b])

+

(
max
a≤t≤b

|F (t, c)− Fn(t, c)|
)
V (g(t, c); [a, b])

+

(
max
c≤t≤d

|F (b, t)− Fn(b, t)|
)
V (g(b, t); [c, d])

+

(
max
c≤t≤d

|F (a, t)− Fn(a, t)|
)
V (g(a, t); [c, d])

+ |F (b, d)− Fn(b, d)| |g(b, d)|+ |F (b, c)− Fn(b, c)| |g(b, c)|
+ |F (a, d)− Fn(a, d)| |g(a, d)|+ |F (a, c)− Fn(a, c)| |g(a, c)| .

We note that g is bounded on E and

lim
n→∞

(
max

(x,y)∈E
|F (x, y)− Fn(x, y)

)
= 0 .

Hence

lim
n→∞

∫ ∫
E

fn(x, y)g(x, y) dx dy =

∫ ∫
E

f(x, y)g(x, y) dx dy .
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It follows that T (f) = limn→∞ T (fn) = limn→∞
∫ ∫

E
fn(x, y)g(x, y) dx dy =∫ ∫

E
f(x, y)g(x, y) dx dy and the proof is complete. �

Remark 4.8 A function of strong bounded variation is a multiplier for the
multi-dimensional Henstock-Kurzweil integral, but a function of bounded vari-
ation need not be (see Example 4.9).

Example 4.9 Let E = [0, 1]× [0, 1],

g(x, y) =

{
1
x , when (x, y) ∈ (0, 1]× [0, 1]

0 , when (x, y) ∈ {(x, y) |x = 0, y ∈ [0, 1]} ,

and let f(x, y) ≡ 1. Obviously, g is of bounded variation on E and the varia-
tion is zero, but fg is not Henstock-Kurzweil integrable on E.

In conclusion, from Theorem 4.7, Remark 4.8 and [4] we get that T is a
continuous linear functional on the space D of Henstock-Kurzweil integrable
functions on [a1, b1]× · · · × [am, bm] if and only if there exists a function g of
strong bounded variation on [a1, b1]× · · · × [am, bm] such that

T (f) = (HK)

∫
. . .
∫

[a1,b1]×···×[am,bm]
f(x1, . . . , xm)g(x1, . . . , xm) dx1 . . . dxm .
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