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ON THE CHORD SET OF CONTINUOUS
FUNCTIONS

It is well-known that for a given continuous function f, f(0) = f(1) and for
any natural number n there exist z,, y, = , + 1/n such that f(z,) = f(yn).
It is also known that if the graph of f (or more generally a planar curve
connecting the point 0 and 1) does not have a horizontal chord of length a and
b respectively then there is no horizontal chord of length a + b either (see [1]).
It is almost immediate that the lengths of possible horizontal chords of f form
a closed set F' of the unit interval [0,1], and according to the remark above its
complement G = [0,1] \ F is an additive set: a € G, b € G, a+ b < 1 imply
a+b e G. C. Ryll-Nardzewski, Z. Romanowicz and M. Morayne raised the
problem whether this additive property is not just necessary but also sufficient
for a set to be the complement of the chord-set of some continuous function.

In this paper we answer their question affirmatively by proving the follow-
ing theorem.

Theorem 1 Let F C [0,1] be a closed set, and put G = [0,1] \ F. Suppose
that 0,1 € F and if z,y € G, x+y < 1, then x +y € G. Then there is a
continuous function f defined on [0,1] such that {y —z : z,y € [0,1], z < y,
flx)=fy)} =F.

PROOF. Let

0,1] = (U Gn> U <U Fk> U (8F),

where GG, and F} are disjoint open intervals, U,G,, = G, UpF; = int I’ and
OF is the boundary of F.
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We define f(z) = 0 if € OF (in particular, f(0) = f(1) = 0), f(z) =
dist (z,[0,1] \ Fy) if ¢ € F, and f(z) = —dist («,[0,1] \ G,,) if z € G,,. We
claim that f satisfies the requirements.

f is clearly continuous (moreover, Lipschitz 1) on [0,1]. Let =,y € [0, 1],
x <y, f(x) = f(y). We prove that y — z € F. First we show that

if z,y€dF and z <y then y—x € F. (%)

Indeed, if t =0theny—z =y € dF C F. If 0 <z < 1 then let z,, —» x, =, €
G. Then y — z,, ¢ G (since z,, € G, y — x, € G would imply y € G). Thus
y—x, € Fand y — 2z =lim(y — z,) € F, as F is closed.

If f(x) = f(y) = 0 then x,y € OF and thus y —z € F by (). Therefore
we may assume that f(z) = f(y) # 0. Since f > 0inint F f < 0 in G, and
f =01in OF, this implies that either x,y € int F or x,y € G.

Suppose first that z,y € Fy for some k. f h=y —x € G thenn-h € G
for every n < 1/h, which is impossible, since h < |Fy| and thus n - h € F, for
some n.

Next suppose that =,y € G, = (u,v) for some n. Then h =y —z < |G,
and thus v—h € G,, C G. If h € G then v = h+ (v — h) € G which is
impossible, since v € OF C F.

Thus we may assume that z € (a,b) and y € (¢, d), where (a,b) and (¢, d)
are different components of int F' or GG. We shall consider the following cases
separately.

(i) < (a+b)/2,y < (c+d)/2and (a,b), (¢,d) C
(i) 2 < (a+0b)/2,y > (c+d)/2 and (a,b), (¢,d) C
(iii) > (a+b)/2, y > (¢c+d)/2 and (a,b), (¢,d) C
(iv) 2> (a+b)/2,y < (c+d)/2 and (a,b), (¢,d) C
(v) 2 <(a+b)/2,y <(c+d)/2 and (a,b), (¢,d) C int F}
(vi) z < (a+b)/2,y > (c+d)/2 and (a,b), (¢,d) C int F;
(vii) > (a+b)/2, y > (c+ d)/2 and (a,b), (¢,d) C int F}
(vili) 2 > (a+b)/2, y < (c+d)/2 and (a,b), (¢,d) C int F.

If (i), (iii), (v) or (vii) holds then y —x = c¢—a or y —xz = d — b. Since
a,b,c,d € OF, this implies y — xz € F by (*). In the sequel we shall denote

a, ifzx<(a+b)/2, ¢, ifz<(c+d)/2,
u= ; v= _ .
b, ifz>(a+0)/2 d, ifx>(c+d)/2
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Let 6 = |o —u| = [y —v| = [f(2)| = [f(y)].

Case (i) veF,u+20—c€eG=v—(u+20—¢e) e F;v—(u+20—¢) =
v—u—20 =y—x € F. Case (iv): v€ F,u—20+c € G = v—(u—25+¢) € F;

v—(u—2+¢) 2 v—u+20 =y—=x € F. Case (vi): Either u = 0,

and then y —x = v —2§ € F; or Jda, = u, a, € G, and then v — 2§ € F,
= v—20—a, € F, (v—20)—a, - v—u—26 = y—zx € F. Case (viii) Ja,, — v,

an € G,v+420 € F = (v+26)—a, € F, (v+20)—a, > v+20—u=y—xz € F.

This completes the first part of the proof (f(z) = f(y) = y—x € F).
Next we show that for every d € F there are x,y € [0,1] such that = < y,
y—z=dand f(z) = f(y).

This is clear if G = 0; so that we may assume G # 0. If (a,b) = G,, then
for every 0 < ¢ < b— a there are points a < x < y < b such that y —x = c and
f(x) = f(y). As we proved above, this implies ¢ € F for every ¢ € [0,b — a.
Therefore ¢ = inf G > 0. Then (0,g) is (one of the) longest component of
int ', since there are elements of G arbitrarily close to g, and the integer
multiples of these elements also belong to G.

If d € OF then x = 0, y = d satisfy the requirements. Next let d € int F',
d € (a,b) = Fy. We have f(d) — f(0) = f(d) > 0 and f(b) — f(b—d) =
—f(b—d) <0,since b—d < b—a < gand f is positive on (0,g). Now f is
continuous, and thus f(y) — f(y — d) must vanish for a y € [d, b], completing
the proof. O

References

[1] A. M. Yaglom and I. M. Yaglom, Non-elementary problems in elementary
presentation, GITTL, Moscow, 1954, Problem 118, p. 60 (in Russian).



