Inder K. Rana, Mathematics Department, Indian Institute of Technology, Powai, Bombay - 400 076, India, email: IKR@@ganit.math.iitb.ernet.in

ON APPROXIMATE UNSMOOTHING OF FUNCTIONS

Abstract

The smoothing $T_a f$, for a > 0, of a locally-integrable function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is defined by

$$(T_a f)(x) := \frac{1}{2a} \int_{-a}^{+a} f(x+y) dy, \quad x \in \mathbb{R}.$$

For a given $g: \mathbb{R} \longrightarrow \mathbb{R}$, any solution f of the equation $T_a f = g$ is called an unsmoothing of g. In this note we analyse the problem of constructing a function $\tilde{f}: \mathbb{R} \longrightarrow \mathbb{R}$ such that $(T_a \tilde{f})(x_i) = g(x_i)$ for a given set of points $x_1, x_2, \ldots, x_n \in \mathbb{R}$. We give an iterative process of constructing such an \tilde{f} under the assumption $f \in L_2(\mathbb{R})$.

1 Introduction

Let $L_{loc}(\mathbb{R})$ denote the space of all locally-integrable functions on the real line and for $a > 0, f \in L_{loc}(\mathbb{R})$, let

$$(T_a f)(x) := \frac{1}{2a} \int_{-a}^{+a} f(x+y) dy, x \in \mathbb{R}$$

The function $T_a f$ is called the **smoothing** of f and T_a is called the smoothing operator. In [2], the range and kernel of the smoothing operator were discussed and a right-inverse for T_a was constructed which preserved the differentiability properties optimally. In practical problems, $T_a f$ represents the smoothing (moving average or sliding mean) of the raw data f. The problem of constructing some function f such that $T_a f = g$, g given, is called the

Mathematical Reviews subject classification: Primary: 45E10 Secondary: 45L99 Received by the editors December 8, 1994

unsmoothing problem. In the case when f is an integrable function with compact support, reconstruction formulas using two-sided Laplace transform were obtained by Van der Pol in [3].

We consider the following situation : let a function g be the smoothing of some function f, i.e., $T_a f = g$. One knows g at only a finite number of points, i.e., one knows the values $g(x_i) = c_i$, for some $x_1, x_2, \ldots, x_n \in \mathbb{R}$. Of course, one cannot hope to recover the function f exactly from this data. However, it is meaningful to ask the question : Can one find some \tilde{f} such that $(T_a \tilde{f}) = c_i, 1 \leq i \leq n$? Since, in practical situations, the raw data f(x) is a bounded function (at least on finite time intervals), it is not unreasonable to assume that there exists some f which is bounded and has compact support such that $(T_a f)(x_i) = c_i, 1 \leq i \leq n$. So, we may assume that there exists some $f \in L_2(\mathbb{R})$ such that $(T_a f)(x_i) = c_i, 1 \leq i \leq n$. The problem is to find some $\tilde{f} \in L_2(\mathbb{R})$ such that $(T_a \tilde{f})(x_i) = c_i, 1 \leq i \leq n$. We call this the **approximate unsmoothing** problem.

2 Construction of 'Approximate Unsmoothing'

We are given $x_1, x_2, \ldots, x_n \in \mathbb{R}$ and $c_1, c_2, \ldots, c_n \in \mathbb{R}$. We also have the knowledge that there exists some $f \in L_2(\mathbb{R})$ such that $(T_a f)(x_i) = c_i, 1 \leq i \leq n$. We want to construct some $\tilde{f} \in L_2(\mathbb{R})$ such that $(T_a \tilde{f})(x_i) = c_i, 1 \leq i \leq n$. In case the intervals $[x_i - a, x_i + a], 1 \leq i \leq n$ are pairwise disjoint, an obvious choice for \tilde{f} is given by

$$\tilde{f} = \sum_{i=1}^{n} c_i \chi_{[x_i - a, x_i + a]}.$$

It is easy to see that $(T_a \tilde{f})(x_i) = c_i, 1 \leq i \leq n$. In the general case, we proceed as follows: We choose arbitrary functions $\phi_i \in L_2(\mathbb{R})$, such that $(T_a \phi_i)(x_i) = 1, 1 \leq i \leq n$ (for example $\phi_i = \chi_{[x_i - a, x_i + a]}$). Let $\langle ., . \rangle$ denote the inner-product on $L_2(\mathbb{R})$ and

$$N_i = \{ g \in L_2(\mathbb{R}) | \langle g, \chi_{[x_i - a, x_i + a]} \rangle = 0 \}, 1 \le i \le n.$$

Then each N_i is a closed subspace of $L_2(\mathbb{R})$ of co-dimension one. Let

$$Q_i: L_2(\mathbb{R}) \longrightarrow N_i \tag{1}$$

denote the orthogonal projection onto N_i . Let $P_i : L_2(\mathbb{R}) \longrightarrow L_2(\mathbb{R})$ be defined by

$$P_i(g) := Q_i(g) + (I - Q_i)(f), \quad \forall \ g \in L_2(\mathbb{R}).$$

We note that $(I - Q_i)(f) \in \operatorname{span}\{\phi_i\}$ and hence

$$(I - Q_i)(f) = \alpha_i \phi_i$$
, for some $\alpha_i \in \mathbb{R}$.

In fact,

$$\begin{aligned} \alpha_i &= \alpha_i \left[(T_a \phi_i)(x_i) \right] = \left[T_a(\alpha_i \phi_i) \right](x_i) \\ &= \left[T_a((I - Q_i)(f)) \right](x_i) = (T_a f)(x_i) - \left[(T_a Q_i)(f) \right](x_i) \\ &= c_i - \langle Q_i(f), \chi_{[x_i - a, x_i + a]} \rangle = c_i. \end{aligned}$$

Thus,

$$P_i(g) = Q_i(g) + c_i \phi_i. \tag{2}$$

Hence, the operators Q_i and $P_i, 1 \leq i \leq n$ are completely known once the functions ϕ_i 's are chosen. For further arguments, we need the following :

Theorem 2.1 Let \mathcal{H} be a Hilbert space and Q_i be the orthogonal projection onto a closed subspace $N_i \subset \mathcal{H}, 1 \leq i \leq n$. Let $N_0 = \bigcap_{i=1}^n N_i$ and Q_0 be the orthogonal projection onto N_0 . Let $Q = Q_n Q_{n-1} \dots Q_1$. Then $Q^m(g) \rightarrow Q_0(g)$ as $m \rightarrow \infty$ for every $g \in \mathcal{H}$.

PROOF. We refer to [1].

Lemma 2.2 Let $Q_i, P_i, 1 \leq i \leq n$ be as constructed in (1) and (2). Let Q_0 denote the orthogonal projection on the subspace $N_0 = \bigcap_{i=1}^n N_i$ and let $Q = Q_n Q_{n-1} \dots Q_1, P = P_n P_{n-1} \dots P_1$ and $P_0(g) = Q_0(g-f) + f, g \in L_2(\mathbb{R})$. Then $\lim_{m \to \infty} P^m(g) = P_0(g) \ \forall g \in L_2(\mathbb{R})$.

PROOF. We first show that $\forall m$ and $\forall g \in L_2(\mathbb{R}), P^m(g) = Q^m(g-f) + f$. For m = 1 and $g \in L_2(\mathbb{R})$,

$$\begin{split} P(g) &= P_n(P_{n-1}\dots(P_1(g))) \\ &= Q_n(P_{n-1}\dots(P_1(g))) + (I-Q_n)(f) \\ &= Q_n[Q_{n-1}(P_{n-2}\dots(P_1(g))) + (I-Q_{n-1})(f)] + (I-Q_n)(f) \\ &= Q_n[Q_{n-1}(P_{n-2}\dots(P_1(g)))] + (I-Q_nQ_{n-1})(f) \\ &\dots \\ &= Q_n(Q_{n-1}\dots(Q_1(g))) + (I-Q_nQ_{n-1}\dots Q_1)(f) \\ &= Q(g-f) + f. \end{split}$$

800

Suppose the claim is true for each $m \leq k - 1$. Then $\forall g \in L_2(\mathbb{R})$

$$\begin{array}{lll} P^k(g) &=& P^{k-1}(P(g)) = Q^{k-1}(P(g)-f) + f \\ &=& Q^{k-1}(Q(g-f)) + f = Q^k(g-f) + f \end{array}$$

Thus, by induction, $\forall m \ge 1$ and $g \in L_2(\mathbb{R})$

$$P^m(g) = Q^m(g-f) + f.$$

By Theorem 2.1, $Q^m(g-f) \longrightarrow Q_0(g-f)$, where Q_0 is the orthogonal projection onto $\bigcap_{i=1}^n N_j$. Hence $P^m(g) \longrightarrow Q_0(g-f) + f = P_0(g) \quad \forall g \in L_2(\mathbb{R})$.

Theorem 2.3 Let $g_0 \in L_2(\mathbb{R})$ be arbitrary and let P be as in Lemma 2.2. Then $\{P^m(g_0)\}_{m\geq 1}$ is convergent and if $\tilde{f} := \lim_{m \to \infty} P^m(g_0)$, then

$$(T_a f)(x_i) = c_i, 1 \le i \le n.$$

PROOF. By Lemma 2.2, $\{P^m(g_0)\}_{m\geq 1}$ converges to $Q_0(g_0 - f) + f$. Thus, if $\tilde{f} := Q_0(g_0 - f) + f$, then $\tilde{f} - f = Q_0(g_0 - f) \in N_0$. Hence $\forall i = 1, 2, ..., n$,

$$0 = \langle \tilde{f} - f, \chi_{[x_i - a, x_i + a]} \rangle = \int_{x_i - a}^{x_i + a} (\tilde{f} - f)(x) dx = 2a(T_a(\tilde{f} - f)(x_i))$$

Thus $T_a(\tilde{f}(x_i)) = T_a(f)(x_i) = c_i \ \forall \ 1 \le i \le n$. This completes the proof of the theorem.

Note 2.4 It is easy to see that the approximate unsmoothing can also be constructed in the case \mathbb{R} is replaced by \mathbb{R}^n and intervals $[x_i - a, x_i + a]$ are replaced by bounded subsets of \mathbb{R}^n of positive Lebesgue measure.

Acknowledgement : Author would like to thank Prof. A. Sitaram for his suggestions.

References

- I. Amemiya and T. Ando. Convergence of random products of contractions in Hilbert spaces, Acta Sci. Math. (Szeged) 26 (1965), 239–244.
- [2] E. Novakand Inder K. Rana, On the unsmoothing of functions on the real line, Proc. Nede. Acad. Sci. Series A, 89 (1986), 201–207.
- [3] B. Van der Pol, Smoothing and Unsmoothing, contained in Probability and Related Topics in Physical Sciences by M. Kac, Interscience, New York, 1959.