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RIESZ TYPE THEOREMS FOR GENERAL
INTEGRALS

Abstract

The author gives a general descriptive definition for integration, de-
noted by P, which has as special cases the Lebesgue integral for bounded
measurable functions, the Lebesgue integral, the Denjoy-Perron integral
D∗, the wide Denjoy integral D, the Foran integral, the Iseki integral
and the SF-integral ([5]). This P-integral will admit Riesz type repre-
sentation theorems (introducing an Alexiewicz norm, and identifying f
with g whenever f = g a.e. on [a, b]). The classical Riesz representation
theorem for the linear and continuous functionals on (C([a, b]), ‖ · ‖∞)
is a consequence of Theorem 2.

In addition it is shown that the space of P-integrable functions is of
the first category in itself (see Section 5). Also a characterization of the
weak convergence on this space is given.

1 Introduction

Our purpose is to define a suitable general descriptive definition for integration,
denoted by P, which has as special cases the Lebesgue integral for bounded
measurable functions, the Lebesgue integral, the Denjoy- Perron integral D∗,
the wide Denjoy integral D, the Foran integral, the Iseki integral and the SF-
integral ([5]). This P-integral will admit Riesz type representation theorems,
i.e., introducing an Alexiewicz norm on the space of all P-integrable functions,
and identifying f with g whenever f = g a.e. on [a, b] (see Section 3) we obtain
a characterization of the linear and continuous functionals on this space, see
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Lemma 4 and Theorem 2. The proof of Theorem 2 is based on Theorem 1,
and to prove Theorem 1 we use a technique of [12], p. 75. As a consequence of
Theorem 2 it follows the classical Riesz representation theorem for the linear
and continuous functionals on (C([a, b]), ‖ · ‖∞).

Further, we also prove that the space of P-integrable functions is of the
first category in itself (see Section 5) and we give a characterization of the
weak convergence on it.

2 Essentially Bounded Variation and the Bounded Slope
Variation

Definition 1. ([14]). Let P ⊂ [a, b] be a set of positive measure, and let
f : P → R be a measurable function, finite a.e. .

• f is said to be essentially upper bounded if there exists a real number
M such that the set {x ∈ P : f(x) > M} has measure zero.

• f is said to be essentially lower bounded if the function −f is essentially
upper bounded.

• f is said to be essentially bounded if it is simultaneously essentially
upper bounded and essentially lower bounded, i.e., there exists M > 0
such that the set {x ∈ P : |f(x)| > M} is of measure zero.

• Let supess(f ;P ) = inf{M : {x ∈ P : f(x) > M} has measure zero}
if f is essentially upper bounded and supess(f ;P ) = +∞ if not. Define
infess(f ;P ) similarly .

• Let Oess(f ;P ) = supess(f ;P )− infess(f ;P ).

• Let Oess(f ;X) = 0, whenever X is a null subset of P .

• f is said to be of essentially bounded variation (abbreviated f ∈ EV B)
on P , if there exists M > 0 such that

∑n
i=1Oess(f ; [ai, bi] ∩ P ) < M ,

whenever [ai, bi], i = 1, 2, . . . , n are nonoverlapping closed intervals with
endpoints in P .

• Let EV (f ;P ) = inf{M : M is as above} if f ∈ EV B on P and let
EV (f ;P ) = +∞ if not.

• Let V (f ;P ) = inf{M :
∑n
i=1(f(bi) − f(ai))/(bi − ai) < M , whenever

[ai, bi], i = 1, 2, . . . , n are nonoverlapping closed intervals with endpoints
in P} if f ∈ V B on P and let V (f ;P ) = +∞ otherwise.



716 Vasile Ene

Lemma 1. Let P be a dense subset of [a, b] and let f : P → R, f ∈ V B.
Then there exists f̃ : [a, b] → R such that f̃ ∈ V B on [a, b], f̃|P = f and

V (f̃ ; [a, b]) = V (f ;P ).

Proof. Let x ∈ [a, b) \P . Then limy↘x,y∈P f(y) exists and is finite (because
f is bounded on P ). Suppose that the above limit does not exist; then there
exists εo > 0 such that whenever δ > 0 there exist x

′
, x
′′ ∈ (x, x+ δ)∩P such

that |f(x
′
)− f(x

′′
)| ≥ εo. For δ = 1 there exist a1, b1 ∈ (x, x+ 1)∩P , a1 < b1

such that |f(a1)−f(b1)| ≥ εo. For δ = a1−x there exist a2, b2 ∈ (x, x+δ)∩P ,
a2 < b2 such that |f(a2) − f(b2)| ≥ εo. Inductively we obtain a sequence
{[an, bn]}, n = 1, 2, . . ., of nonoverlapping closed intervals with endpoints in
P such that b1 > a1 > b2 > a2 > · · · bn > an . . . and |f(an) − f(bn)| ≥ εo.
Therefore

∑∞
n=1 |f(an) − f(bn)| = ∞, which contradicts the fact that f is

V B on P . Similarly we can prove that limy↗x,y∈P f(y) exists and is finite
whenever x ∈ (a, b]. Let limy↘x,y∈P f(y) = f(x+) and limy↗x,y∈P f(y) =

f(x−). Define f̃ : [a, b]→ R by

f̃(x) =


f(x) if x ∈ P
f(x+) if x ∈ [a, b) \ P
f(b−) if b /∈ P

Then f̃|P = f and V (f ;P ) ≤ V (f̃ ; [a, b]). Suppose on the contrary that

V (f ;P ) < V (f̃ ; [a, b]). Let ε > 0 be such that ε+V (f ;P ) < V (f̃ ; [a, b]). Then
there exists a = t0 < t1 < · · · < tn = b such that

∑n
i=1 |f̃(ti) − f̃(ti−1)| >

ε + V (f ;P ). We may suppose without loss of generality that each ti does
not belong to P . Then for each ti with i = 0, 1, · · ·n − 1 it follows that
there exists t

′

i ∈ (ti, ti+1) ∩ P such that |f̃(ti) − f̃(ti
′)| < ε/(4n) and for tn

there exists t
′

n ∈ (tn−1, tn) ∩ P such that |f̃(tn) − f̃(tn
′)| < ε/(4n. Therefore

ε+V (f ;P ) <
∑n
i=1 |f̃(ti)− f̃(ti−1)| =

∑n
i=1 |f̃(ti)− f(ti

′) + f(ti
′)− f(t

′

i−1) +

f(t
′

i−1) − f̃(ti−1)| < 2n · ε/(4n) +
∑n
i=1 |f(ti

′) − f(t
′

i−1| < ε/2 + V (f ;P ), a
contradiction.

Lemma 2. Let f : [a, b]→ R be a measurable function. The following asser-
tions are equivalent:

(i) f ∈ EV B on [a, b],

(ii) There exists f̃ : [a, b] → R, such that f̃ ∈ V B and f̃ = f a.e. on [a, b].
Moreover EV (f ; [a, b]) ≤ V (f̃ ; [a, b]) ≤ 2 · EV (f ; [a, b]).

Proof. (i)⇒ (ii) We may suppose that [a, b] = [0, 1]. For n ≥ 2 let
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π
′

n =

{[
i

2n
,
i+ 1

2n

]}
, i = 0, 1, 2, . . . , 2n − 1;

π
′′

n =

{[
0,

1

2n

]
,

[
2i− 1

2n
,

2i+ 1

2n

]
,

[
2n − 1

2n
, 1

]}
, i = 1, 2, . . . , 2n−1 − 1;

M
′

n,i = sup
ess

(
f ;

[
i

2n
,
i+ 1

2n

])
, i = 0, 1, 2, . . . , 2n − 1;

m
′

n,i = inf
ess

(
f ;

[
i

2n
,
i+ 1

2n

])
, i = 0, 1, 2, . . . , 2n − 1;

M
′′

n,i = sup
ess

(
f ;

[
2i− 1

2n
,

2i+ 1

2n

])
i = 1, 2, . . . , 2n−1 − 1;

m
′′

n,i = inf
ess

(
f ;

[
2i− 1

2n
,

2i+ 1

2n

])
, i = 1, 2, . . . , 2n−1 − 1;

A
′

n,i =

{
x ∈

(
i

2n
,
i+ 1

2n

)
: m

′

n,i ≤ f(x) ≤M
′

n,i

}
, i = 0, 1, 2, . . . , 2n − 1 ;

A
′′

n,i=

{
x ∈

(
2i− 1

2n
,

2i+ 1

2n

)
: m

′′

n,i ≤ f(x) ≤M
′′

n,i

}
, i = 1, 2, . . . , 2n−1− 1;

A
′

n = ∪2
n−1
i=1 A

′

n,i;

A
′′

n = A
′

n,0 ∪A
′

n,2n−1 ∪
(
∪2

n−1−1
i=1 A

′′

n,i

)
.

For example, each set{
x ∈

(
i

2n
,
i+ 1

2n

)
: f(x) > M

′

n,i

}
=

∞⋃
k=1

{
x ∈

(
i

2n
,
i+ 1

2n

)
: f(x) ≥M

′

n,i +
1

k

}
,

i = 1, 2, . . . 2n − 1, is therefore a countable union of null sets. Thus A
′

n, A
′′

n

are measurable sets and |A′n| = |A
′′

n| = 1. Let A = ∩∞n=2(A
′

n ∪A
′′

n). Then A is
measurable and |A| = 1.

We show that F ∈ V B on A. Since F ∈ EV B on [a, b], there exists M > 0
such that

2n−1∑
i=0

Oess
(
f ;

[
i

2n
,
i+ 1

2n

])
=

2n−1∑
i=0

(M
′

n,i −m
′

n,i) < M , n ≥ 2 and
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2n−1−1∑
i=1

Oess
(
f ;

[
2i− 1

2n
,

2i+ 1

2n

])
=

2n−1−1∑
i=1

(M
′′

n,i −m
′′

n,i) < M , n ≥ 2.

Let {[αk, βk]}, k = 1, 2, . . . , p be a finite set of nonoverlapping closed intervals
with endpoints in A. Then there exists a positive integer no such that each
αk and βk is contained in the interior of exactly one component interval of the
partition π

′

no
. Let x0 < x1 < x2 < . . . < x2no−1 be such that

xi ∈ A ∩
(

i

2no
,
i+ 1

2no

)
, i = 0, 1, . . . , 2no − 1, and

{x0, x1, · · ·x2no−1} ⊇ {α1, β1, α2, β2 · · ·αn, βn}.

Clearly

p∑
k=1

|f(βk)− f(αk)| ≤
p∑
k=1

∑
[xi−1,xi]⊆[αk,βk]

|f(xi)− f(xi−1)| ≤

2no−1∑
i=1

|f(xi)− f(xi−1)|.

But

2no−1∑
i=0

|f(x2i+1)− f(x2i)| <
2no−1−1∑
i=0

(M
′

no−1,i −m
′

no−1,i) < M

(because 2i/2no < x2i < (2i + 1)/2no < x2i+1 < (2i + 2)/2no , so i/(2no−1) <
x2i < x2i+1 < (i+ 1)/(2no−1)) and

2no−1−1∑
i=1

|f(x2i)− f(x2i−1)| <
2no−1−1∑
i=1

(M
′′

no,i −m
′′

no,i) < M

(because (2i− 1)/2no < x2i−1 < 2i/2no < x2i < (2i+ 1)/2no). It follows that∑p
k=1 |f(bk) − f(ak)| < 2M , hence f ∈ V B on A. Moreover V (f ;A) ≤ 2 ·

EV (f ; [a, b]). By Lemma 2, it follows that there exists f̃ : [a, b]→ R such that
f̃ = f on A and V (f̃ ; [a, b]) = V (f ;A). Therefore V (f̃ ; [a, b]) ≤ 2·EV (f ; [a, b]).

(ii)⇒ (i) Let M > 0 be given by the fact that f̃ ∈ V B on [a, b]. Let {[ai, bi]},
i = 1, 2, . . . , n be a set of nonoverlapping closed subintervals of [a, b]. Then
M >

∑n
i=1O(f ;A∩ [ai, bi]) ≥

∑n
i=1Oess(f ; [ai, bi]). It follows that f ∈ EV B

on [a, b]. Moreover EV (f ; [a, b]) ≤ V (f̃ ; [a, b]).
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Remark 1. Lemma 2 is in fact an observation of [14] (p. 81). It was used
for example in the proof of Sargent’s Theorem 50 (see [3], p. 45) without
demonstration, but with the warning of Peter Bullen (see [3], p. 309) that a
more complete proof of it is in [16].

Definition 2. A function F : [a, b] → R is said to be of bounded slope
variation (abbreviated F ∈ BSV ) on a subset P of [a, b], if there exists M > 0
such that

n∑
i=1

∣∣∣∣F (b2i)− F (a2i)

b2i − a2i
− F (b2i−1)− F (a2i−1)

b2i−1 − a2i−1

∣∣∣∣ < M

whenever a1 < b1 ≤ a2 < b2 ≤ . . . ≤ a2n < b2n are points in P. (1)

Let SV (F ;P ) = inf{M : (1) holds.} If F /∈ BSV on P let SV (F ;P ) =
+∞.

Lemma 3. Let F : [a, b]→ R. The following assertions are equivalent:

(i) F ∈ BSV on [a, b].

(ii) There exists M > 0 such that

n−2∑
i=0

∣∣∣∣F (xi+2)− F (xi+1)

xi+2 − xi+1
− F (xi+1)− F (xi)

xi+1 − xi

∣∣∣∣ < M,

whenever a = xo < x1 < x2 < . . . < xn = b.

Proof. (i) ⇒ (ii) Let M be given by the fact that F ∈ BSV on [a, b]. We
have

n−2∑
i=0

∣∣∣∣F (xi+2)− F (xi+1)

xi+2 − xi+1
− F (xi+1)− F (xi)

xi+1 − xi

∣∣∣∣
=

n−2∑
i=0

i=even

∣∣∣∣F (xi+2)− F (xi+1)

xi+2 − xi+1
− F (xi+1)− F (xi)

xi+1 − xi

∣∣∣∣
=

n−2∑
i=0
i=odd

∣∣∣∣F (xi+2)− F (xi+1)

xi+2 − xi+1
− F (xi+1)− F (xi)

xi+1 − xi

∣∣∣∣ < M +M = 2M.

(ii)⇒ (i) We may suppose without loss of generality that a < a1 < b1 < a2 <
b2 < . . . < a2n < b2n < b. Let’s rename these points a = x0 < x1 < x2 <
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. . . < x4n+1 = b. Then we have

n∑
i=1

∣∣∣∣F (b2i)− F (a2i)

b2i − a2i
− F (b2i−1)− F (a2i−1)

b2i−1 − a2i−1

∣∣∣∣
≤

n∑
i=1

∣∣∣∣F (b2i)− F (a2i)

b2i − a2i
− F (a2i)− F (b2i−1)

a2i − b2i−1

∣∣∣∣
+

n∑
i=1

∣∣∣∣F (a2i)− F (b2i−1)

a2i − b2i−1
− F (b2i−1)− F (a2i−1)

b2i−1 − a2i−1

∣∣∣∣
≤

4n−1∑
i=0

∣∣∣∣F (xi+2)− F (xi+1)

xi+2 − xi+1
− F (xi+1)− F (xi)

xi+1 − xi

∣∣∣∣ < M .

Remark 2. Lemma 3, (ii) is in fact Definition 12.5 of [12] (p. 74) for the
condition BSV on [a, b].

Theorem 1. With the above notations we have the following results:

(i) Let f : [a, b] → R, f ∈ EBV and let F (x) = (L)
∫ x
a
f(t) dt. Then

F ∈ BSV on [a, b] and SV (F ; [a, b]) ≤ EV (f ; [a, b]).

(ii) Let F : [a, b]→ R, F ∈ BSV and let

F ∗(x) =

{
F ′(x) where F is derivable

0 elsewhere.

Then F satisfies the Lipschitz condition L, F ∗ ∈ EBV on [a, b] and
EV (F ∗; [a, b]) ≤ SV (F ; [a, b]).

Proof. (i) Clearly f is essentially bounded on [a, b]; so f is summable on
[a, b] and F (x) = (L)

∫ x
a
f(t) dt is Lipschitz. Let a ≤ a1 < b1 ≤ a2 < b2 ≤

. . . ≤ a2n < b2n ≤ b. We have

infess(f ; [a2i−1, b2i]) ≤
F (b2i)− F (a2i)

b2i − a2i
≤ supess(f ; [a2i−1, b2i])

and

infess(f ; [a2i−1, b2i]) ≤
F (b2i−1)− F (a2i−1)

b2i−1 − a2i−1
≤ supess(f ; [a2i−1, b2i]).
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Hence ∣∣∣∣F (b2i)− F (a2i)

b2i − a2i
− F (b2i−1)− F (a2i−1)

b2i−1 − a2i−1

∣∣∣∣ < Oess(f ; [a2i−1, b2i]).

Let ε > 0. Then

n∑
i=1

∣∣∣∣F (b2i)− F (a2i)

b2i − a2i
− F (b2i−1)− F (a2i−1)

b2i−1 − a2i−1

∣∣∣∣ <
n∑
i=1

Oess(F ; [a2i−1, b2i) < (ε+ EV (f ; [a, b])).

Hence F ∈ BSV on [a, b]. Since ε was arbitrary, SV (F ; [a, b]) ≤ EV (f ; [a, b]).
(ii) We show that F is bounded on [a, b]. Suppose for example that F is

upper unbounded. Then there exists a sequence {xn}n such that F (xn) > n
for each n. For F (xn) > max{|F (a)|, |F (b)|} we have∣∣∣∣F (b)− F (xn)

b− xn
− F (xn)− F (a)

xn − a

∣∣∣∣ > F (xn)− F (a)

xn − a
>
n− a
b− a

→ +∞.

Hence F /∈ BSV on [a, b], a contradiction.
Suppose on the contrary that F /∈ L on [a, b]. For each positive integer n,

there exist xn, yn ∈ [a, b], xn < yn, such that |F (yn)− F (xn)|/(yn − xn) > n.
Since F is bounded, yn − xn → 0. But {xn}n is a bounded sequence; so it
contains a convergent subsequence. Hence, we may suppose without loss of
generality that {xn}n converges to xo. Then {yn}n converges to xo too. We
have two cases:

1) If xo = a, then there exists no such that yn < (a+ b)/2 for each n ≥ no.
It follows that [xn, yn] and [(a+b)/2, b] are nonoverlapping closed intervals for
each n ≥ no. We have∣∣∣∣F (b)− F ((a+ b)/2)

(b− a)/2
− F (yn)− F (xn)

yn − xn

∣∣∣∣→ +∞, n→∞.

This contradicts the fact that F ∈ BSV on [a, b].
2) If xo 6= a, then there exists no such that xn > (a + xo)/2, for each

n > no. It follows that [a, (a + xo)/2] and [xn, yn] are nonoverlapping closed
intervals for each n ≥ no. We have∣∣∣∣F (yn)− F (xn)

yn − xn
− F ((a+ xo)/2)− F (a)

(xo − a)/2

∣∣∣∣→ +∞, n→∞.
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This contradicts the fact that F ∈ BSV on [a, b].
Therefore we have obtained that F ∈ L on [a, b]. It follows that F is

derivable a.e. on [a, b]. Let A = {x ∈ [a, b] : F is derivable at x}. Clearly
F ∗ = F ′ on A. We show that F ′ ∈ V B on A. Let a1 < b1 ≤ a2 < b2 ≤ . . . ≤
an < bn be points in A. For ε > 0 let [ci, di] ⊂ (ai, bi) such that∣∣∣∣F (ci)− F (ai)

ci − ai
− F ′(ai)

∣∣∣∣ < ε

2n
and

∣∣∣∣F (bi)− F (di)

bi − di
− F ′(bi)

∣∣∣∣ < ε

2n
.

We have

n∑
i=1

|F ′(bi)− F ′(ai)| ≤
n∑
i=1

∣∣∣∣F (ci)− F (ai)

ci − ai
− F ′(ai)

∣∣∣∣
+

n∑
i=1

∣∣∣∣F (bi)− F (di)

bi − di
− F ′(bi)

∣∣∣∣+

n∑
i=1

∣∣∣∣F (ci)− F (ai)

ci − ai
− F (bi)− F (di)

bi − di

∣∣∣∣
<
ε

2
+
ε

2
+ (ε+ SV (F ; [a, b])).

Therefore F ∗ ∈ V B on A. Since ε was arbitrary, V (F ∗;A) ≤ SV (F ; [a, b]).
Let {[ai, bi]}, i = 1, 2, · · ·n be a set of nonoverlapping closed intervals of [a, b].
Then V (F ∗;A) ≥

∑n
i=1O(F ∗;A∩[ai, bi]) ≥

∑n
i=1Oess(F ∗; [ai, bi]). Therefore

EV (F ∗; [a, b]) ≤ SV (F ; [a, b]).

Corollary 1. A function F : [a, b] → R is the indefinite Lebesgue integral of
a V B function f : [a, b]→ R, if and only if F ∈ BV S on [a, b].

Proof. See Theorem 1 and Lemma 2.

Remark 3. If in Corollary 1 “F ∈ BV S” is replaced by “F ∈ BSV ∩ L”
we obtain a result of Riesz (Lemma 12.6 of [12], p.75). As we see from our
Theorem 1 “F ∈ BSV ∩L” is superfluous, because “BSV ∈ L”. Let’s mention
that in the prove of Theorem 1 we used some techniques of Riesz’ lemma.

3 A General Descriptive definition for Integration

Definition 3. A class of functions P([a, b]) ⊂ {F : [a, b]→ R : F is continu-
ous on [a, b] and approximately derivable a.e. on [a, b]} is called a general class
of primitives on [a, b] if it satisfies the following properties :

(i) P([a, b]) is a real linear space ;

(ii) If F
′

ap = G
′

ap a.e. on [a, b] and F,G ∈ P([a, b]), then F −G is a constant
on [a, b];
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(iii) If F ∈ P([a, b]) and g : [a, b] → R is a V B function on [a, b], then
H ∈ P([a, b]), where H(x) = F (x) · g(x)− (RS)

∫ x
a
F (t) dg(t) and (RS)

stands for the Riemann-Stieltjes integral.

(iv) P([a, b]) contains the class Lip([a, b]) = {F : [a, b]→ R : F is Lipschitz}.

Definition 4. A function f : [a, b] → R is said to be P-integrable on [a, b] if
there exists a function F : [a, b] → R such that F

′

ap(x) = f(x) a.e. on [a, b].

We will write (P)
∫ b
a
f(t)dt = F (b)− F (a). We refer to F as P-primitive of f

on [a, b].

Remark 4. Note the following:

(i) From Definition 3 (ii) it follows that the P-integral is well defined.

(ii) By Definition 3 (i) it follows that the set of all P-integrable functions on
[a, b] is a real linear space.

(iii) If f : [a, b]→ R is P-integrable, then f is measurable (see [15], p. 299).

(iv) We will define on the set of all P-integrable functions on [a, b] an equiv-
alence relation : f ∼ g if f(x) = g(x) a.e. on [a, b].

(v) We denote the set of all classes of equivalence with Pint([a, b]). With the
usual operations with classes the set Pint([a, b]) becomes a real linear
space. We shall denote the equivalence class of f also by f .

(vi) Let Po([a, b]) = {F : [a, b]→ R : F ∈ P([a, b]), F (a) = 0}.

(vii) Formula ‖F‖∞ = supx∈[a,b] |F (x)| defines a norm on each of the following
linear spaces: Po([a, b]), P([a, b]), C([a, b]), Co([a, b]) (here C([a, b]) =
{f : [a, b] → R : f is continuous} and Co([a, b]) = {f : [a, b] → R : f is
continuous and f(a) = 0}).

(viii) Let f ∈ Pint([a, b]) and let F ∈ Po([a, b]) be the unique P primitive of
f . The formula ‖f‖ = ‖F‖∞ defines a norm on Pint([a, b]).

(ix) We denote by V B([a, b]) = {g : [a, b] → R : g ∈ V B on [a, b]}. With
the usual operations with functions and with the norm ‖g‖V B = |g(b)|+
V ba (g), the set V B([a, b]) becomes a real Banach space.
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4 Riesz representation theorems for the P integration

Definition 5. Let 〈· , ·〉 : Pint([a, b]) × V B([a, b]) → R be defined by the

formula 〈f, g〉 = (P)
∫ b
a
f(t)g(t)dt. (That f · g is P-integrable on [a, b] follows

by Definition 3 (iii) and the fact that H
′

ap(x) = f(x)g(x) a.e. on [a, b], see the
proof of Theorem 5.23.2 of [5].)

Lemma 4. Let f ∈ Pint([a, b]) and g ∈ V B([a, b]). Then we have :

(i) 〈·, ·〉 is bilinear

(ii) |〈f, g〉| ≤ ‖f‖ · ‖g‖V B

(iii) T : Pint([a, b])→ R, T (f) = 〈f, g〉 is a continuous linear functional and
‖T‖ ≤ ‖g‖V B.

Proof. By Definitions 3 and 5, 〈f, g〉 = F (b)g(b)− (RS)
∫ b
a
F (t) dg(t), where

F ∈ Po([a, b]) is the unique P-primitive of f .
(i) This follows by the fact that the RS-integral is linear in the first argu-

ment and in the second argument.

(ii) We have |〈f, g〉| = |F (b)g(b) − (RS)
∫ b
a
F (t) dg(t)| ≤ |F (b)| · |g(b)| +

‖F‖∞ · V (g; [a, b]) ≤ ‖F‖∞ · (|g(b)|+ V (g; [a, b])) = ‖f‖ · ‖g‖V B .
(iii) This follows by (i) and (ii).

Lemma 5. Let (X, ‖ · ‖1) and (Y, ‖ · ‖2) be normed real spaces and let 〈· , ·〉 :
X × Y → R be such that:

a) 〈·, y〉 is linear in the first variable, for each y ∈ Y ;

b) |〈x, y〉| ≤ ‖x‖1 · ‖y‖2, whenever x ∈ X, y ∈ Y .

If f : X → R is a continuous linear functional and if there exist yo ∈ Y
and a dense subset Xo of X such that f(x) = 〈x, yo〉 for each x ∈ Xo, then
f(x) = 〈x, yo〉 on X and ‖f‖ ≤ ‖yo‖2.

Proof. Since Xo = X, for x ∈ X there exists a sequence {xn}n ⊂ Xo such
that ‖xn−x‖1 → 0, for n→∞. But |〈xn, yo〉−〈x, yo〉| = |〈xn−x, yo〉| ≤ ‖xn−
x‖1 · ‖yo‖2 (see a)and b)). Since f is continuous, f(x) = limn→∞〈xn, yo〉 =
〈x, yo〉. Hence f(x) = 〈x, yo〉, for each x ∈ X and ‖f‖ ≤ ‖yo‖2 (see a) and
b)).

Theorem 2. Let T : Pint([a, b])→ R be a continuous linear functional. Then
there exists g ∈ V B such that

T (f) = 〈f, g〉 = (P)

∫ b

a

f(t)g(t) dt and (2)
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1

2
V (g; [a, b]) ≤ ‖L‖ ≤ ‖g‖V B . (3)

Proof. Let

S([a, b]) ={s : [a, b]→ R : s is a step function of the form s(t) =

n−1∑
i=1

αiK[ti−1,ti) + αnK[tn−1,tn] for some positive integer n,

where each αi ∈ R, a = t0 < t1 < . . . < tn = b}.

(Here KE denotes the characteristic function of the set E.) We show that
S([a, b]) = Pint([a, b]). Let f ∈ Pint([a, b]) and let F ∈ Po([a, b] the unique
primitive of f . Then F (x) is continuous on [a, b]. Let a = x0 < x1 < . . . <
xn = b, xi − xi−1 = (b − a)/n for each i = 1, 2, . . . , n. Let Fn(xi) = F (xi),
i = 0, 1, . . . , n and let Fn be linear on each closed interval [xi−1, xi]. Then

Fn
[unif ]−−−−→ F on [a, b] and each Fn is Lipschitz. By Definition 3 (iv), each Fn

is in Po([a, b]). Let

sn(x) =


F (xi)−F (xi−1)

xi−xi−1
if x ∈ [xi−1, xi), i = 1, 2, . . . , n− 1

F (xn)−F (xn−1)
xn−xn−1

if x ∈ [xn−1, xn]

Then sn ∈ S([a, b]) and ‖sn − f‖ = ‖Fn − F‖∞ → 0 (because Fn
[unif ]−−−−→ on

[a, b]). Therefore S([a, b]) is dense in Pint([a, b]).
Let G(t) = T (K[a,t]) and let a ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ a2n < b2n ≤ b.

Since T is linear and continuous,

n∑
i=1

∣∣∣∣G(b2i)−G(a2i)

b2i − a2i
− G(b2i−1)−G(a2i−1)

b2i−1 − a2i−1

∣∣∣∣ =

n∑
i=1

|T (ϕi)| =
n∑
i=1

εiT (ϕi) = T (

n∑
i=1

εϕi) ≤ ‖T‖ · ‖
n∑
i=1

εiϕi‖ ≤ ‖T‖

where εi = signT (ϕi) and

ϕi =
1

b2i − a2i
·K(a2i,b2i] −

1

b2i−1 − a2i−1
·K(a2i−1,b2i−1].

It follows that G ∈ BSV and

SV (G; [a, b]) ≤ ‖T‖. (4)
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By Theorem 1, (ii) G∗ ∈ EBV and

EV (G∗, [a, b]) ≤ SV (G; [a, b]). (5)

By Lemma 2 it follows that there exists a function g : [a, b] → R such that
g ∈ V B, g = G∗ a.e. on [a,b] and

EV (G∗; [a, b]) ≤ V (g; [a, b]) ≤ 2 · EV (G∗; [a, b]) (6)

Clearly G(t) = (L)
∫ t
a
G∗(x)dx = (L)

∫ b
a
K[a,t](x)G∗(x)dx = T (K[a,t]). Since

T is linear, it follows that T (s) = 〈s, g〉 whenever s ∈ S([a, b]). By Lemma 5
we have T (f) = 〈f, g〉 for every f ∈ Pint([a, b]) and ‖T‖ ≤ ‖g‖V B . By (5) and
(4), EV (G∗; [a, b]) ≤ ‖T‖. Hence EV (G∗; [a, b]) ≤ ‖T‖ ≤ ‖g‖V B . Now by (6)
it follows that 1

2 · V (g; [a, b]) ≤ ‖T‖ ≤ ‖g‖V B

Remark 5. Theorem 2 extends Alexiewicz’ Theorem 12.7 of [12] (see also
[1]).

Lemma 6. The normed spaces (Pint([a, b]), ‖ · ‖) and (Po([a, b]), ‖ · ‖∞) are
isomorph.

Proof. Let Φ : (Pint([a, b]) → (Po([a, b]), Φ(f) = F where F is the unique
P-primitive of f which is contained in (Po([a, b]). It is easy to verify that Φ
is well defined, linearly, bijective and ‖Φ(f)‖∞ = ‖f‖

Lemma 7. We have the following results:

(i) The completion of (P([a, b]); ‖ · ‖∞) is (C([a, b]), ‖ · ‖∞).

(ii) The completion of the isomorphic spaces (Pint([a, b]), ‖ · ‖) and (Po([a, b]),
‖ · ‖∞) is (Co([a, b]), ‖ · ‖).

Proof. We prove only (ii). Let F ∈ Co([a, b]). By the Weierstrass Theorem,
there exists a sequence {Pn}n of polynomials on [a, b] such that ‖Pn−F‖∞ → 0
if n → ∞. Let Qn(x) = Pn(x) − Pn(a). Then for each n, Qn(a) = 0, Qn is
Lipschitz (hence Qn ∈ Po([a, b])), and ‖Qn − F‖∞ → 0.

Remark 6. In the proof of Lemma 7 instead of Qn we can use Bn the Bern-
stein polynomial of degree n for the function F on [a, b], i.e.,

Bn(x) =

n∑
k=0

F (a+
k

n
(b− a))Ckn

(
x− a
b− a

)k (
b− x
b− a

)n−k
(see [13], Definition 1 and Theorem 1, p. 108 and the proof of Theorem 2, p.
109).
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Theorem 3. We have the following results:

(i) Let T : (Po([a, b]), ‖ · ‖∞) → R be a continuous linear functional. Then

there exists g ∈ V B on [a, b] such that T (F ) = (RS)
∫ b
a
F (t) dg(t), when-

ever F ∈ Po([a, b]).

(ii) Assertion (i) remains true if Po([a, b]) is replaced by P([a, b]).

Proof. (i) Let T ∗ : Pint([a, b])→ R, T ∗ = T ◦Φ, where Φ is the isomorphicism
defined in the proof of Lemma 6. Since T is a continuous linear functional,
it follows that T ∗ is also a continuous linear functional. By Theorem 2, there

exists G : [a, b] → R, G ∈ V B, such that T ∗(f) = (P)
∫ b
a
f(t)G(t) dt. Let

F ∈ Po([a, b]) and f = Φ−1(F ). Then

T (F ) = T ∗(f) = (P)

∫ b

a

f(t)G(t) dt = F (b)G(b)− (RS)

∫ b

a

F (t) dG(t)

=G(b) · (RS)

∫ b

a

F (t) dK{b}(t)− (RS)

∫ b

a

F (t) dG(t) = (RS)

∫ b

a

F (t) dg(t)

, where g(t) = G(b) ·K{b}(t)−G(t) (clearly g ∈ V B).
(ii) Let I : [a, b] → R, I(x) = 1. Let F ∈ P([a, b]) and Fo(x) = F (x) −

F (a) · I(x). Then Fo ∈ Po([a, b]). By (i),

T (F ) = T (Fo) + F (a) · T (I) = (RS)

∫ b

a

Fo(t) dg(t) + F (a)T (I)

=(RS)

∫ b

a

F (t) dg(t)− F (a)(g(b)− g(a)− T (I))

=(RS)

∫ b

a

F (t) dg(t) + (g(b)− g(a)− T (I)) · (RS)

∫ b

a

F (t)dK{a}(t)

=(RS)

∫ b

a

F (t) dG(t),

where G(x) = g(x) + (g(b)− g(a)− T (I)) ·K{a}(x) (clearly G ∈ V B).

Corollary 2 (The Riesz Representation Theorem [12]).
Let T : (C([a, b]), ‖ · ‖∞) → R be a continuous linear functional. Then there

exists g ∈ V B on [a, b] such that T (F ) = (RS)
∫ b
a
F (t) dg(t), whenever F ∈

C([a, b]).

Proof. Since P([a, b]) is dense in C([a, b]) (see for example Lemma 7 (i)),
for each F ∈ C([a, b]) there exists a sequence {Fn}n, Fn ∈ P([a, b]), such
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that Fn
[unif ]−−−−→ F on [a, b]. Applying the Uniform Convergence Theorem for

the RS-integral and Theorem 3 (ii), we obtain T (F ) = limn→∞ T (Fn) =

limn→∞(RS)
∫ b
a
Fn(t) dg(t) = (RS)

∫ b
a
F (t) dg(t).

Remark 7. In Corollary 1 we may replace the linear space (C([a, b]), ‖ · ‖∞)
by (Co([a, b]), ‖ · ‖∞).

5 The Category of Pint([a, b])

Lemma 8. ([7], p. 49). Let (X, τ) be a topological space and let Xo be a
dense subset of X. Let τo = τ|Xo

. If Xo is of the second category in (Xo, τo),
then Xo is of the second category in (X, τ).

Lemma 9 (Jarnik). ([2], p.224). Let (C([a, b]), ‖ · ‖∞) and let A = {f :
[a, b] → R : f is continuous and f is nowhere approximately differentiable}.
Then C([a, b]) \ A is of the first category in C([a, b]).

Theorem 4. We have the following results:

(i) (Po([a, b]), ‖ · ‖∞) is of first category on itself.

(ii) (Pint([a, b]), ‖ · ‖ is of first category on itself.

Proof. It suffices to prove only (ii) (because the proof of (i) is contained in
(ii)). Suppose to the contrary that (Pint([a, b]), ‖ · ‖) is of the second cat-
egory in itself. Since the spaces (Pint([a, b]), ‖ · ‖) and (Po([a, b]), ‖ · ‖∞)
are isomorphic (see Lemma 6), they are also homeomorphic. It follows that
(Po([a, b]), ‖ · ‖∞) is of the second category in itself. By Lemma 7 (ii), Po([a, b])
is dense in Co([a, b]). By Lemma 8, (Po([a, b]), ‖ · ‖∞) is of second cate-
gory in (Co([a, b]), ‖ · ‖∞), and by Lemma 9, Po([a, b]) is of first category in
(Co([a, b]), ‖ · ‖∞). This contradicts the fact that (Co([a, b]), ‖·‖∞) is a Banach
space.

6 Weak Convergence in Pint([a, b])

Theorem 5. ([11], p. 259). Let f, fn : [a, b] → R, n = 1, 2, . . . be such that
f , fn are continuous and |fn(x)| < M for some M , for every x ∈ [a, b] and
each n = 1, 2, . . . . Let g : [a, b] → R, g ∈ V B. If fn → f on [a, b], then

(RS)
∫ b
a
f(t) dg(t) = limn→∞(RS)

∫ b
a
fn(t) dg(t).

Lemma 10 ([4] or [10], Theorem 2, # 1 of Chapter VIII).
xn → x weakly in a normed space if and only if supn ‖xn‖ < +∞ and {f :
f(xn)→ f(x)} is a dense set of functionals in X∗.
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Theorem 6. Let f, fn ∈ Pint([a, b]), and let F, Fn ∈ Po([a, b]) be the unique
P-primitives of f , fn, n = 1, 2, . . .. The following assertions are equivalent:

(i) fn → f weakly on (Pint([a, b]), ‖ · ‖);

(ii) 1) |Fn(x)| ≤M for some M , for every x ∈ [a, b] and each n = 1, 2, . . . ;

2) Fn(x)→ F (x) for every x ∈ [a, b].

Proof. (i) ⇒ (ii) Since fn → f weakly, by Lemma 10 we obtain ‖fn‖ =
‖Fn‖∞ ≤M for some positive number M . So we have 1) of (ii). For x ∈ [a, b]
let Tx : Pint([a, b])→ R be a continuous linear functional defined by Tx(f) =
F (x) (because clearly Tx is linear and |Tx(f)| = |F (x)| ≤ ‖F‖∞ = ‖f‖).
Since fn → f weakly it follows that Tx(fn) → Tx(f), hence Fn(x) → F (x).
Therefore we have condition 2) of (ii).

(ii) ⇒ (i) Let T : Pint([a, b]) → R be a continuous linear functional. By

Theorem 2 there exists gT ∈ V B on [a, b] such that T (f) = (P)
∫ b
a
f(t)gT (t) dt,

for every f ∈ Pint([a, b]). We show that T (fn) → T (f). Indeed, |T (fn) −
T (f)| = |(P)

∫ b
a

(fn − f)(t)gT (t) dt| = |(Fn − F )(b) · gT (b) − (RS)
∫ b
a

(Fn −
F )(t) dgT (t)| → 0 (see Theorem 5). Therefore we have (i).

Remark 8. We observe the following:

(i) Our proof parallels the proof of Theorem 3, # 3, Chapter VIII of [10].

(ii) Using Theorem 3 (i) (respectively Remark 7) instead of Theorem 2 and
Tx : Po([a, b])→ R (respectively Tx : Co([a, b])→ R), Tx(F ) = F (x), we
can prove also the following theorem .
Let F, Fn ∈ (Po([a, b]), ‖·‖∞) (respectively (Co([a, b]), ‖·‖∞) n = 1, 2, · · · .
Then Fn → F weakly if and only if |Fn(t)| < M for some M , whenever
t ∈ [a, b], n = 1, 2, · · · and Fn(t)→ F (t) for every t ∈ [a, b].

7 Applications

In what follows we shall use the definitions given in [5] for the following classes
of functions: C, AC, AC∗, ACn, SACn, AC∗G, SACG, F , SF . We set

∆ae = {F : [a, b]→ R : F is derivable a.e. on [a, b]}∆ap ae

= {F : [a, b]→ R : F is approximately derivable a.e. on [a, b]}.

Lemma 11 (A slight reformulation of Lemma 1 of [3], p. 31). Let g : [a, b]→
R, g ∈ V B, and let F : [a, b] → R be a bounded function which is RS-
integrable on [a, b] with respect to g. Let H : [a, b] → R, H(x) = F (x)g(x) −
(RS)

∫ x
a
F (t) dg(t). Then
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(i) |H(β)−H(α)| ≤ supx∈[a,b] |g(x)| · |F (β)−F (α)|+V (g; [α, β])O(F ; [α, β])
whenever a ≤ α < β ≤ b.

(ii) O(H;P ) ≤ supx∈[a,b] |g(x)|·O(F ;P )+V (g; [α, β])·O(F ; [α, β]), whenever
P ⊆ [α, β] ⊆ [a, b].

Proof. (i) |H(β) −H(α)| = |(F (β) − F (α)) · g(β) + (g(β) − g(α)) · F (α) −
(RS)

∫ β
α
F (t) dg(t)| = |(F (β)− F (α)) · g(β) + (RS)

∫ β
α

(F (α)− F (t)) dg(t)| ≤
|F (β)− F (α)| · supx∈[a,b] |g(x)|+ V (g; [α, β]) · O(F ; [α, β]).

(ii) This follows by the definition of the oscillation and applying (i) to each
α
′
, β
′ ∈ P , where α ≤ α′ < β

′ ≤ β.

Lemma 12. Let F, g,H : [a, b]→ R be such that F is continuous, g ∈ V B and
H(x) = F (x)g(x) − (RS)

∫ x
a
F (t) dg(t). Let P ⊆ [a, b] and let n be a positive

integer. Theneach of the following hold.

(i) H is continuous on [a, b].

(ii) If F is Lipschitz on [a, b], then H is Lipschitz on [a, b].

(iii) If F ∈ AC on P , then H ∈ AC on P .

(iv) If F ∈ AC∗ on P , then H ∈ AC∗ on P .

(v) If F ∈ ACn on P , then H ∈ ACn on P . (This is a slight extension of
Lemma 5.23.1 of [5].)

(vi) If F ∈ SACn on P , then H ∈ SACn on P . (This is a slight extension
of Lemma 5.24.1 of [5].)

Proof. (i) This follows immediately from Lemma 11.
(ii) Let c > 0 be a constant given by the fact that F is Lipschitz on [a, b].

Let [α, β] ⊆ [a, b]. Since F is continuous on [a, b], there exists [αo, βo] ⊆ [α, β]
such that

O(F ; [α, β]) = |F (βo)− F (αo)| ≤ c(βo − αo) ≤ c(β − α) . (7)

By Lemma 11 (i) and (7), we have

|H(β)−H(α)| ≤ sup
x∈[a,b]

|g(x)| · c(β − α) + V (g; [α, β]) · c(β − α)

≤(β − α) · c · ( sup
x∈[a,b]

|g(x)|+ V (g; [α, β])).

Therefore H is Lipschitz on [a, b].
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(iii) and (iv) follow by Lemma 11 (see also Lemma 2 of [3], p. 31).
(v) Let M = supx∈[a,b] |g(x)|+V (g; [α, β]) and let ε > 0. Since F ∈ ACn on

P , by Proposition 2.28.1 of [5], it follows that there exists a δ > 0 such that if
{Ik}, k = 1, 2, . . . , s are nonoverlapping closed intervals with each P ∩ Ik 6= ∅,
and

∑s
k=1 |Ik| < δ, then for each k there exists {Pkj}, j = 1, 2, . . . , n such

that P ∩ Ik = ∪nj=1Pkj and
∑s
k=1

∑n
j=1O(F ;Pkj) < ε/(2M). Let η > 0

such that O(F ; I) < ε/(2nM) = ε1, whenever I is a closed subinterval of
[a, b] with |I| < η. (This is possible because F is continuous on [a, b].) Let
δ1 = min{δ, η}. Then O(F ; Ik) < ε1, for each k. By Lemma 11 (ii) it follows
that O(H;Pkj) ≤M · O(F ;Pkj) + V (g; Ik) · O(F ; Ik). Hence

s∑
k=1

n∑
j=1

O(H;Pkj) ≤M ·
s∑

k=1

n∑
j=1

O(F ;Pkj) + nε1 ·
s∑

k=1

V (g; Ik)

≤Mε/(2M) + nε1M < ε.

Therefore H ∈ ACn on P .
(vi) The proof is similar to that of (v) using Proposition 2.34.1 of [5] instead

of Proposition 2.28.1 of [5].

Theorem 7. Let F, g,H : [a, b] → R be such that F is continuous, g ∈ V B
and H(x) = F (x)g(x)− (RS)

∫ x
a
F (t) dg(t). Then each of the following hold.

(i) H is continuous on [a, b].

(ii) If F is Lipschitz on [a, b], then H is Lipschitz on [a, b] and H
′
(x) =

g(x)F
′
(x) a.e. on [a, b].

(iii) If F ∈ AC on [a, b], then H ∈ AC on [a, b] and H
′
(x) = g(x)F

′
(x) a.e.

on [a, b].

(iv) If F ∈ ACG∗ on [a, b], then H ∈ ACG∗ on [a, b] and H
′
(x) = g(x)F

′
(x)

a.e. on [a, b].

(v) If F ∈ ACG on [a, b] and is derivable a.e. on [a, b], then H ∈ ACG on
[a, b] and H

′
(x) = g(x)F

′
(x) a.e. on [a, b].

(vi) If F ∈ ACG on [a, b], then H ∈ ACG on [a, b] and H
′

ap(x) = g(x)F
′

ap(x)
a.e. on [a, b].

(vii) If F ∈ F on [a, b], then H ∈ F on [a, b] and H
′

ap(x) = g(x)F
′

ap(x) a.e.
on [a, b].

(viii) If F ∈ SF on [a, b], then H ∈ SF on [a, b] and H
′

ap(x) = g(x)F
′

ap(x)
a.e. on [a, b].
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(ix) If F ∈SACG on [a, b], then H∈SACG on [a, b] and H
′

ap(x)=g(x)F
′

ap(x)
a.e. on [a, b].

Proof. That H
′

ap(x) = g(x)F
′

ap(x) a.e. on [a, b] or H
′
(x) = g(x)F

′
(x) a.e.

on [a, b] follows easily (see for example [5], Theorem 5.23.3). Now the other
assertions follow by the linearity of the RS-integral in the second argument,
and by Lemma 12.

Remark 9. Here are some special cases of Pint([a, b]).

(i) ACint([a, b]) = {f : [a, b]→ R : f is Lebesgue integrable on [a, b]}.

(ii) Lipint([a, b]) = {f : [a, b] → R : f is measurable and bounded a.e. on
[a, b]}.

(iii) (AC∗G ∩ C)int([a, b]) = {f : [a, b]→ R : f is D∗-integrable on [a, b]}.

(iv) (ACG∩C∩∆a.e.)int([a, b]) = {f : [a, b]→ R : f is Khintchine-integrable
on [a, b]}.

(v) (ACG ∩ C)int([a, b]) = {f : [a, b]→ R : f is D-integrable on [a, b]}.

(vi) (SF ∩ C ∩ ∆ap a.e.)int([a, b]) = {f : [a, b] → R : f is SF-integrable on
[a, b]}. (For the definition of the SF-integral see [5], p. 210.)

(vii) (F ∩ C ∩ ∆ap a.e.)int([a, b]) = {f : [a, b] → R : f is Foran-integrable on
[a, b]}. (For the Foran integral F , see [6] or [5], p. 207.)

(viii) (SACG∩C ∩∆ap a.e.)int([a, b]) = {f : [a, b]→ R : f is SACG-integrable
on [a, b]} (SACG is the Iseki sparse integral, see [8] and [9]).
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