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Current address: 23 August 8717, Jud. Constanţa, Romania
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LOCAL SYSTEMS AND TAYLOR’S
THEOREM

Abstract

In this article we generalize Taylor’s theorem, using the local systems
introduced by B. S. Thomson in [8].

We shall denote by C the class of all continuous functions, by D the class
of all Darboux functions, by B1 the class of all Baire one functions, and by
DB1 the class of all Darboux Baire one functions.

Definition 1 (Thomson). ([8], p. 3). A family S = {S(x)}x∈R is said to be a
local system if each S(x) is a collection of sets with the following properties:

(i) {x} /∈ S(x);

(ii) If σx ∈ S(x) then x ∈ σx;

(iii) If σx ∈ S(x) and σx ⊂ A then A ∈ S(x);

(iv) If σx ∈ S(x) and δ > 0 then σx ∩ (x− δ, x+ δ) ∈ S(x).

Definition 2. Let S = {S(x)}x∈R and S ′
= {S ′

(x)}x∈R be local systems and
let x ∈ R, A ⊂ R.

• (Thomson, [8], p. 5) We define the following local system: S ∧ S ′
=

{(S ∧ S ′
)(x)}x∈R, where (S ∧ S ′

)(x) = S(x) ∩ S ′
(x) (it is easy to verify

that this is a local system).

• (Thomson, [8], p. 37). S is said to be bilateral at x if σx has x as a
bilateral accumulation point, whenever σx ∈ S(x). S is bilateral on A if
it is bilateral at each point of A.
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• (Thomson, [8], p. 18). Let S∞ = {S∞(x) : x ∈ R} denote the local
system defined at each point x as S∞(x) = {σ : σ contains x and has
x as an accumulation point }. We can define right and left versions
of this, by writing: S+∞(x) = {σ : σ contains x and has x as a right
accumulation point } and S−∞(x) = {σ : σ contains x and has x as a left
accumulation point }.

• Let S∞,∞ = S+∞ ∧ S−∞. Clearly S∞,∞(x) = {σ : σ contains x and has x
as a bilateral accumulation point }.

• S is said to be S ′
-filtering at x if σ

′

x∩σ
′′

x ∈ S
′
(x) whenever σ

′

x, σ
′′

x ∈ S(x).
S is said to be S ′

-filtering on A if it is so at each point of A.

• S is said to be filtering at x if S is S-filtering at x (this is in fact
Thomson’s definition of [8], p. 10).

Remark 1. If S is S∞,∞-filtering on a set A then it is a bilateral local system
on A.

Definition 3. Let S = {S(x)}x∈R be a local system. Let F : [a, b] → R and
t ∈ [a, b]. F is said to be S-continuous at t if for every ε > 0 there exists
σt ∈ S(t) such that |F (x)−F (t)| < ε, whenever x ∈ σt ∩ [a, b]. F is said to be
S-continuous on a set A ⊂ [a, b] if it is so at each point t ∈ A.

Remark 2. For t ∈ (a, b), Definition 3 is a reformulation of Thomson’s Defi-
nition 31.1 of [8] (p. 70). However, our definition considers t ∈ [a, b].

Lemma 1. Let S = {S(x)}x∈R be a local system S∞,∞-filtering. Let F :
[a, b] → R and t ∈ [a, b]. Suppose that there exists c ∈ R with the following
property: for every neighborhood Uc of c there is a set σt ∈ S(t) such that
(F (x) − F (t))/(x − t) ∈ Uc, whenever x ∈ σt ∩ [a, b] and x 6= t. Then the
number c is unique.

Proof. Suppose that there exists a number d, d 6= c, with the same properties
as c. Let Uc and Ud be neighborhoods for c respectively d such that Uc∩Ud = ∅.
Let σ

′

t, σ
′′

t ∈ S(t), such that (F (x)−F (t))/(x−t) ∈ Uc, whenever x ∈ σ′

t∩[a, b],
x 6= t, and (F (y)− F (t))/(y − t) ∈ Ud, whenever y ∈ σ′′

t ∩ [a, b], y 6= t. Since
S is S∞,∞-filtering it follows that σ

′

t ∩ σ
′′

t \ {t} 6= ∅, a contradiction.

Definition 4. Let S = {S(x)}x∈R be a local system S∞,∞-filtering. Let
F : [a, b]→ R and t ∈ [a, b].

(1) We denote the unique number c of Lemma 1 by SDF (t) (the S-derivative
of F at t).
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(2) The function F is said to be S-derivable on [a, b] if SDF (t) exists and is
finite at each t ∈ [a, b].

(3) If F is S-derivable on [a, b] and the S-derivative of SDF exists (finite or
infinite) at t then we denote this derivative by SDF (2)(t).

(4) F is said to be S(2)-derivable on [a, b] if SDF (2)(t) exists and is finite at
each t ∈ [a, b].

(5) Inductively we may define SDF (i)(t) and the S(i)-derivability on [a, b],
i = 1, 2, . . . . Let SDF (0)(t) = F (t).

Remark 3. For t ∈ (a, b), Definition 4, (1) is a reformulation of a part of
Definition 7.1 of [8] (p. 14). Of course, Definition 4, (1) is less general,
because Thomson’s definition does not impose any conditions on the local
system. However, our definition considers t ∈ [a, b].

Lemma 2. Let S = {S(x)}x∈R be a local system S∞,∞-filtering. Let F :
[a, b] → R. If F is S(i)-derivable on [a, b] then SDF (i−1) is S-continuous on
[a, b], i = 1, 2, . . ..

Definition 5. We define the following local systems:

• S1,1 = {S1,1(x)}x∈R, where S1,1(x) = {S : x ∈ S and di+(S, x) =

di−(S, x) = 1}. (Here di+ and di− are the interior right respectively

left densities of S at x – see for example [8], p. 22). Let F
(i)
ap (x) =

S1,1DF (i)(x).

• For α, β ∈ (0, 1), let Sα,β = {Sα,β(x)}x∈R, where Sα,β(x) = {S : x ∈ S
and di−(S, x) > α, di+(S, x) > β}. Let F

(i)
pr (x) = S 1

2 ,
1
2
DF (i)(x).

Remark 4. The S1,1 and Sα,β local systems are slight modifications of some
systems introduced in [6] (pp. 81, 85), [7] (I, p. 75, 76) and [2] (p. 99).

Definition 6 (Preiss). ([5] or [3], p. 35). Let F : [a, b] → R. F is said to
be lower internal∗, if F (x+) ≥ F (x), whenever x ∈ [a, b) and F (x+) exists,
and F (x−) ≤ F (x), whenever x ∈ (a, b] and F (x−) exists. F is said to be
upper internal∗ if −F is lower internal∗. F is said to be internal∗ if it is
simultaneously upper and lower internal∗.

Definition 7 (C.M.Lee). ([4], [3], p. 35). Let F : [a, b] → R. F is said to
be uCM if it is increasing on [c, d] ⊆ [a, b], whenever it is so on (c, d). F is
said to be `CM if −F is uCM . Let CM = `CM ∩ uCM and sCM = {F :
F (x) + λx ∈ CM for each λ ∈ R}.
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Remark 5. ([3], p. 36). Let F : [a, b]→ R. Then we have:

(i) C + internal∗ = internal∗;

(ii) C ⊂ DB1 ⊂ D ⊂ internal∗ ⊂ sCM ⊂ CM ⊂ uCM ;

Theorem 1 (Thomson). ( A special case of Theorem 33.1 of [8], p. 74). Let S
be a local system satisfying an intersection condition of the form σx ∩σy 6= ∅,
and let F : [a, b]→ R. If F is S-continuous then F ∈ B1.

Theorem 2 (Thomson). ([8], p. 77). Let S be a bilateral local system, and
let F : [a, b]→ R. If F is B1 and S-continuous on [a, b] then F ∈ D on [a, b].

Proof. See [1] (Theorem 1.1, (1), (2), pp. 8-9).

Theorem 3. ([3], p. 30.) Let F : [a, b] → R and let S = {S(x)}x∈R be a
local system satisfying the following conditions:

• S is S∞,∞-filtering on [a, b];

• σx ∩ σy ∩ (−∞, x] 6= ∅;

• σx ∩ σy ∩ [y,+∞) 6= ∅;

• SDF (x) exists (finite or infinite) at each point x ∈ [a, b].

Then SDF (x) is B1 on [a, b].

Theorem 4. ([3], p. 149-150). Let S be a local system S∞,∞-filtering, sat-
isfying intersection condition σx ∩ σy ∩ [x, y] 6= ∅, and let F : [a, b] → R be a
function satisfying the following conditions:

(1) F ∈ sCM on [a, b];

(2) S-derivative SDF (x) exists (finite or infinite) at each x ∈ [a, b] (respec-
tively x ∈ [a, b); x ∈ (a, b));

(3) SDF (x) is B1 on [a, b] (respectively [a, b); (a, b)).

Then we have:

(i) SDF (x) is D and

(ii) F fulfills the Mean Value Theorem.
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Lemma 3. Let S be a local system S∞,∞-filtering, satisfying intersection
condition σx ∩σy ∩ [x, y] 6= ∅. Let F,G,H : [a, b]→ R, H(x) = (F (b)−F (a)) ·
G(x) − (G(b)−G(a))·F (x) such that SDF (x) exists finite or infinite on (a, b),
G

′
exists finite on (a, b) and H ∈ sCM on [a, b]. Then there exists ξ ∈ (a, b)

such that
(F (b)− F (a)) ·G

′
(ξ) = (G(b)−G(a)) · SDF (ξ).

Proof. We have H(b) = H(a) = F (b)G(a) − G(b)F (a). Clearly SDH(x)
exists finite or infinite on (a, b). By Theorem 4, (ii), there exists ξ ∈ (a, b) such
that SDH(ξ) = 0. Now the conclusion of our lemma follows immediately.

Corollary 1. Let S be a local system S∞,∞-filtering, satisfying intersection
condition σx ∩ σy ∩ [x, y] 6= ∅. Let F,G : [a, b]→ R. If

(i) F ∈ internal∗ and G ∈ C on [a, b],

(ii) S-derivative SDF (x) exists finite or infinite on (a, b) and G
′
(x) exists

finite on (a, b),

then there exists ξ ∈ (a, b) such that

(F (b)− F (a)) ·G
′
(ξ) = (G(b)−G(a)) · SDF (ξ).

Proof. Let H be the function defined in Lemma 3. Since C + internal∗ =
internal∗ ⊂ sCM (see Remark 5) it follows that H ∈ sCM on [a, b]. Now the
proof follows by Lemma 3.

Remark 6. In Lemma 3 and Corollary 1 we may put SDG instead of G
′

if
S is supposed to be filtering.

Theorem 5. (A strong form of Taylor’s Theorem). Let S be a local system
S∞,∞-filtering, satisfying the following intersection conditions:

• σx ∩ σy ∩ [x, y] 6= ∅;

• σx ∩ σy ∩ (−∞, x] 6= ∅;

• σx ∩ σy ∩ [y,+∞) 6= ∅.

Let F : [a, b] → R such that F (b−) = F (b) if F (b−) exists, and let n > 1 be
an integer. If

(i) F is S(i)-derivable on [a, b), i = 1, 2, . . . , n and

(ii) SDF (n+1)(x) exists finite or infinite on (a, b),
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then there exists ξ ∈ (a, b) such that

F (b) =

n∑
i=0

SDF (i)(a)

i!
(b− a)i +

SDF (n+1)(ξ)

(n+ 1)!
(b− a)n+1.

Proof. Let

R(x) = F (x)−
n∑
i=0

SDF (i)(a)

i!
(x− a)i and G(x) = (x− a)n+1.

Clearly R(a) = SDR(a) = . . . = SDR(n)(a) = 0 and SDR(n+1)(x) =
SDF (n+1)(x) for each x ∈ (a, b). But G(a) = G

′
(a) = . . . = G(n)(a) = 0

and G(n+1)(x) = (n + 1)! on (a, b). By Theorem 3, SDF (i) is B1 on [a, b),
i = 1, 2, . . . , n and SDF (n+1) is B1 on (a, b). By Theorem 4, (i) it follows that
SDF (i) ∈ D on [a, b), i = 1, 2, . . . , n, and SDF (n+1) ∈ D on (a, b). By Lemma
2, F is S-continuous on [a, b), so by Theorem 1, F ∈ B1 on [a, b). By Theorem
2, F ∈ D on [a, b). By Remark 5, (ii) and the fact that F (b−) = F (b) if F (b−)
exists, it follows that F ∈ internal∗ on [a, b]. Then R ∈ internal∗ on [a, b] (see
Remark 5, (i)). Applying Corollary 1, it follows that there exists c1 ∈ (a, b)
such that R(b)/G(b) = SDF (c1)/G

′
(c1). Since SDF ∈ DB1 ⊂ internal∗ on

[a, c1] (see Remark 5), applying Corollary 1 again, it follows that there exists
c2 ∈ (a, c1) such that SDF (c1)/G

′
(c1) = SDF (2)(c2)/G(2)(c2). Continuing,

we obtain b > c1 > c2 > . . . > cn > cn+1 > a such that

R(b)

G(b)
=
SDR(c1)

G′(c1)
= . . . =

SDR(n)(cn)

G(n)(cn)
=

SDR(n+1)(cn+1)

(n+ 1)!
=
SDF (n+1)(cn+1)

(n+ 1)!
.

Putting ξ = cn+1 the assertion of the theorem follows.

Corollary 2. Let F : [a, b]→ R and let n ≥ 1 be an integer. Suppose that

(1) F (b−) = F (b) if F (b−) exists;

(2) F
(i)
ap (x) (respectively F

(i)
pr (x)) exists and is finite on [a, b), for each i =

1, 2, . . . , n and

(3) F
(n+1)
ap (x) (respectively F

(n+1)
pr (x)) exists finite or infinite on (a, b).
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Then there exists ξ ∈ (a, b) such that

F (b) =

n∑
i=0

F
(i)
ap (a)

i!
(b− a)i +

F
(n+1)
ap (ξ)

(n+ 1)!
(b− a)n+1

(respectively

F (b) =

n∑
i=0

F
(i)
pr (a)

i!
(b− a)i +

F
(n+1)
pr (ξ)

(n+ 1)!
(b− a)n+1 ).
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