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THE PERIMETER-MINIMIZING
ENCLOSURE OF TWO AREAS IN S2

Abstract

It is shown that the “standard double bubble” is the unique least-
perimeter way to enclose and separate two given areas in the surface of
the round sphere.

1 Introduction

Foisy at al. [F] have proved that, among all shapes that enclose and separate
two given areas in the plane, the “standard double bubble” shape of Figure
1.1a uniquely minimizes perimeter. This paper uses some new findings of
Hutchings [H] to generalize this result to the sphere. The solution is pictured
in Figure 1.1b.
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Figure 1.1: (a) The standard double bubble is the shortest enclosure of two
prescribed areas in R2. (b) We prove that the standard double bubble is the
shortest enclosure of two prescribed areas in S2.

We have the following two main results:
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Theorem 2.2 (Unique standard bubble). Given areas A1, A2 > 0, with A1 +
A2 < 4π, there exists a unique standard bubble, D(r1, r2), in the unit round
sphere enclosing and separating regions of area A1 and A2.

Theorem 2.10 (Standard bubble minimizing). The least-perimeter way to
enclose and separate two prescribed areas in S2 is the standard double bubble.

Incidentally, it was the results of Hutchings which made possible the re-
cent announcement by Hass and Schlafly [HS], of a computer proof of the
3-dimensional Double Bubble Conjecture on the least-surface area way to en-
close and separate two regions of equal volume in R3 (see also [P], [HHS]).
There has been progress on the planar triple bubble too [CHK].

Idea of the proof

The generalization of the planar result to the sphere presents new difficulties.
In particular, the proof of the planar case uses a powerful result about the
monotonicity of the least-perimeter function which does not carry over to the
sphere.

The major complication in dealing with minimal bubble clusters in general
is the possibility of disconnected regions (see Figure 1.2). If these can be ruled
out for the case of the double bubble in the sphere, then the regularity theorem
[M3, 2.4] and our relatively easy uniqueness Theorem 2.2 will immediately
imply the desired result.

If one of the three areas partitioned by the double bubble is at least twice
as big as another, then a theorem in [H] implies connectivity. Otherwise, we
follow a suggestion of Hutchings, and consider a “decomposition inequality”,
which gives a lower bound for the perimeter of a double bubble with discon-
nected regions, as a function of the two prescribed areas. We need to show
that, if no area is at least twice as big as another, then the perimeter of the
standard double bubble is always less than this lower bound.
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Figure 1.2: A double bubble with disconnected regions.
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We provide a numerical proof. The idea is to plot the lower bound and the
perimeter of the standard double bubble over a grid of closely spaced points.
We show that the perimeter of the double bubble with disconnected regions
is greater than the perimeter of the standard double bubble for all the points
we plot. We then obtain a crude bound on their gradients, and by making the
points close enough together, we show that within any of the small intervals,
the functions cannot change enough to make up the difference. Therefore the
regions are connected and the double bubble is standard.

Definitions

A double bubble in the unit round sphere consists of two disjoint open sets, B1

and B2, known as regions. Let B0 denote the complement of their closures,
called the exterior. The perimeter of a double bubble is the one-dimensional
Hausdorff measure of the topological boundaries of the bubble. Let Ai denote
the area of Bi. A standard double bubble is made up of three arcs of constant
curvature meeting at two vertices at 120◦ angles.

For further background and context see [M2] or the new chapter on soap
bubbles in [M1].

2 The double bubble in S2

In this section we prove that the standard double bubble uniquely minimizes
perimeter in S2.

The following theorem follows immediately from [M3, 2.4]

Theorem 2.1 (Existence and regularity). Given A1, A2 > 0, with A1 +A2 <
4π, there exists a perimeter-minimizing double bubble in the unit round sphere,
made up of arcs of constant geodesic curvature meeting in threes at angles of
120◦, enclosing and separating regions of area A1 and A2.

The proof of the following existence and uniqueness theorem is due to
Frank Morgan.

Theorem 2.2 (Unique standard bubble). Given areas A1, A2 > 0, with A1 +
A2 < 4π, there exists a unique standard double bubble, D(r1, r2), in the unit
round sphere enclosing and separating regions of area A1 and A2.

Proof. First note that for any two geodesic radii r1 and r2, we can construct
a standard double bubble D(r1, r2) as follows (see Figure 2.1):
Take counterclockwise circular arcs C1 and C2 of radii r1, r2 emanating from
a fixed point O at an angle of 120◦ (oriented as in Figure 2.1) until they
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meet again (at 120◦ by symmetry). Complete D with a third circular arc, C3,
meeting the other two at 120◦ angles at both points. Note that the centers of
the three circles all lie on the same great circle. It is clear that every standard
double bubble can be obtained in this way.

Let A1 be the area enclosed by C1 and C2; A2 the area enclosed by C2 and
C3 and A0 the area enclosed by C3 and C1. A0, A1, A2 are smooth functions
of r1, r2. As r2 → 0 (r1 fixed), D degenerates to a single circle C1 with A2 = 0
(see Figure 2.1a). Similarly, as r1 → π (r2 fixed), D degenerates to a single
circle C2 with A0 = 0. As r2 → π, D degenerates to a point with A0 = A1 = 0.
As r1 → 0, D degenerates to a point with A1 = A2 = 0 (see Figure 2.1b).
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Figure 2.1: The construction of the standard double bubble in the unit round
sphere.

Now consider the mapping F form R, the rectangle 0 ≤ r1, r2 ≤ π to T ,
the triangle A1, A2 ≥ 0, A1+A2 ≤ 4π (see Figure 2.2). The only discontinuity
of F is at the upper left corner, r1 = 0, r2 = π. To avoid this discontinuity,
we remove a neighborhood of the vertex along a short diagonal d, as shown
in Figure 2.2, to form a new region, R′. Let T ′ be the region bounded by
the curve F (d), the segment A1 = 0, and the segment A1 + A2 = 4π. F
maps the interior of R1 smoothly to the interior of T ′ and the boundary of R′

continuously to the boundary of T ′. Specifically, F maps the left side to the
vertex (0, 0), the bottom injectively onto the base, the right side injectively
onto the hypotenuse, the top to the vertex A2 = 4π, and d injectively onto
F (d). Therefore F has degree 1 and maps the interior of R′ onto the interior
of T ′. As d gets small, F (d) approaches the segment A1 = 0, so F maps
the interior of R onto the interior of T . So when A1 and A2 are non-zero,
there exists a standard double bubble enclosing and separating them. This
is sufficient, because when one of the areas is zero, the existence problem is
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trivial. To prove uniqueness, it suffices to show that F is injective on the
interior. This follows, because for fixed r1, A1 is strictly decreasing in r2
and A2 is strictly increasing in r2; similarly for fixed r2, A1 and A2 are both
strictly increasing in r1. Hence for any change in (r1, r2), there is a net change
in either A1 or A2.
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Figure 2.2: F maps the interior of R′ bijectively onto the interior of T ′.

Lemma 2.3. If one of the three regions partitioned by a perimeter-minimizing
double bubble in the unit round sphere is connected, then all three are.

Proof. Assume that one of these regions is connected. The proof of Lemma
2.4 in [F] carries over to show that connectivity of the exterior implies connec-
tivity of the other two regions. Since the problem of enclosing and separating
A1 and A2 is equivalent to the problem of enclosing and separating any two
of the Ai, the connected region may be viewed as the exterior, implying the
connectivity of the other two regions.

The following two results, generalized to n-dimensional spheres, appear in
Theorem 3.7 and Corollary 3.8, respectively, in [H].

Proposition 2.4. Let L(A1, A2) be the function which gives the length of a
perimeter-minimizing double bubble enclosing A1 and A2. Then this function
is strictly concave on every line in the triangular region A0 + A1 + A2 = 4π;
A0, A1, A2 ≥ 0 (see Figure 2.3a).

Lemma 2.5. If A0 is at least twice as big as A1 or A2, then the exterior is
connected.

We now have an immediate solution for the following case:

Corollary 2.6. If any one of the three areas A0, A1, A2 is at least twice as
big as another, then all three regions are connected (see Figure 2.3b).
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Proof. Assume one of the three areas is at least twice as big as another.
We are free to view any of the three regions as the exterior, so Lemma 2.5
implies that one of the three regions is connected. Then by Lemma 2.3, all
three are.
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Figure 2.3: (a) The least-perimeter function is concave along any line in the
triangular region. (b) We have an immediate solution for the case where one
of the three areas is at least twice as big as another.

The following proposition is a trivial generalization of Lemma 4.1 in [H].
Although we will not present a proof, the key idea is contained in Figure 2.4.

Proposition 2.7. If B(y, z) is a perimeter-minimizing enclosure of regions
R1, of area y, and R2, of area z, and if R2 is disconnected with a connected
component of area xz, 0 < x < 1, then the following “decomposition inequal-
ity” holds:

2L(y, z) ≥ L(xz) + L(y, (1− x)z) + L(xz + y, (1− x)z) . (1)

(1-x)z y xz 

2  x = 
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+ 

Figure 2.4: The key idea for the proof of Proposition 2.7.
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We now derive another inequality:

Proposition 2.8. Under the same conditions as in Proposition 2.7, the fol-
lowing inequality holds

L(y, z) ≥ L(xz)

2x
+
L(y)

2
+
L(z + y)

2
. (2)

Proof. By concavity we have

L(y, (1− x)z) = L((1− x)(y, z) + x(y, 0)) ≥ (1− x)L(y, z) + xL(y) .

Similarly:

L(xz+y, (1−x)z)=L(x(z+y, 0)+(1−x)(y, z))≥xL(z + y)+(1− x)L(y, z) .

By substitution into (1), we have

2L(y, z) ≥ L(xz) + 2(1− x)L(y, z) + xL(y) + xL(z + y) ;

L(y, z) ≥ L(xz)

2x
+
L(y)

2
+
L(z + y)

2
.

Except for the last one, the following formulas are analogous to those which
appear as Proposition 2.1 in [F].
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Figure 2.5: We can derive an explicit formula for the perimeter of a standard
double variable.

Proposition 2.9. The following formulas hold on the surface of the unit
sphere (see Figure 2.5):
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• Length of a circular arc making an angle θ with a great circle arc of
length C:

L(θ, C) = 2 sin

[
arctan

[
tan

(
C
2

)
sin(θ)

]]
arccos

[
cos

(
C

2

)
cos(θ)

]
.

• Area enclosed by a circular arc and a great circle arc:

A(θ, C) = −2 cos

[
arctan

[
tan

(
C
2

)
sin(θ)

]]
arccos

[
cos

(
C

2

)
cos(θ)

]
+ 2θ .

• Length of a circle enclosing area A:

L(A) = 2π sin

[
arccos

[
1− A

2π

]]
.

• Given area, in terms of θ and C:

A1(θ, C) = A(θ, C) +A

(
2π

3
− θ, C

)

A2(θ, C) = A

(
2π

3
+ θ, C

)
−A

(
2π

3
− θ, C

)
.

• Perimeter of the standard double bubble:

LStan(θ, C) = L(θ, C) + L

(
2π

3
− θ, C

)
+ L

(
2π

3
+ θ, C

)
.

• Lower bound for the perimeter of a disconnected bubble (under the same
condition as Proposition 2.7):

LDisc(θ, C) ≥ L(xA1(θ, C))

2x
+
L(A2(θ, C))

2
+
L(A1(θ, C) +A2(θ, C))

2

Proof. The final inequality follows from Proposition 2.8. The other deriva-
tions are all straightforward.

We can now prove the main theorem:

Theorem 2.10 (Standard bubble minimizing). The least-perimeter way to
enclose and separate two prescribed areas in S2 is the standard double bubble.
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Proof. We are given (A0, A1, A2). By Lemma 2.5, if one of the areas is twice
as big as another, than all three regions are connected. We want to show that
for all remaining cases ΛDisc ≥ ΛStan.

By Proposition 2.9, if none of the three areas is twice as big as another,
then θ and C are within the following range:

C < .77π

θ <
π

3
.

By differentiating, we see that the lower bound on ΛDisc obtained in Propo-
sition 2.9 decreases with x. So to minimize this bound, we set x = .5.
We plot ΛStan and the bound for ΛDisc on Mathematica, using step sizes of
∆θ = ∆C = .012 . The program tells us that over this domain, the minimum
difference of the two functions, to an accuracy of one decimal place, is .9 .

It is a straightforward matter to obtain crude bounds:

|∆ΛDisc(θ, C)| < 22.48

|∆ΛStan(θ, C)| < 13.167 .

The maximum change along any interval is:

∆(|ΛDisc − ΛStan|) < (2.5)(.012)(13.167 + 22.48) < .7 < .9 .

Therefore, when no area is twice as large as another, ΛDisc > ΛStan, so the
regions must be connected. Then by Theorem 2.1, the double bubble on the
unit sphere must be standard. By scaling, all of these results carry over to a
round sphere of any radius.
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