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ANOTHER NOTE ON THE GRADIENT
PROBLEM OF C. E. WEIL

Abstract

Assume that G ⊂ Rn is open and f : G → R is a differentiable
function. C. E. Weil raised the gradient problem. In this problem it is
asked whether ∇f satisfies the natural multidimensional generalization
of the Denjoy-Clarkson property. We verify that if there are two di-
mensional counterexample functions to the gradient problem then their
range should satisfy certain paradoxical convexity properties and the
inverse image of “many” values of ∇f is of positive linear measure.

1 Introduction

Assume that G ⊂ Rn is open and f : G→ R is a differentiable function. Then
∇f is a mapping from G to Rn. Denote its inverse by ∆, that is, for H ⊂ Rn

put ∆(H) = {x ∈ G : ∇f(x) ∈ H}. C. E. Weil raised the following question.
Does H ⊂ Rn open, ∆(H) 6= ∅ imply that ∆(H) is of positive n-dimensional
measure?

In [Bu1] we verified that from H ⊂ Rn open, ∆(H) 6= ∅ it follows that
µ1(∆(H)) > 0, where µ1 denotes the one-dimensional Hausdorff measure.

In [HMWZ] the authors verified that

(i) any one-dimensional projection of ∆(H) is of positive µ1- measure.

(ii) ∆(H) is non σ-porous.

(iii) ∆(H) is porous at none of its points.
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In this note we work in dimension two and focus on the range of the gradient
mapping. We denote the open unit disk in R2, by B(0, 1). If there is a
counterexample to the gradient problem, then, as we shall show in this paper,
it is not difficult to see that there exists a differentiable function defined on
an open set G ⊂ R2 such that the closure of the set ∆(B(0, 1)) is non-empty
and of zero two dimensional measure. Furthermore the closure of the range
of the gradient, cl(∇f(G)), does not contain B(0, 1). We verify that in this
case B(0, 1) \ cl(∇f(G)) is a convex open set, and if p belongs to the interior
of B(0, 1) ∩ cl(∇f(G)), then µ1(∆({p})) > 0 should hold. This is a sort of
paradoxical property saying that if there is an open set with nonempty but
relatively small, that is of two-dimensional measure zero, ∆ image, then there
are many individual values, p, such that their ∆ images are relatively large,
that is, of positive linear measure. Actually if we denote by fp the mapping
fp(x) = f(x) − p · x (where · denotes the dot product) and we denote its
level sets by fpc , that is, fpc = {x : fp(x) = c}, then we prove that there is a
set of positive µ1-measure consisting of c’s for which fpc contains a point, xc,
where ∇fp(xc) = 0, that is, ∇f(xc) = p. This property might look strange
in itself and might suggest that f has too many tangent planes. In [Bu2] we
showed that such strange looking functions exist. In fact we constructed a
C1 function f , and a set E ⊂ R2 of zero µ2-measure such that “using the
natural parameterization of tangent planes z = ax + by + c to the surface
z = f(x, y) the (three dimensional) interior of the set of parameter values,
(a, b, c), of tangent planes corresponding to points (x, y) ∈ E is non-empty.”

After mentioning the “many tangent planes” result of [Bu2] we now turn
again to the level sets fpc and explain how this paper is organized. There are
two lemmas and a Theorem stating the main result. The proof of Lemma
2 contains most of the mathematical difficulty. In that proof an auxiliary
function g is introduced, and some parts of the level sets of g are studied. These
level set parts coincide with the graphs of some one-dimensional functions ϕc.
The one-dimensional argument of Lemma 1 applies to these functions. This
argument is a variant of the demonstration of the one-dimensional “gradient
theorem”, which is the so called Denjoy-Clarkson property [C], [D]. In a remark
following Lemma 1 we explain in detail how Lemma 1 implies the Denjoy-
Clarkson property. After this remark we continue with the two dimensional
part of the paper and explain why the assumptions of the Theorem would be
satisfied if we had a counterexample function for the two-dimensional gradient
problem. After the statement and the proof of the Theorem the main tool,
Lemma 2, is stated and proved.
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2 Dimension One

Notation. By R we denote the real numbers. It will be convenient to regard
the open interval (a, a) equal to the empty set. The k-dimensional Hausdorff
measure is denoted by µk.

Lemma 1. Assume that ϕ : [0, 1]→ R is continuous, and F ⊂ (0, 1) is a non-
empty closed set of µ1-measure zero and µ1(ϕ(F )) = 0 as well. Furthermore
if (a, b) is contiguous to F , then there exists c ∈ [a, b] such that ϕ′(x) = 1 on
(a, c) and ϕ′(x) = −1 on (c, b). We also assume that ϕ has at least one local
minimum in (0, 1), and the set Ψ ⊂ R2 satisfies the following two properties:

(i) the graph of ϕ restricted to F is a subset of Ψ; that is, {(x, ϕ(x)) : x ∈
F} ⊂ Ψ,

(ii) Ψ is above the graph of ϕ; that is, Ψ ⊂ {(x, y) : x ∈ [0, 1], ϕ(x) ≤ y}.

Then there exists a y0 ∈ F such that Ψ has no tangent at the point (y0, ϕ(y0)) ∈
Ψ.

Remark. In applications of this lemma Ψ will either be the graph of a differ-
entiable function, or the level set of a differentiable function of two variables.

Proof. From our assumptions it follows that |ϕ(x) − ϕ(y)| ≤ |x − y| holds
for any x, y ∈ [0, 1], and ϕ(x)−ϕ(y) = x− y (or ϕ(x)−ϕ(y) = y− x) implies
ϕ′(α) = 1 (or ϕ′(α) = −1, respectively) for all α in the interval determined by
x and y. It is also clear that if ϕ is monotone increasing on an interval (a, b),
then ϕ′(x) = 1 on (a, b), and a similar statement holds for intervals where ϕ
is monotone decreasing.

Proceeding towards a contradiction, assume that Ψ has a tangent at all of
its points belonging to the graph of ϕ. For convenience, using {(x, ϕ(x)) : x ∈
F} ⊂ Ψ, we put ψ(x) = ϕ(x) for x ∈ F. Later we will extend the definition of
ψ to a set larger than F , in a way that the points (x, ψ(x)) still stay in Ψ.

Assume that x0 ∈ (0, 1) is a local minimum of ϕ. Then x0 ∈ F . Observe
that x0 cannot be an isolated local minimum, since if it were, then in a neigh-
borhood of x0 we would have ϕ(x) = ϕ(x0) + |x − x0|. But then Ψ, which is
above ϕ, would not have a tangent at (x0, ϕ(x0)). Let (a0, b0) ⊂ (0, x0] be a
maximal subinterval on which ϕ is monotone decreasing. Then ϕ′(x) = −1 for
all x ∈ (a0, b0). Clearly our assumptions imply b0 ∈ F . Since Ψ is above the
graph of the Lipschitz function ϕ and it has a tangent at (b0, ϕ(b0)), we can
extend the definition of ψ to a point d0 ∈ (a0, b0) such that (d0, ψ(d0)) ∈ Ψ and
using that Ψ is above ϕ we also have ϕ(b0)−ψ(d0) ≤ ϕ(b0)−ϕ(d0) = −(b0−d0).
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Using the continuity of ϕ choose δ0 ∈ (0, 1) such that

−1

2
>
ϕ(x)− ϕ(d0)

x− d0
≥ ϕ(x)− ψ(d0)

x− d0
for x ∈ (b0, b0 + δ0). Again, since (a0, b0) is a maximal interval on which ϕ
is monotone decreasing there is an interval (a1, b1) such that a1 ∈ F , a1 ∈
(b0, b0 + δ0), ϕ is monotone increasing on (a1, b1) and this interval is maximal
with respect to this last property. Then ϕ′(x) = 1 for x ∈ (a1, b1). From
a1 = b0 it would follow that a1 = b0 was an isolated local minimum, which is
impossible. Thus b0 < a1.

Again we can extend the definition of ψ to a point d1 ∈ (a1, b1) such that
(d1, ψ(d1)) ∈ Ψ, and ϕ(a1) − ψ(d1) ≤ ϕ(a1) − ϕ(d1) = a1 − d1 < 0. Choose
δ1 ∈ (0, 1/2) such that b0 < a1 − δ1 and

1

2
<
ϕ(x)− ϕ(d1)

x− d1
≤ ϕ(x)− ψ(d1)

x− d1
for x ∈ (a1−δ1, a1). Repeating the above argument choose a maximal interval
(a2, b2) on which ϕ is monotone decreasing, b2 ∈ (a1 − δ1, a1) and b2 ∈ F.
Observe that b0 < a2 should hold, since otherwise (a0, b0) would not be a
maximal interval on which ϕ is decreasing. Since the local minimums of ϕ are
not isolated, we have again b2 < a1.

Again choose d2 ∈ (a2, b2) and define ψ(d2) such that (d2, ψ(d2)) ∈ Ψ, and
ϕ(b2) − ψ(d2) ≤ ϕ(b2) − ϕ(d2) = −(b2 − d2). Choose δ2 ∈ (0, 1/3) such that
b2 + δ2 < a1 and

−1

2
>
ϕ(x)− ϕ(d2)

x− d2
≥ ϕ(x)− ψ(d2)

x− d2
for x ∈ (b2, b2 + δ2).

Repeating the above arguments for even and odd indices with δn < 1
n+1

we can obtain intervals (an, bn) and extend the definition of ψ to points
dn ∈ (an, bn). Put y0 =

⋂∞
n=0[b2n, a2n+1]. Then one can easily see that our

construction implies

1

2
<
ϕ(y0)− ψ(d2n+1)

y0 − d2n+1
and − 1

2
>
ϕ(y0)− ψ(d2n)

y0 − d2n
holds for n = 1, 2, . . .. Since F is closed, since a2n+1, b2n ∈ F for n = 1, 2, 3, . . .,
and since δn → 0, it follows easily that y0 ∈ F and hence ϕ(y0) = ψ(y0).
Therefore Ψ has no tangent at (y0, ϕ(y0)). This contradiction concludes the
proof of Lemma 1.
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Remark. It is not difficult to see that Lemma 1 implies the Denjoy—Clarkson
property in dimension one. Here we outline this proof. Assume that a dif-
ferentiable function f does not have the Denjoy—Clarkson property. Then,
after rescaling and adding constants, we can assume that f : [0, 1] → R is
differentiable, f(1/2) = 0, f ′(1/2) = 0, and |f ′(x)| > 1 almost everywhere.
Since f ′(1/2) = 0, after another suitable rescaling we can also assume that,
|f(x)| < |x− 1/2|/2 for x ∈ [0, 1].

Put

ϕ1(x) = −x+ min{f(t) + t : t ∈ [x, 1]}, ϕ2(x) = x+ min{ϕ1(t)− t : t ∈ [0, x]}.
F1 = {x : ϕ1(x) = f(x)}, F2 = {x : ϕ1(x) = ϕ2(x)} and

F = {x : ϕ2(x) = f(x)}.

It is easy to see that f(x) ≥ ϕ1(x) ≥ ϕ2(x). First one can observe that ϕ1 is
linear and has slope −1 on intervals contiguous to F1, and ϕ2(x) is linear and
has slope 1 on intervals contiguous to F2. It is not difficult to verify that if
(a, b) is an interval contiguous to F , then there exists c ∈ [a, b] such that (a, c)
and (c, b) are contiguous to F2 and to F1, respectively. Our assumptions imply
that f(1/2) = ϕ2(1/2) = 0 and hence 1/2 ∈ F. It is also clear that ϕ2(x)− x
is monotone decreasing and ϕ2(x) + x is monotone increasing. Therefore if
x ∈ F is not an isolated point of F , then one can easily see that |f ′(x)| ≤ 1
and hence µ1(F ) = 0. Since f is differentiable and ϕ2 = f on F , we also
have µ1(ϕ2(F )) = 0. If ϕ2 has no local minimum, then either it is monotone
increasing with slope 1 on (0, 1/2), or is monotone decreasing with slope −1 on
(1/2, 1). This would imply min{ϕ2(x) : x ∈ [0, 1]} ≤ −1/2. On the other hand

|f(x)| < |x− 1/2|
2

and the definition of ϕ2 imply min{f(x) : x ∈ [0, 1]} =

min{ϕ2(x) : x ∈ [0, 1]} ≥ −1/4. Lemma 1, used with Ψ being the graph of f ,
and ϕ = ϕ2, implies that there is a point y0 ∈ F such that Ψ has no tangent at
(y0, f(y0)) and hence f is not differentiable at y0, which concludes our proof.

3 Dimension Two

Notation. By cl(H), int(H) we denote the closure and the interior of the
set H ⊂ R2. We put Q((u, v), r) = {(u′, v′) : |u′ − u| ≤ r, |v′ − v| ≤ r}.
The closed triangle defined by the points p,q and r is denoted by Tpqr. If
f : G → R is differentiable and H ⊂ R2, let ∆(H) = {x ∈ G : ∇f(x) ∈ H}
and ∆(H) = cl(∆(H)).

Before stating our Theorem we first show that if there exists a counterex-
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ample to the gradient theorem, then there are functions satisfying the assump-
tions of the Theorem.

Assume that G′ ⊂ R2 is open and f : G′ → R is a counterexample to
the gradient problem, that is, it is differentiable and there exists κ, η > 0,
x′ ∈ G′, p′0 ∈ R2 such that ∇f(x′) = p′0 and µ2({y ∈ B(x′, κ) : ∇f(y) ∈
B(p′0, η)}) = 0. Without limiting generality we can assume p′0 = 0 and η > 1.
We can also assume that we work with the restriction of f to B(x′, κ), that
is G′ = B(x′, κ). Then µ2({y ∈ B(x′, κ) : ∇f(y) ∈ B(p′0, η)}) = 0 reduces to
µ2(∆(B(0, η))) = 0. Put ∆1 = ∆(B(0, 1)) and ∆1 = ∆(B(0, 1)).

Since ∇f is Baire 1 on ∆1, choose x ∈ ∆1 which is a point of continuity of
∇f with respect to ∆1. Then obviously |∇f(x)| ≤ 1. Choose δ > 0 such that
B(x, δ) ⊂ B(x′, κ) and for y ∈ B(x, δ) ∩∆1 we have

|∇f(x)−∇f(y)| ≤ min{η − 1, 1/2}.

Then B(x, δ)∩∆1 ⊂ ∆(B(0, η)) and hence µ2(B(x, δ)∩∆1) = 0. On the other
hand R = ∇f(B(x, δ)) ∩ B(0, 1) ⊂ B(∇f(x), 1/2) and hence ∅ 6= B(0, 1) \
cl(R) = G. Therefore using G = B(x, δ) and the restriction of f to this G, the
assumptions of the following theorem are satisfied.

Theorem. Assume that f is a differentiable function on G ⊂ R2, ∆1 6= ∅
and µ2(∆1) = 0. (Recall that ∆1 = cl{x ∈ G : ∇f(x) ∈ B(0, 1)}.) Put
R = B(0, 1) ∩ ∇f(G) and G = B(0, 1) \ cl(R). Then G is a convex open
subset of the plane and G 6= ∅ implies that for any p ∈ int(cl(R)) we have
µ1({y : ∇f(y) = p}) > 0.

Remark. It follows easily from the above theorem that if G 6= ∅ and 0 ∈ R,
then B(0, 1) contains an open half-circle, HC, such that for any p ∈ HC we
have µ1({y : ∇f(y) = p}) > 0.

Proof. If G = ∅, we are done. If G 6= ∅, then the following claim holds.
Claim. Choose q ∈ G and p ∈ B(0, 1) such that the segment connecting q
and p contains p0 ∈ R, p0 6= p. Then p ∈ R, moreover µ1(∆({p})) > 0.

We prove the Claim later. Using this claim one can first see that if p, q ∈ G,
then the whole segment pq is disjoint from R. Indeed, if there were a p0 ∈ R
on this segment, then the Claim would imply that p ∈ R. Therefore G is
a convex open subset of the plane. Moreover if G is nonempty, then for any
p ∈ int(cl(R)) one can easily choose a q ∈ G such that the segment pq contains
a point p0 ∈ R. Our claim applied to these three points shows that p ∈ R
and µ1(∆({p})) > 0.

Now we turn to the proof of the Claim. Assume that ε0 > 0 is chosen
such that B(q, ε0) ⊂ B(0, 1) and B(q, ε0) ∩ cl(R) = ∅. Denote by `0 the half
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line starting at p and going through p0. Choose an α ∈ (0, π/2) and denote
by `1 the half line starting at p and making angle −α with `0. Using angle
+α define the halfline `2 similarly. The closed convex sector defined by `1
and `2 is denoted by Ω. Denote by q1 the intersection point of `1 and the
line which goes through q and is perpendicular to `0. Define the point q2 on
`2 similarly. We can assume that α is chosen so small that the whole closed
triangle Tpq1q2 is in B(0, 1) and q1,q2 ∈ B(q, ε0). Choose q′1, and q′2 on `1,
and `2, respectively, such that they are symmetric about the halfline `0, the
triangle Tpq′

1q
′
2

contains the triangle Tpq1q2 , q′1 6= q1 and q′1,q
′
2 ∈ B(q, ε0).

Denote by T the trapezoid determined by q1q
′
1q
′
2q2. Then T ⊂ B(q, ε0) and

hence ∆(T ) = ∅. It is also clear that µ2(∆(Tpq1q2)) = 0. After a suitable
change of coordinates we can apply Lemma 2 and this completes the proof of
the Theorem.

To formulate Lemma 2 we need some notation. Let 0 < α < π/2, α1 =
π/2 − α, α2 = π/2 + α, e1 = (cos(α1), sin(α1)), e2 = (cos(α2), sin(α2)),
e1
′ = (cos(α1 − π/2), sin(α1 − π/2)), e2

′ = (cos(α2 + π/2), sin(α2 + π/2)).
We need to define a few points on the plane: x0 = p = (0, 0), p0 = (0, 1),
q = (0, q) with q > 1, q1 = (q/ cosα)e1, q2 = (q/ cosα)e2. Denote the halfline
starting at p and going in the direction of e1 by `1. Define `2 similarly. The
convex closed sector defined by `1 and `2 is denoted by Ω. With a q′ > q > 1
put q1

′ = (q′/ cosα)e1, and q′2 = (q′/ cosα)e2. Denote by T the trapezoid
determined by q1q1

′q′2q2.

Lemma 2. Assume that, using the above notation, f : Q(x0, 1) → R is
differentiable, f(x0) = (0, 0), ∇f(x0) = p0, µ2(∆(Tpq1q2)) = 0 and ∆(T ) =
∅. Then µ1(∆({p})) > 0.

Proof. First we introduce an important auxiliary function g. Since∇f(x0) =
p0 = (0, 1) for any 0 < ε1 < 1/2, we can choose δ > 0 such that

|f(u, v)− v| < ε1(|u|+ |v|) (1)

for any (u, v) ∈ Q(x0, δ). We choose a constant 0 < ν < 1/2 and put δ0 = νδ.
For w = (u, v) ∈ Q(x0, δ0) denote by T (u, v) the closed triangle which is
bounded by the lines {w + te1

′ : t ∈ R}, {w + te2
′ : t ∈ R} and {(t,−2δ0) :

t ∈ R}. We may assume that ν was chosen so small that for any w ∈ Q(x0, δ0)
the triangle T (w) is in Q(x0, δ) and hence (1) is applicable for all points of
T (w). Observe that this restriction on ν depends only on α and not on ε1.

Let g(u, v) = max{f(x, y) : (x, y) ∈ T (u, v)}, M(u, v) = {(x, y) ∈ T (u, v) :
f(x, y) = g(u, v)}. Choosing sufficiently small ε1 in (1) we can achieve (the
details are left for the reader) that for any (x, y) ∈ M(u, v) and (u, v) ∈
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Q(x0, δ0) we have y > −2δ0; that is, M(u, v) cannot contain points on the
lower side of T (u, v). Since f is uniformly continuous on Q(x0, 1) ,one can
easily verify that g(u, v) is continuous.

Using a small 0 < δ1 < δ0 (the actual value of δ1 is to be determined later)
we say that a point (u, v) is red whenever it is in Q(x0, δ1) and g(u, v) =
f(u, v). At red points f takes its maximum on T (u, v) at (u, v) and hence
∇f(u, v) is in the sector Ω. It is also clear that the red set (the set of red
points) is closed.

Step 1. In this step we show that the red set is a subset of ∆(Tpq1q2) and
hence of µ2 measure zero.

The proof uses the fact that ∆(T ) = ∅ and a Darboux type property of the
upper and lower partial derivatives of g. Proceeding towards a contradiction,
assume that w = (u, v) is red and ∇f(w) 6∈ Tpq1q2 . Then our assumption
∆(T ) = ∅ and the property∇f(w) ∈ Ω imply that ∂yf(w) > q′. Introduce the
auxiliary function of γ(t) = g((u, v + t)) for t such that (u, v + t) ∈ Q(x0, δ0).
Clearly γ(t) is continuous. From the definitions of g and γ it is not difficult
to verify (the details are left to the reader) that

D+γ(t) = lim sup
h→0+

(γ(t+ h)− γ(t))/h ≥ sup{∂yf(x) : x ∈M((u, v + t))}

and

D−γ(t) = lim inf
h→0−

(γ(t+ h)− γ(t))/h ≤ inf{∂yf(x) : x ∈M((u, v + t))}.

It is clear that our assumptions imply ∇f(x) ∈ Ω and ∂yf(x) 6∈ (q, q′) for
any x ∈ M((u, v + t)). Let q′′ = (q + q′)/2. Clearly q′ > q′′ > q > 1.
From ∇f(w) 6∈ Tpq1q2 it follows that D+γ(0) > q′. We will verify that
this implies 0 ≤ γ0(t) = γ(t) − γ(0) − q′′t for all t > 0 in the domain of
γ. Indeed, we have γ0(0) = 0, D+γ0(0) > 0 and if for a t1 > 0 we have
γ0(t1) < 0, then there is a t2 ∈ (0, t1) where γ0 takes its maximum on [0, t1].
This implies D+γ0(t2) ≤ 0; that is, D+γ(t2) ≤ q′′. Therefore ∂yf(x) ≤
q′′ for all x ∈ M((u, v + t2)), and hence, by our assumptions, ∂yf(x) ≤ q.
Thus inf{∂yf(x) : x ∈ M((u, v + t2))} ≤ q, and hence D−γ(t2) ≤ q; that
is, D−γ0(t2) < 0 which shows that γ0 cannot have a local maximum at t2.
Therefore γ(t) ≥ γ(0) + q′′t for all t > 0 in the domain of γ.

Now we need upper estimations of γ. Since w = (u, v) is red, we have
w ∈ Q(x0, δ1) ⊂ Q(x0, δ0). Thus |u|, |v| < δ1 and hence using that ε1 < 1/2
in (1) we have |γ(0)| = |g(u, v)| = |f(u, v)| ≤ |f(u, v) − v| + |v| < (2ε1 +
1)δ1 < 2δ1. Let δ1 = min{δ0/4, (q′′ − 1)δ0/10}. Put c = 5/(q′′ − 1). Then
(u, v + cδ1) ∈ Q(x0, δ0). Therefore γ(cδ1) is well defined. By our result in
the previous paragraph γ(cδ1) ≥ γ(0) + q′′cδ1. On the other hand if (x, y) ∈
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T ((u, v + cδ1)) ⊂ Q(x0, δ), then y ≤ v + cδ1 and from (1) it follows that
|f(x, y) − y| < ε1(|x| + |y|) < ε12δ, and hence v + cδ1 + ε12δ > f(x, y) for
all (x, y) ∈ T (u, v + cδ1); that is, v + cδ1 + ε12δ > g(u, v + cδ1). The above
inequalities imply −2δ1 + q′′cδ1 < γ(0) + q′′cδ1 ≤ γ(cδ1) = g(u, v + cδ1) ≤
v + cδ1 + ε12δ < (c + 1)δ1 + ε12δ. Observe that δ1/δ is depending only on α
but not on ε1 and hence we can assume that ε1 was so small that ε12δ < δ1
and, then from the above we obtain c(1 − q′′) + 4 > 0 which contradicts
c = 5/(q′′ − 1). Therefore the red set is of µ2 measure zero.

Step 2. In this step we investigate the level sets of g. It is not difficult
to deduce from (1) that we can choose 0 < ε2 < δ1 such that if |c| < ε2 and
|x| < ε2, then g(x, t) = c has a solution with |t| < δ1. Assume that there are
t1, t2 ∈ (−δ1, δ1) such that g(x, t1) = g(x, t2) = c and t1 < t2. We also assume
that (x′, y′) ∈ M((x, t1)). Then (x′, y′) is a local maximum of f lying in the
interior of T (x, t2). Hence ∇f(x′, y′) = 0 = p and f(x′, y′) = c. Since f has
only countably many local maximum values for all but countable c′s with |c| <
ε2, we have only one solution of g(x, t) = c for |x| < ε2. Denote the set of these
“regular” c’s by C. Therefore for each c ∈ C there is a uniquely defined function
ϕc : (−ε2, ε2)→ (−δ1, δ1) for which g(x, ϕc(x)) = c. Since g is continuous, it is
not difficult to see that ϕc is also continuous. Put Fc = {x : (x, ϕc(x)) is red}.
Assume that (a, b) is an interval contiguous to Fc and x ∈ (a, b) ∩ (−ε2, ε2).
Then choose an (x′, y′) ∈M((x, ϕc(x))). Since c ∈ C, the point (x′, y′) cannot
be in the interior of T (x, ϕc(x)). It is also clear that f(x′, y′) = g(x′, y′) = c.
Then for any (x′′, y′′) on the segment connecting (x, ϕc(x)) to (x′, y′) the
maximum of f on T ((x′′, y′′)) will equal c; that is, g(x′′, y′′) = c. Therefore
the intersection of this segment and (−ε2, ε2)× (−δ1, δ1) is a part of the graph
of ϕc. One can easily verify from this that there exists an e ∈ [a, b] such that
the graph of ϕc is parallel to e1

′ on (e, b) and parallel to e2
′ on (a, e), that is,

ϕ′c = tan(−α) on (e, b) and ϕ′c = tan(α) on (a, e). It is also clear that if ε1 in
(1) is sufficiently small, then ϕc is close to a horizontal line segment and hence
ϕc has local minimums (and local maximums as well).

We recall the following consequence of the Coarea Formula [Fe, 3.2.11]. If
f : R2 → R is a Lipschitz function and H ⊂ R2 is a measurable set, then from
µ2(H) = 0 it follows that µ1(H ∩ f−1({c})) = 0 for almost every c ∈ R. Since
the Coarea formula works only for Lipschitz functions we also recall that from
[Fe, 3.1.8] it follows that if f : G→ R is differentiable, then G is the union of
a countable family of µ2-measurable sets such that the restriction of f to each
member of the family is Lipschitzian.

Since f is differentiable and µ2(∆(Tpq1q2)) = 0, the above two theorems
imply that µ1(f−1({c})∩∆(Tpq1q2)) = 0 for almost every c ∈ C and hence, for
these c’s, by the result at Step 1 the linear measure of the intersection of the red
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set and f−1({c}) equals zero. This implies µ1(Fc) = 0 and µ1(ϕc(Fc)) = 0.
Therefore, after rescaling ϕc (for ease of notation this rescaled function is
still denoted by ϕc), Lemma 1 is applicable with ϕ = ϕc. Furthermore F ,
and Ψ are suitable portions of Fc and of f−1({c}) (rescaled as ϕc), respec-
tively. To apply Lemma 1 also observe that Ψ is above ϕc. We can find a
y0 ∈ Fc such that Ψ has no tangent at (y0, ϕc(y0)). This is possible only when
∇f((y0, ϕc(y0))) = 0, since otherwise the level set f−1(c) should have a tan-
gent at (y0, ϕc(y0)). Thus we verified that (y0, ϕc(y0)) ∈ ∆({p}) = ∆({0}).
This shows that ∆({p})∩f−1({c}) is not empty for almost every c ∈ (−ε2, ε2),
and hence µ1(f(∆({p}))) > 0. Recall that ifH ⊂ R2 and the map f : H → R is
differentiable and µ1(H) = 0, then µ1(f(H)) = 0 holds as well. (This is a well-
known theorem. See, for example, [Sa, Lemma 1].) Applying this result to the
differentiable function f from µ1(f(∆({p}))) > 0 it follows µ1(∆({p})) > 0.
This completes the proof of Lemma 2.

Acknowledgment. The author thanks the referee for his careful work.
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