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BOUNDED COMMON EXTENSIONS OF
VECTOR MEASURES

Abstract

Let A and B be fields of subsets of a set Ω, let X be a normed
space with the Hahn-Banach extension property and let µ : A → X and
ν : B → X be consistent, bounded, vector measures. We give neces-
sary and sufficient conditions for µ and ν to have a bounded common
extension to A ∨ B, generalizing already known results for real valued
charges.

1 Introduction

Let A be a field of subsets of a set Ω. We denote by F (Ω,A) = F (A) the
linear space spanned by indicator functions IA of sets A ∈ A. The functions
in F (Ω,A) have finite range and are therefore bounded. If f ∈ F (Ω,A), then
‖f‖ is the supremum norm of f .

Let X be a Banach space. A finitely additive vector measure is a set func-
tion µ : A → X such that µ(A1 ∪A2) = µ(A1) + µ(A2), whenever A1, A2 ∈ A
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are disjoint. The set function µ is also called simply a vector measure.
The variation of µ is the extended nonnegative function |µ| whose value

on a set A ∈ A is given by

|µ|(A) = sup
π

∑
E∈π
‖µ(E)‖,

where the supremum is taken over all partitions π of A into a finite number
of pairwise disjoint members of A.

If |µ|(Ω) <∞, then µ will be called a measure of bounded variation.
The semivariation of µ is the extended nonnegative function ‖µ‖ whose

value on a set A ∈ A is given by

‖µ‖(A) = sup{|x∗µ|(A) : x∗ ∈ X∗, ‖x∗‖ ≤ 1},

where |x∗µ| is the variation of the real valued measure x∗µ. If ‖µ‖(Ω)
<∞, then µ will be called a measure of bounded semivariation or simply a
bounded vector measure [3]. We define ‖µ‖ = ‖µ‖(Ω).

Let A and B be fields of subsets of a set Ω and let µ and ν be vector mea-
sures on A and B, respectively. Say that µ and ν are consistent if µ(C) = ν(C)
for all C ∈ A ∩ B. Let A ∨ B be the field generated by A ∪ B.

A Banach space X is said to have the Hahn-Banach extension property if
each bounded linear operator T on a subspace of any Banach space Y with val-
ues in X has a linear extension T̃ carrying all of Y into X such that ‖T̃‖ = ‖T‖
[5].

A normed space has the Hahn-Banach extension property if and only if the
collection of its spheres has the binary intersection property [7].

Call Rn the n-dimensional euclidean space considered as a vector space in
the usual way, ordered component by component and normed by

‖x‖ = |x1| ∨ . . . ∨ |xn| if x = (x1, . . . , xn).

The collection of spheres of Rn with the above norm has the binary in-
tersection property [7]. For these and other facts about the Hahn-Banach
extension property, we refer the reader to [4], [5] and [7].

Lemma 1.1. Let A and B be fields of subsets of Ω and suppose that µ and ν
are given vector measures on A and B, respectively, with values in a Banach
space X. If µ and ν are consistent, then they have a common extension, i.e.
there is a vector measure ρ on A ∨ B such that ρ(C) = µ(C) for C ∈ A and
ρ(C) = ν(C) for C ∈ B.
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Proof. Indication: This is a well-known result. See e.g., theorem 3.6.2 of
[2].

When do two bounded consistent vector measures have a bounded common
extension? By the lemma, some common extension exists, but might not be
bounded. The principal result of this paper [theorem 2.5] solves this problem in
the case when X is a normed space with the Hahn-Banach extension property.
Earlier, Lipecki [6] gave some examples to show that the answer to the question
is “not always”.

2 Chain conditions and bounded extensions

We begin with the following definition and a few abbreviations.
Call ∅ = C0 ⊆ C1 ⊆ C2 ⊆ . . . ⊆ CN+1 = Ω a chain in A ∪ B if all Ci’s are in
A ∪ B. The following elementary fact lays the groundwork of our main result.

Lemma 2.1. Let µ on A and ν on B be consistent vector measures with values
in a Banach space X. If ρ on A ∨ B is a common extension of µ and ν, then
for any finite chain ∅ = C0 ⊆ C1 ⊆ C2 ⊆ . . . ⊆ CN+1 = Ω in A ∪ B

(*) supεi ‖
∑
εi(η(Ci+1)− η(Ci))‖ ≤ ‖ρ‖(Ω),

where the supremum is taken over all finite collections {εi} satisfying εi = ±1
and η(C) = µ(C) or ν(C) according as C is in A or in B.

Proof. By proposition 11 of [3],

‖ρ‖(Ω) = sup{‖
∑
Ei∈π

εiρ(Ei)‖},

where the supremum is taken over all partitions π of Ω into finitely many
disjoint members of A∨B and all finite collections {εi} satisfying |εi| ≤ 1, but
an accurate look at the proof shows that

‖ρ‖(Ω) = sup{‖
∑
Ei∈π

εiρ(Ei)‖},

where the supremum is taken over all partitions π of Ω into finitely many
disjoint members of A ∨ B and all finite collections {εi} satisfying εi = ±1.
Therefore, it follows that if µ on A and ν on B have a bounded common
extension, then the supremum of the left-hand side of (*), taken over all pos-
sible finite chains and over all finite collections {εi} satisfying εi = ±1 must
be finite.
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Our main result [theorem 2.5] establishes the converse statement in the
case when X is a normed space with the Hahn-Banach extension property.

Let A and B be fields of subsets of Ω and let µ : A → X and ν : B → X be
consistent bounded vector measures. We define

I0 = I0(µ, ν) = inf{‖ρ‖ : ρ a common extension of µ and ν to A ∨ B},

S0 = S0(µ, ν) = sup{‖
∫
f dµ+

∫
g dν‖ : f ∈ F (A), g ∈ F (B), ‖f + g‖

≤ 1},

SC0 = SC0(µ, ν) = sup{‖
N∑
i=0

‖εi(η(Ci+1)− η(Ci))‖ : ∅ = C0 ⊆ C1 ⊆ C2

⊆ . . . ⊆ CN+1 = Ω a chain in A ∪ B,
{εi} a finite collection satisfying εi = ±1, N ≥ 0}.

In the remainder of this paper X will be a normed space with the Hahn-
Banach extension property.

Theorem 2.2. Let A and B be fields of subsets of Ω and suppose that µ and
ν are consistent vector measures on A and B, respectively. Then S0(µ, ν) =
I0(µ, ν).
The infimum defining I0 = I0(µ, ν) is attained at some choice of ρ. If A and
B are finite, then the supremum defining S0 = S0(µ, ν) is attained for some f
and g.

Proof. Given f ∈ F (A), g ∈ F (B), ‖f + g‖ ≤ 1 and some common extension
ρ of µ and ν, we have

‖
∫
f dµ+

∫
g dν‖ = ‖

∫
(f + g) dρ‖.

By the Hahn-Banach theorem, there exists x∗ ∈ X∗ with ‖x∗‖ = 1 and
x∗(
∫

(f + g) dρ) = ‖
∫

(f + g) dρ‖.
Therefore,

‖
∫
f dµ+

∫
g dν‖ =x∗(

∫
(f + g) dρ) =

∫
(f + g)d(x∗ρ)

≤
∫
‖f + g‖d|x∗ρ| ≤|x∗ρ|(Ω) ≤ ‖ρ‖(Ω),



770 D’Aniello, Hirshberg, Bhaskara Rao, Shortt

so that S0 ≤ I0.
If S0 =∞, there is nothing to prove. If S0 <∞, consider the linear sub-

space M of F (A ∨ B) defined by

M = {f + g : f ∈ F (A), g ∈ F (B)}.

Let L : M → X be the linear operator defined by

L(f + g) =

∫
f dµ+

∫
g dν.

The consistency of µ and ν ensures that L is well-defined. In fact, L
is a bounded linear operator on M with norm ‖L‖ = S0. Since X has the
Hahn-Banach extension property, L may be extended to a linear operator
L0 : F (A ∨ B)→ X with ‖L0‖ = ‖L‖.

Then ρ(C) = L0(IC) defines a charge ρ on A ∨ B with ‖ρ‖ = ‖L0‖
= S0 , so that S0 = I0 and the infimum is attained at ρ.

If A and B are finite, then F (A ∨ B) is a finite-dimensional space and the
last statement of the theorem becomes elementary.

Corollary 2.3. In order that consistent X-valued vector measures µ and ν
have a bounded common extension, it is necessary and sufficient that S0(µ, ν) <
∞.

The following technical lemma will be used in the proof of our main theo-
rem.

Lemma 2.4. Let A be a field of subsets of Ω and let µ be a bounded X-valued
vector measures on A. If ‖

∫
f dµ‖ = ‖µ‖ for f ∈ F (Ω,A), with ‖f‖ ≤ 1, then

there exists x∗ ∈ X∗ such that

(i) x∗µ ≥ 0 on subsets of {x : f(x) = 1};

(ii) x∗µ ≤ 0 on subsets of {x : f(x) = −1};

(iii) |x∗µ|({x : −1 < f(x) < 1}) = 0.

Proof. By the Hahn-Banach theorem, there exists x∗ ∈ X∗ such that ‖
∫
f dµ‖

= x∗(
∫
f dµ). Hence

‖
∫
f dµ‖ =x∗(

∫
f dµ) =

∫
fd(x∗µ) ≤

∫
‖f‖d|x∗µ|

≤|x∗µ|(Ω) ≤ ‖x∗µ‖ ≤ ‖µ‖

Therefore,
∫
fd(x∗µ) = ‖x∗µ‖ and the assertions follow from lemma 1.4 of

[1].
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Theorem 2.5. Let A and B be fields of subsets of Ω and suppose that µ and
ν are consistent X-valued vector measures on A and on B, respectively. Then
SC0(µ, ν) = I0(µ, ν).

Proof. That SC0 ≤ I0 follows from lemma 2.1.
In order to prove the reverse inequality, we use theorem 2.2. Suppose that

f0 ∈ F (A) and g0 ∈ F (B) such that ‖f0 + g0‖ ≤ 1 are given. We
shall demonstrate that

(**) SC0 ≥ ‖
∫
f0 dµ+

∫
g0 dν‖,

from which fact follows SC0 ≥ S0 = I0 as desired.
Let A0 (respectively B0) be the smallest field for which f0 is measurable. Then
A0 ⊆ A and B0 ⊆ B are finite. In order to prove (∗∗), we may assume that f0
and g0 have been chosen so that

‖
∫
f0 dµ+

∫
g0 dν‖

is the supremum of ‖
∫
f dµ+

∫
g dν‖ over all choices of f ∈ F (A0) and g ∈

F (B0); we use the final sentence of theorem 2.2. Applying theorem 2.2 to µ0

and ν0, the restrictions of µ and ν to A0 and B0, respectively, we find some
common extension ρ of µ0 and ν0 to A0 ∨ B0 such that

‖
∫
f0 dµ+

∫
g0 dν‖ = ‖ρ‖.

Hence

‖
∫

(f0 + g0) dρ‖ = ‖ρ‖,

and as in lemma 2.4, there exists x∗ ∈ X∗ with f0 + g0 = ±1(|x∗ρ|a.e.). By
the same lemma, x∗ρ ≥ 0 for subsets of {x : f0(x) + g0(x) = 1} and x∗ρ ≤ 0
for subsets of {x : f0(x) + g0(x) = −1}.

Now f0 and g0 may be replaced with f0 + c and g0 − c for any constant
c, with no effect on the norm or integral of their sum. Thus, without loss of
generality, we may assume that f0 ≥ 0 and g0 ≤ 0. Let, as in theorem 1.5 of
[1], N be an even integer such that N ≥ max{‖f0‖, ‖g0‖} and define

Ci =

{
{x ∈ Ω : g0(x) ≤ −N + i− 1} if i is odd,
{x ∈ Ω : f0(x) ≥ N − i+ 1} if i is even.

Then ∅ = C0 ⊆ C1 ⊆ . . . ⊆ CN+1 = Ω is a chain of sets inA ∪ B. If i is odd,
then f0 + g0 > −1 on Ci+1 − Ci, so that f0 + g0 = 1(|x∗ρ|a.e.) on Ci+1 − Ci.
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Likewise, if i is even, then f0 + g0 = −1(|x∗ρ|a.e.) on Ci+1 − Ci.
Define functions f1 ∈ F (A) and g1 ∈ F (B) by putting

f1 = N − 2n− 1 for x ∈ C2n+2 − C2n,

g1 = −N + 2n for x ∈ C2n+1 − C2n−1

for n = 0, 1, . . . , N/2, noting that C−1 = ∅ and CN+2 = Ω. For i odd f1+g1 =
1 on Ci+1 − Ci and, for i even, f1 + g1 = −1 on Ci+1 − Ci. Thus

SC0 ≥
N∑
i=0

|x∗η(Ci+1)− x∗η(Ci)|

=

∫
(f1 + g1) d(x∗ρ) =

∫
(f0 + g0) d(x∗ρ)

=x∗(

∫
(f0 + g0) dρ) = ‖

∫
(f0 + g0) dρ‖

=‖
∫
f0 dµ+

∫
g0 dν‖.

Corollary 2.6. In order that consistent X-valued bounded vector measures µ
and ν have a bounded common extension, it is necessary and sufficient that
SC0(µ, ν) <∞.

Inspection of the proof of theorem 2.5 yields a useful sharpening of this
result:

Corollary 2.7. In the supremum used to define SC0(µ, ν), it suffices to re-
strict attention to the chains ∅ = C0 ⊆ C1 ⊆ . . . ⊆ CN+1 = Ω , where Ci ∈ A
if i is even, and Ci ∈ B if i is odd.

3 Global conditions on fields

Let A and B be fields of subsets of Ω. Then A and B are independent if
A ∩ B = {∅,Ω}. As in [1] the following result follows from the theory of the
previous section.

Theorem 3.1. Let A and B be independent fields of subsets of Ω and suppose
that µ and ν are consistent vector measures on A and B, respectively (consis-
tency means only that µ(Ω) = ν(Ω)). Then µ and ν have a bounded common
extension ρ on A ∨ B such that ‖ρ‖ = max{‖µ‖, ‖ν‖}.
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Proof. We apply Theorem 2.5 and Corollary 2.7. Independence essentially
limits the length of chains as in Corollary 2.7. It is sufficient to consider chains
of the form

∅ ⊆ A ⊆ Ω for A ∈ A or ∅ ⊆ B ⊆ Ω for B ∈ B.

The supremum SC0(µ, ν) is thus taken over quantities of the form

‖ε0µ(A) + ε1µ(Ω−A)‖

or

‖ε0ν(B) + ε1ν(Ω−B)‖,

where εi = ±1, for i = 0, 1. The result follows.

Fields A and B over Ω are weakly independent, a notion due to Lipecki,
if whenever Ω = A1 ∪ . . . ∪An and Ω = B1 ∪ . . . ∪Bm are partitions of Ω into
nonempty sets Ai ∈ A and Bi ∈ B, then there is some k and some l such that
Ak ∩Bi 6= ∅ (each i) and Ai ∩Bl 6= ∅ (each i). The following is an improve-
ment on a result of Lipecki [6] and a generalization of a result in [1].

Theorem 3.2. Let A and B be weakly independent fields of subsets of a set
Ω and suppose that µ and ν are consistent vector measures on A and B (this
means only that µ(Ω) = ν(Ω)).Then there is a common extension ρ of µ and
ν such that ‖ρ‖ ≤ ‖µ‖+ ‖µ(Ω)‖+ ‖ν‖.

Proof. Apply Theorem 2.5 and Corollary 2.7. Weak independence lim-
its the length the chains as in Corollary 2.7. They are either of the form
∅ ⊆ A ⊆ B ⊆ Ω or ∅ ⊆ B ⊆ A ⊆ Ω for A ∈ A and B ∈ B. The supremum
SC0(µ, ν) is thus taken over quantities

‖ε0µ(A) + ε1(ν(B)− µ(A)) + ε2(ν(Ω)− ν(B))‖

or

‖ε0ν(B) + ε1(µ(A)− ν(B)) + ε2(µ(Ω)− µ(A))‖.

Both of these are bounded by

‖µ‖+ ‖µ(Ω)‖+ ‖ν‖.

Question: Does theorem 2.5 continue to hold in the case when X is any
Banach space?
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