E. D'Aniello, Dipartimento di Matematica e Applicazioni R. Caccioppoli, Universitá Federico II, Naples, Italy, e-mail: daniel@matna2.dma.unina.it current address: Department of Mathematics, Wesleyan University, Middletown, CT 06459, USA
A. Hirshberg, Department of Mathematics, Wesleyan University, Middletown, CT 06459, USA, e-mail: ahirshberg@wesleyan.edu, K. P. S. Bhaskara Rao, Division of Statistics and Mathematics, Indian Statistical Institute, Bangalore 560059, India, e-mail: isibang!kpsbrao@iisc.ernet.in,
R. M. Shortt, Department of Mathematics, Wesleyan University, Middletown, CT 06459, USA e-mail: rshortt@wesleyan.edu

BOUNDED COMMON EXTENSIONS OF VECTOR MEASURES

Abstract

Let \mathcal{A} and \mathcal{B} be fields of subsets of a set Ω, let \mathbf{X} be a normed space with the Hahn-Banach extension property and let $\mu: \mathcal{A} \rightarrow \mathbf{X}$ and $\nu: \mathcal{B} \rightarrow \mathbf{X}$ be consistent, bounded, vector measures. We give necessary and sufficient conditions for μ and ν to have a bounded common extension to $\mathcal{A} \vee \mathcal{B}$, generalizing already known results for real valued charges.

1 Introduction

Let \mathcal{A} be a field of subsets of a set Ω. We denote by $F(\Omega, \mathcal{A})=F(\mathcal{A})$ the linear space spanned by indicator functions I_{A} of sets $A \in \mathcal{A}$. The functions in $F(\Omega, \mathcal{A})$ have finite range and are therefore bounded. If $f \in F(\Omega, \mathcal{A})$, then $\|f\|$ is the supremum norm of f.

Let X be a Banach space. A finitely additive vector measure is a set function $\mu: \mathcal{A} \rightarrow \mathbf{X}$ such that $\mu\left(A_{1} \cup A_{2}\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)$, whenever $A_{1}, A_{2} \in \mathcal{A}$

[^0]are disjoint. The set function μ is also called simply a vector measure.
The variation of μ is the extended nonnegative function $|\mu|$ whose value on a set $A \in \mathcal{A}$ is given by
$$
|\mu|(A)=\sup _{\pi} \sum_{E \in \pi}\|\mu(E)\|,
$$
where the supremum is taken over all partitions π of A into a finite number of pairwise disjoint members of \mathcal{A}.

If $|\mu|(\Omega)<\infty$, then μ will be called a measure of bounded variation.
The semivariation of μ is the extended nonnegative function $\|\mu\|$ whose value on a set $A \in \mathcal{A}$ is given by

$$
\|\mu\|(A)=\sup \left\{\left|x^{*} \mu\right|(A): x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}
$$

where $\left|x^{*} \mu\right|$ is the variation of the real valued measure $x^{*} \mu$. If $\|\mu\|(\Omega)$ $<\infty$, then μ will be called a measure of bounded semivariation or simply a bounded vector measure [3]. We define $\|\mu\|=\|\mu\|(\Omega)$.

Let \mathcal{A} and \mathcal{B} be fields of subsets of a set Ω and let μ and ν be vector measures on \mathcal{A} and \mathcal{B}, respectively. Say that μ and ν are consistent if $\mu(C)=\nu(C)$ for all $C \in \mathcal{A} \cap \mathcal{B}$. Let $\mathcal{A} \vee \mathcal{B}$ be the field generated by $\mathcal{A} \cup \mathcal{B}$.

A Banach space \mathbf{X} is said to have the Hahn-Banach extension property if each bounded linear operator T on a subspace of any Banach space \mathbf{Y} with values in \mathbf{X} has a linear extension \tilde{T} carrying all of \mathbf{Y} into \mathbf{X} such that $\|\tilde{T}\|=\|T\|$ [5].

A normed space has the Hahn-Banach extension property if and only if the collection of its spheres has the binary intersection property [7].

Call \mathbb{R}^{n} the n-dimensional euclidean space considered as a vector space in the usual way, ordered component by component and normed by

$$
\|x\|=\left|x_{1}\right| \vee \ldots \vee\left|x_{n}\right| \text { if } x=\left(x_{1}, \ldots, x_{n}\right)
$$

The collection of spheres of \mathbb{R}^{n} with the above norm has the binary intersection property [7]. For these and other facts about the Hahn-Banach extension property, we refer the reader to [4], [5] and [7].

Lemma 1.1. Let \mathcal{A} and \mathcal{B} be fields of subsets of Ω and suppose that μ and ν are given vector measures on \mathcal{A} and \mathcal{B}, respectively, with values in a Banach space \mathbf{X}. If μ and ν are consistent, then they have a common extension, i.e. there is a vector measure ρ on $\mathcal{A} \vee \mathcal{B}$ such that $\rho(C)=\mu(C)$ for $C \in \mathcal{A}$ and $\rho(C)=\nu(C)$ for $C \in B$.

Proof. Indication: This is a well-known result. See e.g., theorem 3.6.2 of [2].

When do two bounded consistent vector measures have a bounded common extension? By the lemma, some common extension exists, but might not be bounded. The principal result of this paper [theorem 2.5] solves this problem in the case when \mathbf{X} is a normed space with the Hahn-Banach extension property. Earlier, Lipecki [6] gave some examples to show that the answer to the question is "not always".

2 Chain conditions and bounded extensions

We begin with the following definition and a few abbreviations.
Call $\emptyset=C_{0} \subseteq C_{1} \subseteq C_{2} \subseteq \ldots \subseteq C_{N+1}=\Omega$ a chain in $\mathcal{A} \cup \mathcal{B}$ if all C_{i} 's are in $\mathcal{A} \cup \mathcal{B}$. The following elementary fact lays the groundwork of our main result.

Lemma 2.1. Let μ on \mathcal{A} and ν on \mathcal{B} be consistent vector measures with values in a Banach space \mathbf{X}. If ρ on $\mathcal{A} \vee \mathcal{B}$ is a common extension of μ and ν, then for any finite chain $\emptyset=C_{0} \subseteq C_{1} \subseteq C_{2} \subseteq \ldots \subseteq C_{N+1}=\Omega$ in $\mathcal{A} \cup \mathcal{B}$

$$
\begin{equation*}
\sup _{\epsilon_{i}}\left\|\sum \epsilon_{i}\left(\eta\left(C_{i+1}\right)-\eta\left(C_{i}\right)\right)\right\| \leq\|\rho\|(\Omega) \tag{*}
\end{equation*}
$$

where the supremum is taken over all finite collections $\left\{\epsilon_{i}\right\}$ satisfying $\epsilon_{i}= \pm 1$ and $\eta(C)=\mu(C)$ or $\nu(C)$ according as C is in \mathcal{A} or in \mathcal{B}.

Proof. By proposition 11 of [3],

$$
\|\rho\|(\Omega)=\sup \left\{\left\|\sum_{E_{i} \in \pi} \epsilon_{i} \rho\left(E_{i}\right)\right\|\right\}
$$

where the supremum is taken over all partitions π of Ω into finitely many disjoint members of $\mathcal{A} \vee \mathcal{B}$ and all finite collections $\left\{\epsilon_{i}\right\}$ satisfying $\left|\epsilon_{i}\right| \leq 1$, but an accurate look at the proof shows that

$$
\|\rho\|(\Omega)=\sup \left\{\left\|\sum_{E_{i} \in \pi} \epsilon_{i} \rho\left(E_{i}\right)\right\|\right\}
$$

where the supremum is taken over all partitions π of Ω into finitely many disjoint members of $\mathcal{A} \vee \mathcal{B}$ and all finite collections $\left\{\epsilon_{i}\right\}$ satisfying $\epsilon_{i}= \pm 1$. Therefore, it follows that if μ on \mathcal{A} and ν on \mathcal{B} have a bounded common extension, then the supremum of the left-hand side of $\left(^{*}\right)$, taken over all possible finite chains and over all finite collections $\left\{\epsilon_{i}\right\}$ satisfying $\epsilon_{i}= \pm 1$ must be finite.

Our main result [theorem 2.5] establishes the converse statement in the case when \mathbf{X} is a normed space with the Hahn-Banach extension property.

Let \mathcal{A} and \mathcal{B} be fields of subsets of Ω and let $\mu: \mathcal{A} \rightarrow \mathbf{X}$ and $\nu: \mathcal{B} \rightarrow \mathbf{X}$ be consistent bounded vector measures. We define

$$
\begin{gathered}
I^{0}=I^{0}(\mu, \nu)=\inf \{\|\rho\|: \rho \text { a common extension of } \mu \text { and } \nu \text { to } \mathcal{A} \vee \mathcal{B}\} \\
S^{0}=S^{0}(\mu, \nu)=\sup \left\{\left\|\int d \mu+\int g d \nu\right\|: f \in F(\mathcal{A}), g \in F(\mathcal{B}),\|f+g\|\right. \\
\leq 1\} \\
S C^{0}=S C^{0}(\mu, \nu)=\sup \left\{\left\|\sum_{i=0}^{N}\right\| \epsilon_{i}\left(\eta\left(C_{i+1}\right)-\eta\left(C_{i}\right)\right) \|: \emptyset=C_{0} \subseteq C_{1} \subseteq C_{2}\right. \\
\subseteq \ldots \subseteq C_{N+1}=\Omega \text { a chain in } \mathcal{A} \cup \mathcal{B} \\
\\
\left.\left\{\epsilon_{i}\right\} \text { a finite collection satisfying } \epsilon_{i}= \pm 1, N \geq 0\right\}
\end{gathered}
$$

In the remainder of this paper \mathbf{X} will be a normed space with the HahnBanach extension property.
Theorem 2.2. Let \mathcal{A} and \mathcal{B} be fields of subsets of Ω and suppose that μ and ν are consistent vector measures on \mathcal{A} and \mathcal{B}, respectively. Then $S^{0}(\mu, \nu)=$ $I^{0}(\mu, \nu)$.
The infimum defining $I^{0}=I^{0}(\mu, \nu)$ is attained at some choice of ρ. If \mathcal{A} and \mathcal{B} are finite, then the supremum defining $S^{0}=S^{0}(\mu, \nu)$ is attained for some f and g.

Proof. Given $f \in F(\mathcal{A}), g \in F(\mathcal{B}),\|f+g\| \leq 1$ and some common extension ρ of μ and ν, we have

$$
\left\|\int f d \mu+\int g d \nu\right\|=\left\|\int(f+g) d \rho\right\|
$$

By the Hahn-Banach theorem, there exists $x^{*} \in X^{*}$ with $\left\|x^{*}\right\|=1$ and $x^{*}\left(\int(f+g) d \rho\right)=\left\|\int(f+g) d \rho\right\|$.

Therefore,

$$
\begin{aligned}
& \left\|\int f d \mu+\int g d \nu\right\|=x^{*}\left(\int(f+g) d \rho\right)=\int(f+g) d\left(x^{*} \rho\right) \\
& \leq \int\|f+g\| d\left|x^{*} \rho\right| \leq\left|x^{*} \rho\right|(\Omega) \leq\|\rho\|(\Omega)
\end{aligned}
$$

so that $S^{0} \leq I^{0}$.
If $S^{0}=\infty$, there is nothing to prove. If $S^{0}<\infty$, consider the linear subspace M of $F(\mathcal{A} \vee \mathcal{B})$ defined by

$$
M=\{f+g: f \in F(\mathcal{A}), g \in F(\mathcal{B})\}
$$

Let $L: M \rightarrow \mathbf{X}$ be the linear operator defined by

$$
L(f+g)=\int f d \mu+\int g d \nu
$$

The consistency of μ and ν ensures that L is well-defined. In fact, L is a bounded linear operator on M with norm $\|L\|=S^{0}$. Since \mathbf{X} has the Hahn-Banach extension property, L may be extended to a linear operator $L_{0}: F(\mathcal{A} \vee \mathcal{B}) \rightarrow \mathbf{X}$ with $\left\|L_{0}\right\|=\|L\|$.

Then $\rho(C)=L_{0}\left(I_{C}\right)$ defines a charge ρ on $\mathcal{A} \vee \mathcal{B}$ with $\|\rho\|=\left\|L_{0}\right\|$ $=S^{0}$, so that $S^{0}=I^{0}$ and the infimum is attained at ρ.

If \mathcal{A} and \mathcal{B} are finite, then $F(\mathcal{A} \vee \mathcal{B})$ is a finite-dimensional space and the last statement of the theorem becomes elementary.
Corollary 2.3. In order that consistent X-valued vector measures μ and ν have a bounded common extension, it is necessary and sufficient that $S^{0}(\mu, \nu)<$ ∞.

The following technical lemma will be used in the proof of our main theorem.

Lemma 2.4. Let \mathcal{A} be a field of subsets of Ω and let μ be a bounded \mathbf{X}-valued vector measures on \mathcal{A}. If $\left\|\int f d \mu\right\|=\|\mu\|$ for $f \in F(\Omega, \mathcal{A})$, with $\|f\| \leq 1$, then there exists $x^{*} \in X^{*}$ such that
(i) $x^{*} \mu \geq 0$ on subsets of $\{x: f(x)=1\}$;
(ii) $x^{*} \mu \leq 0$ on subsets of $\{x: f(x)=-1\}$;
(iii) $\left|x^{*} \mu\right|(\{x:-1<f(x)<1\})=0$.

Proof. By the Hahn-Banach theorem, there exists $x^{*} \in X^{*}$ such that $\left\|\int f d \mu\right\|$ $=x^{*}\left(\int f d \mu\right)$. Hence

$$
\begin{aligned}
\left\|\int f d \mu\right\| & =x^{*}\left(\int f d \mu\right)=\int f d\left(x^{*} \mu\right) \leq \int\|f\| d\left|x^{*} \mu\right| \\
& \leq\left|x^{*} \mu\right|(\Omega) \leq\left\|x^{*} \mu\right\| \leq\|\mu\|
\end{aligned}
$$

Therefore, $\int f d\left(x^{*} \mu\right)=\left\|x^{*} \mu\right\|$ and the assertions follow from lemma 1.4 of [1].

Theorem 2.5. Let \mathcal{A} and \mathcal{B} be fields of subsets of Ω and suppose that μ and ν are consistent \mathbf{X}-valued vector measures on \mathcal{A} and on \mathcal{B}, respectively. Then $S C^{0}(\mu, \nu)=I^{0}(\mu, \nu)$.

Proof. That $S C^{0} \leq I^{0}$ follows from lemma 2.1.
In order to prove the reverse inequality, we use theorem 2.2. Suppose that $f_{0} \in F(\mathcal{A})$ and $g_{0} \in F(\mathcal{B})$ such that $\left\|f_{0}+g_{0}\right\| \leq 1$ are given. We shall demonstrate that

$$
\begin{equation*}
S C^{0} \geq\left\|\int f_{0} d \mu+\int g_{0} d \nu\right\| \tag{**}
\end{equation*}
$$

from which fact follows $S C^{0} \geq S^{0}=I^{0}$ as desired.
Let \mathcal{A}_{0} (respectively \mathcal{B}_{0}) be the smallest field for which f_{0} is measurable. Then $\mathcal{A}_{0} \subseteq \mathcal{A}$ and $\mathcal{B}_{0} \subseteq \mathcal{B}$ are finite. In order to prove $(* *)$, we may assume that f_{0} and g_{0} have been chosen so that

$$
\left\|\int f_{0} d \mu+\int g_{0} d \nu\right\|
$$

is the supremum of $\left\|\int f d \mu+\int g d \nu\right\|$ over all choices of $f \in F\left(\mathcal{A}_{0}\right)$ and $g \in$ $F\left(\mathcal{B}_{0}\right)$; we use the final sentence of theorem 2.2. Applying theorem 2.2 to μ_{0} and ν_{0}, the restrictions of μ and ν to \mathcal{A}_{0} and \mathcal{B}_{0}, respectively, we find some common extension ρ of μ_{0} and ν_{0} to $\mathcal{A}_{0} \vee \mathcal{B}_{0}$ such that

$$
\left\|\int f_{0} d \mu+\int g_{0} d \nu\right\|=\|\rho\|
$$

Hence

$$
\left\|\int\left(f_{0}+g_{0}\right) d \rho\right\|=\|\rho\|
$$

and as in lemma 2.4, there exists $x^{*} \in X^{*}$ with $f_{0}+g_{0}= \pm 1\left(\left|x^{*} \rho\right|\right.$ a.e. $) . \quad$ By the same lemma, $x^{*} \rho \geq 0$ for subsets of $\left\{x: f_{0}(x)+g_{0}(x)=1\right\}$ and $x^{*} \rho \leq 0$ for subsets of $\left\{x: f_{0}(x)+g_{0}(x)=-1\right\}$.

Now f_{0} and g_{0} may be replaced with $f_{0}+c$ and $g_{0}-c$ for any constant c, with no effect on the norm or integral of their sum. Thus, without loss of generality, we may assume that $f_{0} \geq 0$ and $g_{0} \leq 0$. Let, as in theorem 1.5 of [1], N be an even integer such that $N \geq \max \left\{\left\|f_{0}\right\|,\left\|g_{0}\right\|\right\}$ and define

$$
C_{i}= \begin{cases}\left\{x \in \Omega: g_{0}(x) \leq-N+i-1\right\} & \text { if } i \text { is odd } \\ \left\{x \in \Omega: f_{0}(x) \geq N-i+1\right\} & \text { if } i \text { is even. }\end{cases}
$$

Then $\emptyset=C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{N+1}=\Omega$ is a chain of sets in $\mathcal{A} \cup \mathcal{B}$. If i is odd, then $f_{0}+g_{0}>-1$ on $C_{i+1}-C_{i}$, so that $f_{0}+g_{0}=1\left(\left|x^{*} \rho\right|\right.$ a.e. $)$ on $C_{i+1}-C_{i}$.

Likewise, if i is even, then $f_{0}+g_{0}=-1\left(\left|x^{*} \rho\right|\right.$ a.e. $)$ on $C_{i+1}-C_{i}$.
Define functions $f_{1} \in F(\mathcal{A})$ and $g_{1} \in F(\mathcal{B})$ by putting

$$
\begin{aligned}
& f_{1}=N-2 n-1 \quad \text { for } x \in C_{2 n+2}-C_{2 n} \\
& g_{1}=-N+2 n \quad \text { for } x \in C_{2 n+1}-C_{2 n-1}
\end{aligned}
$$

for $n=0,1, \ldots, N / 2$, noting that $C_{-1}=\emptyset$ and $C_{N+2}=\Omega$. For i odd $f_{1}+g_{1}=$ 1 on $C_{i+1}-C_{i}$ and, for i even, $f_{1}+g_{1}=-1$ on $C_{i+1}-C_{i}$. Thus

$$
\begin{aligned}
S C^{0} & \geq \sum_{i=0}^{N}\left|x^{*} \eta\left(C_{i+1}\right)-x^{*} \eta\left(C_{i}\right)\right| \\
& =\int\left(f_{1}+g_{1}\right) d\left(x^{*} \rho\right)=\int\left(f_{0}+g_{0}\right) d\left(x^{*} \rho\right) \\
& =x^{*}\left(\int\left(f_{0}+g_{0}\right) d \rho\right)=\left\|\int\left(f_{0}+g_{0}\right) d \rho\right\| \\
& =\left\|\int f_{0} d \mu+\int g_{0} d \nu\right\| . \square
\end{aligned}
$$

Corollary 2.6. In order that consistent \mathbf{X}-valued bounded vector measures μ and ν have a bounded common extension, it is necessary and sufficient that $S C^{0}(\mu, \nu)<\infty$.

Inspection of the proof of theorem 2.5 yields a useful sharpening of this result:

Corollary 2.7. In the supremum used to define $S C^{0}(\mu, \nu)$, it suffices to restrict attention to the chains $\emptyset=C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{N+1}=\Omega$, where $C_{i} \in \mathcal{A}$ if i is even, and $C_{i} \in \mathcal{B}$ if i is odd.

3 Global conditions on fields

Let \mathcal{A} and \mathcal{B} be fields of subsets of Ω. Then \mathcal{A} and \mathcal{B} are independent if $\mathcal{A} \cap \mathcal{B}=\{\emptyset, \Omega\}$. As in [1] the following result follows from the theory of the previous section.

Theorem 3.1. Let \mathcal{A} and \mathcal{B} be independent fields of subsets of Ω and suppose that μ and ν are consistent vector measures on \mathcal{A} and \mathcal{B}, respectively (consistency means only that $\mu(\Omega)=\nu(\Omega)$). Then μ and ν have a bounded common extension ρ on $\mathcal{A} \vee \mathcal{B}$ such that $\|\rho\|=\max \{\|\mu\|,\|\nu\|\}$.

Proof. We apply Theorem 2.5 and Corollary 2.7. Independence essentially limits the length of chains as in Corollary 2.7. It is sufficient to consider chains of the form

$$
\emptyset \subseteq A \subseteq \Omega \text { for } A \in \mathcal{A} \quad \text { or } \quad \emptyset \subseteq B \subseteq \Omega \text { for } B \in \mathcal{B}
$$

The supremum $S C^{0}(\mu, \nu)$ is thus taken over quantities of the form

$$
\left\|\epsilon_{0} \mu(A)+\epsilon_{1} \mu(\Omega-A)\right\|
$$

or

$$
\left\|\epsilon_{0} \nu(B)+\epsilon_{1} \nu(\Omega-B)\right\|
$$

where $\epsilon_{i}= \pm 1$, for $i=0,1$. The result follows.
Fields \mathcal{A} and \mathcal{B} over Ω are weakly independent, a notion due to Lipecki, if whenever $\Omega=A_{1} \cup \ldots \cup A_{n}$ and $\Omega=B_{1} \cup \ldots \cup B_{m}$ are partitions of Ω into nonempty sets $A_{i} \in \mathcal{A}$ and $B_{i} \in \mathcal{B}$, then there is some k and some l such that $A_{k} \cap B_{i} \neq \emptyset($ each $i)$ and $A_{i} \cap B_{l} \neq \emptyset$ (each $\left.i\right)$. The following is an improvement on a result of Lipecki [6] and a generalization of a result in [1].

Theorem 3.2. Let \mathcal{A} and \mathcal{B} be weakly independent fields of subsets of a set Ω and suppose that μ and ν are consistent vector measures on \mathcal{A} and \mathcal{B} (this means only that $\mu(\Omega)=\nu(\Omega))$. Then there is a common extension ρ of μ and ν such that $\|\rho\| \leq\|\mu\|+\|\mu(\Omega)\|+\|\nu\|$.

Proof. Apply Theorem 2.5 and Corollary 2.7. Weak independence limits the length the chains as in Corollary 2.7. They are either of the form $\emptyset \subseteq A \subseteq B \subseteq \Omega$ or $\emptyset \subseteq B \subseteq A \subseteq \Omega$ for $A \in \mathcal{A}$ and $B \in \mathcal{B}$. The supremum $S C^{0}(\mu, \nu)$ is thus taken over quantities

$$
\left\|\epsilon_{0} \mu(A)+\epsilon_{1}(\nu(B)-\mu(A))+\epsilon_{2}(\nu(\Omega)-\nu(B))\right\|
$$

or

$$
\left\|\epsilon_{0} \nu(B)+\epsilon_{1}(\mu(A)-\nu(B))+\epsilon_{2}(\mu(\Omega)-\mu(A))\right\|
$$

Both of these are bounded by

$$
\|\mu\|+\|\mu(\Omega)\|+\|\nu\|
$$

Question: Does theorem 2.5 continue to hold in the case when \mathbf{X} is any Banach space?

References

[1] A. Basile, K. P. S. Bhaskara Rao and R. M. Shortt, Bounded common extensions of charges, Proc. Amer. Math. Soc. 121 (1994), 137-143.
[2] K. P. S. Bhaskara Rao and M Bhaskara Rao, Theory of charges, Academic Press, London and New York, 1983.
[3] J. Diestel and J. J. Uhl, Vector measures, American Mathematical Society, Providence, Rhode Island, 1977.
[4] D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc. 69 (1950), 89-108.
[5] J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math. Soc. 72 (1952), 323-326.
[6] Z. Lipecki, On common extensions of two quasi-measures, Czechoslovak Math. J. 36 (1986), 489-494.
[7] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68 (1950), 28-46
[8] K. D. Schmidt and G. Waldschaks, Common extensions of order bounded vector measures, Rend. Circ. Mat. Palermo Ser.II 28, Suppl. 117-124.

[^0]: Key Words: Finitely additive vector measure, bounded vector measure, common extension

 Mathematical Reviews subject classification: Primary 28B99; Secondary 28B05
 Received by the editors February 6, 1997

