Real Analysis Exch.
RESEARCH v 358 O S

Vasile Ene, Ovidius University Constanta, Romania
Current address: 23 August 8717, Jud. Constanta, Romania
e-mail: ene@univ-ovidius.ro

RIESZ TYPE THEOREMS FOR GENERAL
INTEGRALS

Abstract

The author gives a general descriptive definition for integration, de-
noted by P, which has as special cases the Lebesgue integral for bounded
measurable functions, the Lebesgue integral, the Denjoy-Perron integral
D*, the wide Denjoy integral D, the Foran integral, the Iseki integral
and the SF-integral ([5]). This P-integral will admit Riesz type repre-
sentation theorems (introducing an Alexiewicz norm, and identifying f
with g whenever f = g a.e. on [a,b]). The classical Riesz representation
theorem for the linear and continuous functionals on (C([a,b]),| - ||co)
is a consequence of Theorem 2.

In addition it is shown that the space of P-integrable functions is of
the first category in itself (see Section 5). Also a characterization of the
weak convergence on this space is given.

1 Introduction

Our purpose is to define a suitable general descriptive definition for integration,
denoted by P, which has as special cases the Lebesgue integral for bounded
measurable functions, the Lebesgue integral, the Denjoy- Perron integral D*,
the wide Denjoy integral D, the Foran integral, the Iseki integral and the SF-
integral ([5]). This P-integral will admit Riesz type representation theorems,
i.e., introducing an Alexiewicz norm on the space of all P-integrable functions,
and identifying f with g whenever f = g a.e. on [a, b] (see Section 3) we obtain
a characterization of the linear and continuous functionals on this space, see
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Lemma 4 and Theorem 2. The proof of Theorem 2 is based on Theorem 1,
and to prove Theorem 1 we use a technique of [12], p. 75. As a consequence of
Theorem 2 it follows the classical Riesz representation theorem for the linear
and continuous functionals on (C([a, b)), || - |leo)-

Further, we also prove that the space of P-integrable functions is of the
first category in itself (see Section 5) and we give a characterization of the
weak convergence on it.

2 Essentially Bounded Variation and the Bounded Slope
Variation

Definition 1. ([14]). Let P C [a,b] be a set of positive measure, and let
f: P — R be a measurable function, finite a.e. .

e f is said to be essentially upper bounded if there exists a real number
M such that the set {x € P : f(x) > M} has measure zero.

e f is said to be essentially lower bounded if the function — f is essentially
upper bounded.

e f is said to be essentially bounded if it is simultaneously essentially
upper bounded and essentially lower bounded, i.e., there exists M > 0
such that the set {x € P : |f(x)| > M} is of measure zero.

o Let sup,, (f; P) = inf{M : {x € P : f(xz) > M} has measure zero}
if f is essentially upper bounded and sup,,,(f; P) = +oo if not. Define
infess(f; P) similarly .

o Let Ocss(f; P) = sup,, (f; P) — infess(f; P).
o Let Oss(f; X) =0, whenever X is a null subset of P.

e f is said to be of essentially bounded variation (abbreviated f € EV B)
on P, if there exists M > 0 such that Y ;" | Ocss(f;[ai, bi] N P) < M,
whenever [a;,b;],4 = 1,2,...,n are nonoverlapping closed intervals with
endpoints in P.

o Let EV(f;P) = inf{M : M is as above} if f € EVB on P and let
EV(f; P) = 400 if not.

o Let V(f; P) =inf{M : 3" (f(b;) — f(a;))/(bi — a;) < M, whenever
[a;,b;],7=1,2,...,n are nonoverlapping closed intervals with endpoints
in P} if f € VB on P and let V(f; P) = +0o otherwise.
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Lemma 1. Let P be a dense subset of [a,b] and let f : P = R, f € VB.
Then there exists f : [a,b] — R such that f € VB on [a,b], f‘p = f and

V(fa [a7b]) - (fv )

PROOF. Let z € [a,b) \ P. Then lim, , yep f(y) exists and is finite (because
f is bounded on P). Suppose that the above limit does not exist; then there
exists €, > 0 such that whenever § > 0 there exist 2,z € (x,2 + d) N P such
that |f(z') — f(z" )| > €. For § = 1 there exist a1, b € (z,z+1)NP, a1 < by
such that | f(a1) — f(b1)] > €. For 6 = a3 —x there exist as, bs € (x,2+J)NP,
as < by such that |f(az) — f(b2)| > €,. Inductively we obtain a sequence
{lan,bn]}, n = 1,2,..., of nonoverlapping closed intervals with endpoints in
P such that by > a1 > by > ag > -+-by > ap ... and |f(an) — f(bn)]| > €.
Therefore > ° | |f(an) — f(bn)| = oo, which contradicts the fact that f is
VB on P. Similarly we can prove that lim, », ycp f(y) exists and is finite
whenever « € (a,b]. Let limy\ o yep f(y) = f(z+) and limy ~, yep f(y) =
f(z—). Define f : [a,b] — R by

) fl@) ifzeP
flx) =< f(z+) ifz€la,b)\P
fo—) ifb¢P

Then f|p = fand V(f;P) < V(f: [a,b]). Suppose on the contrary that
V(f;P) < V(f;]a,b]). Let € > 0 be such that e+ V (f; P) < V(f;[a,b]). Then
there exists a = tg < t; < --- < t, = b such that .0 | |f(t;) — f(ti_1)| >
e + V(f; P). We may suppose without loss of generality that each ¢; does
not belong to P. Then for each t; with ¢ = 0,1,---n — 1 it follows that

there exists t € (ti,ti+1) N P such that |f(t ) — ~(t | < €/(4n) and for t,
there exists ¢, € (t,_ 1,tn) N P such that \f(tn) — f(t))| < €/ (4n. Therefore
e+V(f; P)<Zz P = Ftmn) = i, (¢ )-Jf( N+ FE) =)+
Ftiy) = ftioa)l < 2n-¢/(dn) + 327 1\f( i) = ftia] < €2+ V(f;P), a

contradiction. O

Lemma 2. Let f: [a,b] — R be a measurable function. The following asser-
tions are equivalent:

(i) f € EVB on [a,b],

(ii) There exists f : [a,b] — R, such that feVB and f = f a.e. on [a,b].
Moreover EV (f;[a,b]) <V (f;la,b]) <2-EV(f;la,b]).

PROOF. (i) = (i¢) We may suppose that [a,b] = [0, 1]. For n > 2 let
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/ 1 1+1
S = 0,1,2,...,2" — 1;
T {l:?n’ on :|}a ? y Ly 4y ) )
. 1] [2i—1 2i+1] [2°—1
Ty = 077 ) : ) s ’ al ) i:1727"'72n71_1;
2n 2n 2n 2n

, i
J\/fn,z-wp(f;{Z H]), i=0,1,2,...,2" —1;

on’
ess 2n 2n

/ 1+ 1
n’i:inf(f; |:27;”Z;;:|>7 7;:071727"'72n_1;

€SS

p % —1 2i+1
Mm:sup(f;[ ! s D i=1,2,...,2" 1 1

m

Son o
m, ; = inf (f; [%2:1,22;1D L i=1,2,...,2" 1
A= {me (;ﬂ;) : m;,igf(z)gM;,i} 01,221
A’,’m{xe (2i2;1,2i;1> tm, ; < f(2) gM;:’i}, i=1,2,...,2" 1 —1;
A;L = UZZLIIA;L,Z';

" ’ ’ 211,—171 "
An = An,O U An,2"71 U (Uizl An,i) .

For example, each set

{oe (3 5) s r0 >0} =

o i i+1 . 1
| —,—]: > -

1 =1,2,...2" — 1, is therefore a countable union of null sets. Thus A;L, A;;
are measurable sets and |A, | = |A|| = 1. Let A =N%,(A, UA.). Then A is
measurable and |A| = 1.

We show that F' € VB on A. Since F € EV B on [a,b], there exists M > 0
such that

2”’71 . . 277/71
3 i it , /
g Oess (f’ |:277,’ 277, :|> Z (M’n,z mn,z) < J\4’7 n > 2 and
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7! 21 2i+1]) s
Z Oess (f’ |: an 7 9n :|) = (Mn,i - m’rL,i) < M7 n>2.
i=1 =

i=1

Let {[ak,Bk]}, k =1,2,...,p be a finite set of nonoverlapping closed intervals
with endpoints in A. Then there exists a positive integer n, such that each
ay and [y is contained in the interior of exactly one component interval of the
partition 7T;LU. Let zg < 1 < 29 < ... < Xgn,—1 be such that

. 1+ 1
2 € AN (221;>12012“ —1, and
{zo, 1, @ono_1} D {1, Br, a2, B2+ an, B}

Clearly

P p
S 1FBR) = flan) <> |f(z:) — f(zim1)| <
k=1 k=1 [Ii—lymi]g[aksﬁk]
2mo 1

Z |f(zi) = f(ziz1)l-
i=1

But
2no 1 2no—1l_1
Z |f(z2i41) = f(22:)] < Z (M, —15 = M, —13) <M
i=0 i=0

(because 2i/2m < mg; < (20 + 1)/2"% < z9;11 < (20 +2)/2", s0 i/(2" 1) <
To; < Tojpr1 < (Z + 1)/(2”"_1)) and

ono—1l_1q ono—l_1q
Z |f(@21) = f(@2i-1)] < Z (M, ; —my,, ;) <M
i=1 i=1

(because (2 —1)/2™ < 29,1 < 2i/2™ < x9; < (20 + 1)/27°). It follows that
Sor_ 1 f(bk) — flag)] < 2M, hence f € VB on A. Moreover V(f;A) < 2-
EV(f;[a,b]). By Lemma 2, it follows that there exists f : [a,b] — R such that

f=fonAand V(f;[a,b]) = V(f; A). Therefore V(f;[a,b]) < 2-EV(f;]a,b]).

(ii) = (i) Let M > 0 be given by the fact that f € VB on [a,b]. Let {[a;, bi]},
i =1,2,...,n be a set of nonoverlapping closed subintervals of [a,b]. Then
M>3"  O(f; Anai bi]) > D00 Ocss(f; [ai, bi]). It follows that f € EVB
on [a,b]. Moreover EV (f;a,b]) < V(f;[a,b]). O
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Remark 1. Lemma 2 is in fact an observation of [14] (p. 81). It was used
for example in the proof of Sargent’s Theorem 50 (see [3], p. 45) without
demonstration, but with the warning of Peter Bullen (see [3], p. 309) that a
more complete proof of it is in [16].

Definition 2. A function F : [a,b] — R is said to be of bounded slope
variation (abbreviated F' € BSV) on a subset P of [a, b], if there exists M > 0
such that

n

>

i=1

F(byi) — Flagi)  F(b2i—1) — Fa2i—1)

b — ao; boi—1 — azi—1

<M

whenever a1 < b; <ag <bs <...<ag, < by, are points in P. (1)

Let SV(F; P) = inf{M : (1) holds.} If F ¢ BSV on P let SV(F;P) =
+o00.

Lemma 3. Let F : [a,b] = R. The following assertions are equivalent:
(i) F € BSV on [a,b].
(i) There exists M > 0 such that

n—2

>

=0

F(ziy2) = F(@i41)  F(@iy1) — F(x)
LTi42 — Ti41 Ti41 — T4

< M,

whenever a =z, <11 < x9 < ...<xp, =0>.

PROOF. (i) = (ii) Let M be given by the fact that F € BSV on [a,b]. We
have

(iy2) = F(zit1)  F(@iy1) — F(z)

I

LTi42 — Ti41 Ti41 — T4
_ i (@iy2) = F(zit1)  F@iy1) — F(z:)
i—0 Ti+2 — Li+1 Tit1 — L4
1=even
_ Z F(zipo) = Fwip1)  F(wiy1) — F(@i) < M4 M= 2M.
=0 Ti+2 — Ti+1 Tit1 — T;
i=odd

(#4) = (i) We may suppose without loss of generality that a < a; < b1 < as <
by < ... < ag, < by, < b. Let’s rename these points a = g < 71 < 25 <
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.. < Z4gp4+1 = b. Then we have

i

F(bgi) — Fl(ag) _ F(bgi—1) — F(azi—1)

~ b — ao; boi—1 — agi—1
F(by;) — Flai)  Fl(azi) — F(b2i—1)
b — ao; ag; — ba;_1
a22 b2i 1) _ F(bZifl) - F(azz;l)
— b1 bai—1 — azi—1
<4nz:1 (@iv2) = Fleiyy)  Fleip) = Fl@)| _ -
Ti42 — Ti41 Ti41 — X4

O

Remark 2. Lemma 3, (ii) is in fact Definition 12.5 of [12] (p. 74) for the
condition BSV on [a, b].

Theorem 1. With the above notations we have the following results:

(i) Let f : [a,b] = R, f € EBV and let F(x L) [T f(t)dt. Then
F € BSV on [a,b] and SV (F;[a,b]) < EV(f [ b})

(ii) Let F :la,b] = R, F € BSV and let

() = F'(z) where F is derivable
o elsewhere.

Then F satisfies the Lipschitz condition L, F* € EBV on [a,b] and
EV(F*;la,b]) < SV(F;]a,b]).

Proor. (i) Clearly f is essentially bounded on [a,b]; so f is summable on
[a,b] and F(z L) [ f(t)dt is Lipschitz. Let a < a1 < by < ag < by <
.. < ag, <b2n Sb Wehave

F(ba;) — F(ag;)

infess(f§ [a2i—17 b2z]) < by; — i

< sup,.(f; [azi—1, b2i])

and

F(bgi—1) — F(a2i—1)
boi—1 —agi—1

infess(f; [agi—1,b2]) < < sup,.(f; [azi—1, bail).
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Hence

< Ocss(f;[azi—1, b2i])-

b — ao; boi—1 — azi—1

’F(bm) — Flagi)  F(bai—1) — Fazi—1)

Let € > 0. Then

n

F(bgi) — F(ag) B F(bgi—1) — F(azi—1)

bai — ao; boi—1 — ai—1

i=1

> Ocas(Fslazi—1,by) < (e + EV(fi[a,b])).
=1

Hence F' € BSV on [a,b]. Since € was arbitrary, SV (F; [a,b]) < EV(f;]a,b]).
(ii) We show that F' is bounded on [a,b]. Suppose for example that F' is

upper unbounded. Then there exists a sequence {x,}, such that F(z,) > n
for each n. For F(z,) > max{|F(a)|,|F(b)|} we have

F(b) = F(z,) F(xn) = F(a) - F(z,) — F(a) Jn-a
b—x, Ty — @ Ty — Q b—a

— +00.

Hence F' ¢ BSV on [a,b], a contradiction.
Suppose on the contrary that F' ¢ L on [a,b]. For each positive integer n,
there exist x,, yn € [a,b], T, < Yn, such that |F(y,) — F(zn)|/(Yyn — zn) > n.
Since F is bounded, y, — z, — 0. But {z,}, is a bounded sequence; so it
contains a convergent subsequence. Hence, we may suppose without loss of
generality that {x,}, converges to z,. Then {y,}, converges to x, too. We
have two cases:
1) If z, = a, then there exists n, such that v, < (a+b)/2 for each n > n,.
It follows that [, y»] and [(a+b)/2, b] are nonoverlapping closed intervals for
each n > n,. We have
‘ F(b) - F((a+b)/2)  F(yn) — F(zn)

(b—a)/2 Yn — T

This contradicts the fact that F' € BSV on a, b].

2) If , # a, then there exists n, such that z, > (a + z,)/2, for each
n > n,. It follows that [a, (¢ + x,)/2] and [z, y,] are nonoverlapping closed
intervals for each n > n,. We have

‘F<yn> ~F(za)  F(la+2)/2) -
yn*xn (xo*a)/2

— +00, N — 0.

F(a)‘
— +00, N — 0.
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This contradicts the fact that F € BSV on [a, ).

Therefore we have obtained that F € L on [a,b]. It follows that F is
derivable a.e. on [a,b]. Let A = {z € [a,b] : F is derivable at z}. Clearly
F* = F" on A. We show that F¥ € VBon A. Let a1 < by <as <by <...<
an < b, be points in A. For € > 0 let [¢;,d;] C (a;,b;) such that

F(c;) — F(a;) / € F(b;) — F(d;) /
‘ p— F'(a;)] < o and b d, F'(b)| < 5
‘We have
n / , n F Ci) — F a; /
S IF ) - Flag < 30| P g,
i=1 i=1 v ¢

F(b;) — F(di)

b; —d;

— F'(b;)

n
2
=1

<5+ 5+ e+ SV(Fifab])).
Therefore F* € VB on A. Since € was arbitrary, V(F™*; A) < SV(F;[a,b]).
Let {[a;,b;]}, ¢ =1,2,---n be a set of nonoverlapping closed intervals of [a, b].
Then V(F*; A) > Y0 O(F*; ANag, b)) > Y0 Ocss(F*; [a;, bi]). Therefore
EV(E*;[a,b)) < SV(F: a,b). O

Corollary 1. A function F : [a,b] — R is the indefinite Lebesque integral of
a VB function f :[a,b] = R, if and only if F € BV'S on [a,b].

PRrROOF. See Theorem 1 and Lemma 2. O

Remark 3. If in Corollary 1 “F € BV S” is replaced by “F € BSV N L”
we obtain a result of Riesz (Lemma 12.6 of [12], p.75). As we see from our
Theorem 1 “F € BSVNL” is superfluous, because “BSV € L”. Let’s mention
that in the prove of Theorem 1 we used some techniques of Riesz’ lemma.

3 A General Descriptive definition for Integration

Definition 3. A class of functions P([a,b]) C {F : [a,b] = R : F' is continu-
ous on [a, b] and approximately derivable a.e. on [a, b]} is called a general class
of primitives on [a, b] if it satisfies the following properties :

(i) P([a,b]) is a real linear space ;

(ii) If l?;p T G;p a.e. on [a,b] and F,G € P([a,b]), then F — G is a constant
on |a, bl;
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(iii) If F € P([a,b]) and ¢ : [a,b] — R is a VB function on [a,b], then
H € P([a,b]), where H(z) = F(z) - g(z) — (RS) [] F(t)dg(t) and (RS)
stands for the Riemann-Stieltjes integral.

(iv) P([a,b]) contains the class Lip([a,b]) = {F : [a,b] = R : F is Lipschitz}.

Definition 4. A function f : [a,b] — R is said to be P-integrable on [a, b] if
there exists a function F' : [a,b] — R such that F, (z) = f(z) a.e. on [a,b].
We will write (P) [ f(t)dt = F(b) — F(a). We refer to F as P-primitive of f
on [a, b].

Remark 4. Note the following:
(i) From Definition 3 (ii) it follows that the P-integral is well defined.

(ii) By Definition 3 (i) it follows that the set of all P-integrable functions on
[a, b] is a real linear space.

(iii) If f : [a,b] — R is P-integrable, then f is measurable (see [15], p. 299).

(iv) We will define on the set of all P-integrable functions on [a, b] an equiv-
alence relation : f ~ g if f(z) = g(x) a.e. on [a,].

(v) We denote the set of all classes of equivalence with P;y:([a,b]). With the
usual operations with classes the set Pi,:([a,b]) becomes a real linear
space. We shall denote the equivalence class of f also by f.

(vi) Let P,([a,b]) ={F :[a,b] > R : F € P([a,b]), F(a) = 0}.

(vil) Formula [|F'[|oc = sup,¢(q4) [F(2)| defines a norm on each of the following
linear spaces: P,([a,b]), P([a,b]), C([a,b]), Co(la,b]) (here C([a,b]) =
{f:]a,b] = R : fis continuous} and C,([a,b]) = {f : [a,b] > R : fis
continuous and f(a) = 0}).

(viii) Let f € Pint([a,b]) and let F' € P,([a,b]) be the unique P primitive of
f. The formula || f|| = || F||s defines a norm on Pj,¢([a, b]).

(ix) We denote by VB([a,b]) = {g : [a,b] = R : g € VB on [a,b]}. With
the usual operations with functions and with the norm ||g|lv 5 = |g(b)| +
V2(g), the set V B([a,b]) becomes a real Banach space.
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4 Riesz representation theorems for the P integration

Definition 5. Let (-, S szt([a,b]) x VB([a,b]) — R be defined by the
formula (f, g) f f@) t. (That f - g is P-integrable on [a, b] follows

by Definition 3 (111) and the fact that H,;p(ac) = f(x)g(z) a.e. on [a, b], see the
proof of Theorem 5.23.2 of [5].)

Lemma 4. Let f € Pini([a,b]) and g € VB([a,b]). Then we have :
(i) {-,-) is bilinear
(i) < U1 Nlgllvs

(1) T : Pint([a,b]) = R, T(f) = (f,g) is a continuous linear functional and
I < llgllva-

PrROOF. By Definitions 3 and 5, (f, g) = F(b)g(b) — (RS) f: F(t)dg(t), where
F € P,([a,b]) is the unique P-primitive of f.

(i) This follows by the fact that the RS-integral is linear in the first argu-
ment and in the second argument.

(i) We have |(f,g)| = |F(b)g(b) — RS) Jy F(t)dg(0)] < [F(b)] - 1g(b)] +

[Flloo - V(g3 [a,0]) < [[Flloo - (I9(0)] + V(g3 [a, 0])) = [[£]| - llgllv -
(iii) This follows by (i) and (ii). O
Lemma 5. Let (X, || ||1) and (Y, - ||2) be normed real spaces and let (-, ) :

X xY — R be such that:
a) (-,y) is linear in the first variable, for each y € Y;
b) [z, y)| < llzlli - lyll2, whenever z € X, y €Y.

If f: X — R is a continuous linear functional and if there exist y, € Y
and a dense subset X, of X such that f(x) = (x,y,) for each x € X,, then

f(@) = (2,90) on X and || f|| < [|yol|2-

PROOF. Since X, = X, for # € X there exists a sequence {x,}, C X, such
that ||z, —z||1 — 0, for n = co. But [(Zn, Yo) — (T, Yo)| = [{Tn—2,yo)| < ||2n—
Z|l1 - ||Yoll2 (see a)and b)). Since f is continuous, f(z) = limy,— oo (Tn, Yo) =
(x,y0). Hence f(z) = (z,y,), for each z € X and ||f]| < ||yoll2 (see a) and
b)). O

Theorem 2. Let T : Pini([a,b]) = R be a continuous linear functional. Then
there exists g € VB such that

b
T(f) = (f,g) = (P) / F(g(tydt and (2)
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1
5V (gila, b)) < [IL]| < llgllv - (3)
PROOF. Let

S([a,b]) ={s: [a,b] = R : s is a step function of the form s(t) =
n—1
Z i K,y )+ an Ky, 1, for some positive integer n,
i=1
where each o; € R, a =ty <t; < ...<t, = b}

(Here Kp denotes the characteristic function of the set E.) We show that
S([a,b]) = Pint([a,b]). Let f € Pint([a,b]) and let F € P,([a,b] the unique

primitive of f. Then F(x) is continuous on [a,b]. Let a = zp < 21 < ... <

Tp = b, x; —xi—1 = (b—a)/n for each i = 1,2,...,n. Let F,(x;) = F(x;),

i =0,1,...,n and let F, be linear on each closed interval [z;_1,2;]. Then
[unif]

F, —— F on [a,b] and each F,, is Lipschitz. By Definition 3 (iv), each F,
is in P,([a, b]). Let

Fed- P f g e [zyoq,2,),i=1,2,...,n—1

T;—Ti—1
sn () =
%‘f(ﬁfl) if 2 € [wy-1,20]
Then Sn € S([a7b]) and ||s7l - f” = ||Fn - F”oo — 0 (because Fn —)anﬂ on

[a,b]). Therefore S([a,b]) is dense in Pjnt([a, b]).
Let G(t) = T(K[a7t]) and let a < a1 <b; <as <by <...<ag, <by, <D
Since T is linear and continuous,

>

G(b2i) — Glazi)  G(b2i—1) — Glazi—1)

i1 bai — az; boi—1 — azi—1
YTl = el (p) =T eni) <IIT| -1 eiwsll < IT|
i=1 i=1 i=1 i=1
where ¢; = sign T'(p;) and
1 1
i = Kag v — 7  Kla, 1.b9: 1]
¥ boi — ag; (a24,b2i] boi 1 — Qi1 (azi—1,b2:—1]

It follows that G € BSV and

SV(G;la,b]) < [|T1. (4)
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By Theorem 1, (ii) G* € EBV and
EV(G*,[a,b]) < SV(G;[a,b]). (5)

By Lemma 2 it follows that there exists a function g : [a,b] — R such that
g € VB, g=G* a.e. on [a,b] and

EV(G";[a,b]) < V(gi[a,b]) <2- EV(G";]a, b)) (6)

Clearly G(t) = (L) f(j G*(z)dz = (L) ff Ko (2)G*(x)dz = T(K|4y). Since
T is linear, it follows that T'(s) = (s, g) whenever s € S([a,b]). By Lemma 5
we have T'(f) = (f, g) for every f € Pin([a,b]) and |T]| < |lg||lve. By (5) and
(4), EV(G*;[a, b)) < ||IT|. Hence EV(G*;[a,b]) < |[T]| < [lgllvp. Now by (6)
it follows that 1 - V(g;[a,b]) < |T|| < |lgllve O

Remark 5. Theorem 2 extends Alexiewicz’ Theorem 12.7 of [12] (see also
[1)-

Lemma 6. The normed spaces (Pini([a, b)), | - |I) and (Po([a,b]),] - |leo) are
isomorph.

PrROOF. Let @ : (Pini([a,b]) = (Po([a,b]), ®(f) = F where F' is the unique
P-primitive of f which is contained in (P, ([a,b]). It is easy to verify that &
is well defined, linearly, bijective and [|®(f)|loo = ||f]] O

Lemma 7. We have the following results:
(i) The completion of (P([a,b]); ]l - |loo) s (C([a,d]), || - |loo)-
(i1) The completion of the isomorphic spaces (Pini([a, b)), || - 1) and (Ps([a, b)),
|+ lloc) s (Co(la, B]), I - 11)-

PrOOF. We prove only (ii). Let F' € C,([a,b]). By the Weierstrass Theorem,
there exists a sequence { P, },, of polynomials on [a, b] such that ||P,—F|lcc — 0
if n = co. Let Qn(z) = Py(x) — Py(a). Then for each n, @Q,(a) =0, @, is
Lipschitz (hence @, € Py([a,b])), and ||@Qyn, — F||ec — 0. O

Remark 6. In the proof of Lemma 7 instead of @,, we can use B,, the Bern-
stein polynomial of degree n for the function F on [a,b], i.e.,

e =N G

k=0

n

(see [13], Definition 1 and Theorem 1, p. 108 and the proof of Theorem 2, p.
109).
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Theorem 3. We have the following results:

(i) Let T : (Po([a, b)), || - o) = R be a continuous linear functional. Then
there exists g € VB on [a,b] such that T(F) = (RS) ff F(t)dg(t), when-
ever F' € Py([a, b]).

(i) Assertion (i) remains true if Po(|a,b]) is replaced by P([a,b]).

PRrROOF. (i) Let T* : Pint([a,b]) — R, T* = T'od, where & is the isomorphicism
defined in the proof of Lemma 6. Since T is a continuous linear functional,
it follows that 7™ is also a continuous linear functlonal By Theorem 2, there
exists G : [a,b] — R, G € VB, such that T*(f) = f fOG(t)dt. Let
F € P,(la,b]) and f = ®~1(F). Then

b b
T(F) = T*(f) = (P) / FOC(t) dt = FB)G(®) — (RS) / F(t) dG(1)
b a a
—G(b) - (RS) /
, where g(t) = G(b) - K3y (t) — G(t) (clearly g € VB).
(ii) Let I : [a,b] — R, I(z) = 1. Let F € P([a,b]) and F,(z) = F(x) —
F(a)-I(x). Then F, € Py([a,b]). By (i),

b b
F(t)dK ) (t) — (RS)/ F(t)dG(t) = (RS)/ F(t)dg(t)

b
T(F) =T(F) + Fa) - T(1) = (RS) [ F.(t)dgle) + F@T()
b
~(RS) [ Ft)dg(t) - Fa)(g(b) - 9(a) - T(D)
ab b
~(RS) / F(t)dg(t) + (9(6) — g(a) — T(D)) - (RS) / F(t)dK (o) (1)
—(RS) / " Ry de),

where G(z) = g(x) + (9(b) — g(a) — T(I)) - Kqy(z) (clearly G € VB). O

Corollary 2 (The Riesz Representation Theorem [12]).

Let T : (C([a,b]),] - lloo) = R be a continuous linear functional. Then there
exists g € VB on [a,b] such that T(F) = (RS) f; F(t)dg(t), whenever F €
C([a, b]).

PRrROOF. Since P([a,b]) is dense in C([a,b]) (see for example Lemma 7 (i)),
for each F' € C([a,b]) there exists a sequence {F,},, F,, € P([a,b]), such
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that F, Lrifl, foon [a,b]. Applying the Uniform Convergence Theorem for

the RS-integral and Theorem 3 (ii), we obtain T(F) = lim, . T(F,) =
lim,, 00 (RS) [ Fo(t) dg(t) = (RS) [ F(t) dg(t). O

Remark 7. In Corollary 1 we may replace the linear space (C([a,b]), || - ||co)
by (Co([a; b]); || - [loc)-

5 The Category of P;,([a,b])

Lemma 8. ([7], p. 49). Let (X,7) be a topological space and let X, be a
dense subset of X. Let 7, = 7|x,. If X, is of the second category in (X,,7,),
then X, is of the second category in (X, T).

Lemma 9 (Jarnik). (/2], p.224). Let (C([a,b]),| - |loo) and let A = {f :
[a,b] = R : f is continuous and f is nowhere approzimately differentiable}.
Then C([a,b]) \ A is of the first category in C([a,b]).

Theorem 4. We have the following results:
(1) (Po([a,b]), ] - lleo) %s of first category on itself.
(#) (Pint([a,b]), || - || is of first category on itself.

PRrROOF. It suffices to prove only (ii) (because the proof of (i) is contained in
(ii)). Suppose to the contrary that (Pin:([a,b]),]| - ||) is of the second cat-
egory in itself. Since the spaces (Pin:([a,b]), || - ||) and (Po([a,b]), || + |lco)
are isomorphic (see Lemma 6), they are also homeomorphic. It follows that
(Po(la, b)), || - |loo) is of the second category in itself. By Lemma 7 (ii), P,([a, b])

is dense in C,([a,b]). By Lemma 8, (P,([a,b]),] - |lo) is of second cate-
gory in (Co([a,b]), || - |leo), and by Lemma 9, P,([a,b]) is of first category in
(Co([a, b)), ]| * lloo)- This contradicts the fact that (C,([a,d]), || ||o) is a Banach
space. L]

6 Weak Convergence in P;,([a,b])

Theorem 5. ([11], p. 259). Let f, fn : [a,b] = R, n =1,2,... be such that

f, fn are continuous and |f,(x)| < M for some M, for every x € [a,b] and

eachn =1,2,.... Let g : [a,b] = R, g € VB. If f,, — [ on [a,b], then
b . b

(RS) [, f(t)dg(t) = lim, o0 (RS) [ fn(t) dg(t).

Lemma 10 ([4] or [10], Theorem 2, # 1 of Chapter VIII).

Tn — x weakly in a normed space if and only if sup, ||zn] < +oo and {f :
f(zn) = f(x)} is a dense set of functionals in X*.
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Theorem 6. Let f, f, € Pint([a,b]), and let F, F,, € P,([a,b]) be the unique
P-primitives of f, fn, n=1,2,.... The following assertions are equivalent:

(i) fn — f weakly on (Pint([a,b]),] - 1I);
(ii) 1) |Fn(z)| < M for some M, for every x € [a,b] and eachn=1,2,... ;
2) F,(x) = F(x) for every x € [a,b].

PrOOF. (i) = (ii) Since f, — f weakly, by Lemma 10 we obtain || f,| =
| Frnlloo < M for some positive number M. So we have 1) of (ii). For z € [a, D]
let Ty : Pint([a,b]) = R be a continuous linear functional defined by T,(f) =
F(z) (because clearly T, is linear and |T.(f)| = |F(x)] < |Fllee = IIfI)-
Since f, — f weakly it follows that T,.(f,) — T.(f), hence F,(z) — F(x).
Therefore we have condition 2) of (ii).

(ii) = (i) Let T : Pint([a,b]) — R be a continuous linear functional. By
Theorem 2 there exists gr € VB on [a, b] such that T'(f) = (P) fab f®)gr(t)dt,
for every f € Pint([a,b]). We show that T(f,) — T(f). Indeed, |T(fn) —
T = |(P) [} (fn = HO)gr(t)dt] = |(Fu = F)(®) - gr(b) = (RS) [} (Fy —
F)(t)dgr(t)| — 0 (see Theorem 5). Therefore we have (i). O

Remark 8. We observe the following:
(i) Our proof parallels the proof of Theorem 3, # 3, Chapter VIII of [10].

(ii) Using Theorem 3 (i) (respectively Remark 7) instead of Theorem 2 and
T : Po([a,b]) — R (respectively Ty : Cp([a,b]) = R), T,(F) = F(x), we
can prove also the following theorem .

Let F, Fi € (Po([a, b)), | loo) (respectively (Col[a ), -[lac) n = 1,2,
Then F, — F weakly if and only if |F,(t)| < M for some M, whenever
t €la,b],n=1,2,--- and F,(t) = F(t) for every t € [a,b].

7 Applications

In what follows we shall use the definitions given in [5] for the following classes
of functions: C, AC, AC*, AC,,, SAC,,, AC*G, SACG, F, SF. We set

Age = {F :[a,b] = R : F is derivable a.e. on [a,d]}Agp ge
={F :[a,b] = R : F is approximately derivable a.e. on [a, b}
Lemma 11 (A slight reformulation of Lemma 1 of [3], p. 31). Let g : [a,b] —
R, g € VB, and let F : [a,b] — R be a bounded function which is RS-

integrable on [a,b] with respect to g. Let H : [a,b] = R, H(x) = F(x)g(z) —
(RS) 7 F(t)dg(t). Then
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(i) |H(B)—H(a)| < sup,epa,p [9(2)][F(B) = F ()[4 V(g5 [, B O(F [ev, B])
whenever a < a < 3 < b.

(it) O(H; P) < sup,e(q |9(2)]-O(F; P)+V (g; [a, B])-O(F; [ev, B]), whenever
P Cla, 8] Cla,b]

Proor. (i) [H(B) — H()| = [(F(8) — F(a)) - g(B) + (9(8) — g(a)) - F () —
(RS) [ F(t) dg(t)| = |(F(8) — F(a)) - 9(8) + (RS) [*(F(a) — F(¢)) dg(t)
[F(8) — F(a)| - sup,ejap l9(2)[ + V(g; [a, B]) - O(F; [a, B]).

(11) This follows by the deﬁmtlon of the oscillation and applying (i) to each

a/,B € P, where a < o <,6’ <g. O

IN

Lemma 12. Let F, g, H : [a,b] — R be such that F is continuous, g € VB and
H(z) = F(z)g(z) — (RS) [l F(t)dg(t). Let P C [a,b] and let n be a positive
integer. Theneach of the following hold.

(i) H s continuous on [a,b).

(i) If F is Lipschitz on [a,b], then H is Lipschitz on [a,b].
(i) If F € AC on P, then H € AC on P.

(iv) If F € AC* on P, then H € AC* on P.

(v) If F € AC,, on P, then H € AC,, on P. (This is a slight extension of
Lemma 5.23.1 of [5].)

(vi) If F' € SAC,, on P, then H € SAC,, on P. (This is a slight extension
of Lemma 5.24.1 of [5].)

PROOF. (i) This follows immediately from Lemma 11.

(ii) Let ¢ > 0 be a constant given by the fact that F is Lipschitz on [a, b].
Let [o, 8] C [a,b]. Since F' is continuous on [a, b], there exists [a,, Bo] C [a, 5]
such that

O(F; e, B]) = [F(Bo) = Flaw)| < c(Bo — o) < c(B—a). (7)

By Lemma 11 (i) and (7), we have

|H(8) — H(a)| < sp l9(@)] - (B — @) + V(g; [, B]) - ¢(B = a)
<(B—a)-c-(sup |g(x)|+V(g;le,5])).

z€la,b]

Therefore H is Lipschitz on [a, b].
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(iii) and (iv) follow by Lemma 11 (see also Lemma 2 of [3], p. 31).

(v) Let M = sup,¢q 19(2)|+V (g5 [, 8]) and let € > 0. Since F' € AC,, on
P, by Proposition 2.28.1 of [5], it follows that there exists a 6 > 0 such that if
{It}, k =1,2,...,s are nonoverlapping closed intervals with each P NI} # 0,
and >"7_; |[Ix] < 0, then for each k there exists {Py;}, j = 1,2,...,n such
that PN I, = Ul Py and Y25, 370 O(F; Pyj) < €/(2M). Let n > 0
such that O(F;1I) < ¢/(2nM) = e, whenever I is a closed subinterval of
[a,b] with |I| < n. (This is possible because F' is continuous on [a,b].) Let
01 = min{d,n}. Then O(F;I;) < €, for each k. By Lemma 11 (ii) it follows
that O(H; Pj) < M - O(F; Py;) + V(g; 1) - O(F; I1,). Hence

ZZOHP,W )< M- ZZ(’)FP,W + ney - ZV g; I1.)

k=1j=1 k=1 j=1
<Me/(2M) +net M < e.

Therefore H € AC,, on P.
(vi) The proof is similar to that of (v) using Proposition 2.34.1 of [5] instead
of Proposition 2.28.1 of [5]. O

Theorem 7. Let F,g,H : [a,b] — R be such that F is continuous, g € VB
and H(z) = F(z)g(z) — (RS) [T F(t)dg(t). Then each of the following hold.

(i) H is continuous on [a,b].

(i) If F is Lipschitz on |a,b], then H is Lipschitz on [a,b] and H (z) =
g(x)F (z) a.e. on [a,b].

’

(iii) If F € AC on [a,b], then H € AC on [a,b] and H (z) = g(z)F'(z) a.e.
on [a,b].

’

(iv) If F € ACG* on [a,b], then H € ACG* on [a,b] and H (z) = g(z)F ()
a.e. on [a,b].

(v) If F € ACG on |a,b] and is derivable a.e. on [a,b], then H € ACG on
[a,b] and H (z) = g(x)F (x) a.e. on [a,b].

(vi) If F € ACG on [a,b], then H € ACG on |a,b] and H, o) =g(x)F,,(v)
a.e. on [a,b].

’

(vii) Ifl*; Eb]]: on [a,b], then H € F on [a,b] and H,,(z) = g(z)F,,(z) a.e.
on [a,b].

(viii) If F € SF on [a,b], then H € SF on [a,b] and H(;p(x) = g(z)F,, ()

ap
a.e. on [a,b].
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(ix) If FE SACG on [a,b], then He SACG on [a,b] and Ht;p(:r) =g(x)F,,(v)
a.e. on [a,b].

ProOF. That H;p(x) = g(x)F;p(m) a.e. on [a,b] or H (z) = g(z)F (z) a.e.
on [a,b] follows easily (see for example [5], Theorem 5.23.3). Now the other
assertions follow by the linearity of the RS-integral in the second argument,
and by Lemma 12. O

Remark 9. Here are some special cases of P;,:([a, b]).
(i) ACini([a,b]) = {f : [a,b] = R : f is Lebesgue integrable on [a, b]}.

(i) Lipin¢([a,b]) = {f : [a,b] — R : f is measurable and bounded a.e. on
[a,b]}.
(iii) (AC*G NC)int([a,b]) = {f : [a,b] — R : f is D*-integrable on [a, b]}.

(iv) (ACGNCNALe)ine([a,b]) = {f : [a,b] = R : f is Khintchine-integrable
on [a, b}

(v) (ACGNC)ine([a,b]) = {f : [a,b] — R : f is D-integrable on [a, b]}.

(vi) (SFNCN Aupac)int([a,b]) = {f : [a,b] = R : f is SF-integrable on
[a,b]}. (For the definition of the SF-integral see [5], p. 210.)

(vii) (FNCN Aupace)int([a,b]) = {f : [a,b] = R : f is Foran-integrable on
[a,b]}. (For the Foran integral F, see [6] or [5], p. 207.)

(viii) (SACGNCNAupac.)int([a,b]) = {f :[a,b] = R : fis SACG-integrable
n [a,b]} (SACG is the Iseki sparse integral, see [8] and [9]).
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