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THE HAUSDORFF DIMENSION OF THE
HYPERSPACE OF COMPACT SETS

Abstract

Let (X, ρ) be a separable metric space and let (K(X), ρ̃) denote the
space of non-empty compact subsets of X with the Hausdorff metric.
The purpose of this paper is to investigate the relationship of the Haus-
dorff dimension of a set E ⊂ X to that of K(E) ⊂ K(X).

1 Introduction and Notation.

1.1 The Hausdorff Metric

Given a separable metric space (X, ρ), let K(X) denote the set of non-empty
compact subsets of X. Define a metric ρ̃ on K(X) as follows: For A,B ∈ K(X)
let

ρ̃(A,B) = max{sup
x∈A
{dist(x,B)}, sup

y∈B
{dist(y,A)}}.

The space (K(X), ρ̃) is called the Hausdorff metric space, or hyperspace, as-
sociated with X and inherits several nice geometrical properties from X. For
example, K(X) is complete whenever X is complete and K(X) is compact
whenever X is compact. A discussion of the Hausdorff metric including proofs
of the above may be found in [Ed] section 2.4. To avoid confusion between
metric spaces and their corresponding hyperspaces, tildes will be used to de-
note reference to the hyperspace. So for example, if A ⊂ X is compact and
ε > 0, then B̃ε(A) ⊂ K(X) denotes the closed ball of radius ε about the set
A.

The Hausdorff metric has been studied extensively. Some early results
on the Hausdorff dimension of K([0, 1]) may be found in [Boa], [Goo1], and
[Goo2].
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1.2 Hausdorff Measure and Dimension

In this section, a definition of Hausdorff dimension valid for infinite dimen-
sional sets will be developed following the very general approach of Rogers
[Rog]. Let Φ denote the set of all non-decreasing, continuous functions ϕ de-
fined on some interval [0, δ) so that ϕ(0) = 0 and ϕ(t) > 0 for 0 < t < δ. Such
functions will be called Hausdorff functions. The asymptotic behavior near
zero of two Hausdorff functions may be compared by writing:

• ϕ ≺ ψ if limt↘0
ψ(t)
ϕ(t) = 0

• ϕ � ψ if lim supt↘0
ψ(t)
ϕ(t) <∞

• ϕ � ψ if 0 < lim inft↘0
ψ(t)
ϕ(t) ≤ lim supt↘0

ψ(t)
ϕ(t) <∞.

Given ϕ ∈ Φ, define a measure Hϕ on the separable metric space X as
follows: For ε > 0 an ε-cover of E ⊂ X will be a countable or finite collection
of sets, Ei ⊂ X, so that E ⊂ ∪iEi and diam(Ei) ≤ ε for every i. Then let

Hϕε (E) = inf

{∑
i

ϕ(diam(Ei)) : {Ei}i is an ε-cover of E

}
,

Hϕ(E) = lim
ε↘0
Hϕε (E).

Note thatHϕε (E) increases as ε decreases so thatHϕ(E) is well defined, though
possibly infinite. In [Rog] it is proven that Hϕ is a metric outer measure on
X. A metric outer measure is an outer measure that satisfies Hϕ(E ∪ F ) =
Hϕ(E) + Hϕ(F ), whenever dist(E,F ) > 0. This implies that all analytic
(and in particular all Borel) subsets of X are Hϕ-measurable. Denote the
restriction of Hϕ to the Hϕ-measurable subsets of X also by Hϕ and call this
the Hausdorff ϕ-measure on X.

The phrase “E is of (non-)σ-finite Hϕ measure”, will be abbreviated by
Hϕ(E) is (non-)σ-finite. The Hausdorff dimension of a set E ⊂ X is a partition
of Φ. Specifically, dim(E) = (Φ∞(E),Φ+(E),Φ0(E)), where

Φ∞(E) = {ϕ ∈ Φ : E is of non-σ-finite Hϕ measure},

Φ+(E) = {ϕ ∈ Φ : Hϕ(E) > 0 and E is of σ-finite Hϕ measure},

Φ0(E) = {ϕ ∈ Φ : Hϕ(E) = 0}.

The idea behind the Hausdorff dimension is that the value of Hϕ(E) is
governed by the asymptotic properties of ϕ(t) as t↘ 0 in a way indicative of
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the dimension of E. For example, if X = Rn, µn is Lebesgue measure, and
ψα(t) = tα, then

Hψα

 ≡ 0 if α > n
= cnµn if α = n (cn constant)
is non-σ-finite if α < n.

The following lemmas show that the ≺ relation places a partial order on Φ in
which the faster the function disappears at the origin, the larger the dimension.

Lemma 1.1. If Hϕ(E) is σ-finite and ϕ ≺ ψ, then Hψ(E) = 0.

Lemma 1.2. If Hϕ(E) > 0 and ϕ � ψ, then Hψ(E) is non-σ-finite.

For proofs see [Rog] theorem 40 and the corollary which follows it.
Ideally, one would like to completely describe the partition dim(E). Φ is a

very rich set, however, and the ordering imposed by ≺ is by no means total. It
is, consequently, not a tractable problem to understand how dim(E) compares
with every ϕ ∈ Φ. Thus, typically one defines an appropriate one parameter
family, {ϕs}s>0 ⊂ Φ, such that s1 < s2 implies ϕs1 ≺ ϕs2 . Then, there is a
critical value s0 ∈ [0,∞] such that

Hϕs(E) =

{
0 if s > s0

∞ if s < s0.

For example, ψs(t) = ts leads to the standard numerical Hausdorff dimension.
When working with the Hausdorff metric for subsets of a finite dimensional
set, two useful families of Hausdorff functions are {ψs}s>0 defined by ψs(t) =
2−1/ts and {ϕM}M>0 defined by ϕM (t) = 2−M(1/ts) where s > 0 is fixed.

In [Fal] it is proven that the standard numerical Hausdorff dimension is
preserved by bi-Lipschitz transformations. There, however, he is working with
the family ψs(t) = ts. One needs to be more careful when working with more
general functions. The following lemma does hold.

Lemma 1.3. Let f : X → X and let 0 < r1 < r2.
(a) If ρ(f(x), f(y)) ≤ r2ρ(x, y) and Hϕ(E) is σ-finite, then Hϕ(t/r2)(f(E)) is
σ-finite.
(b) If r1ρ(x, y) ≤ ρ(f(x), f(y)) and Hϕ(E) > 0, then Hϕ(t/r1)(f(E)) > 0.

Proof. (a) Suppose first that Hϕ(E) < ∞. If {Ei} is an ε-cover of E, then
{f(Ei)} is an r2ε-cover of f(E). The ε-cover {Ei} may be chosen so that∑
i ϕ(diam(Ei)) < 2Hϕε (E). Then,∑

i

ϕ

(
diam(f(Ei))

r2

)
≤
∑
i

ϕ

(
r2 diam(Ei)

r2

)
< 2Hϕε (E) ≤ 2Hϕ(E).
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So, Hϕ(t/r2)
r2ε (f(E)) < 2Hϕ(E) < ∞. This is true for arbitrarily small ε > 0

so, Hϕ(t/r2)(f(E)) < 2Hϕ(E) < ∞. Next, if E = ∪iAi and Hϕ(Ai) < ∞ for
each i, then Hϕ(t/r2)(f(E)) is seen to be σ-finite by applying the above logic
to each Ai.

(b) If Hϕ(E) > c > 0, then we may choose an ε > 0 such that, Hϕε (E) > c.
Then, for any ε-cover {Ei}i of E, we have

∑
i ϕ(diam(Ei)) > c > 0. Since f

is bi-Lipschitz, any ε/r1-cover of f(E) may be written {f(Ei)}i, where {Ei}i
is an ε-cover of E. Then,∑

i

ϕ

(
diam(f(Ei))

r1

)
≥
∑
i

ϕ

(
r1 diam(Ei)

r1

)
> c.

So, Hϕ(t/r1)(f(E)) ≥ Hϕ(t/r1)
ε/r1

(f(E)) ≥ c.

Consider, for example, the two parameter family of functions

ϕM,s(t) = 2−M(1/t)s .

For a fixed s > 0, a bi-Lipschitz map with ratios r1 and r2 as above can affect
the critical value of M . But it can’t be raised by more than a factor 1/r2 and
it cannot be lowered by more than a factor of 1/r1. For s1 < s2, however,
ϕM1,s1 ≺ ϕM2,s2 for any M1 and M2. So a bi-Lipschitz map won’t affect the
critical value of s.

1.3 Related Notions of Dimension

Although this paper is primarily concerned with the Hausdorff dimension,
there are two other notions of dimension which will be useful. The first is the
upper entropy index ∆(E) defined for totally bounded E ⊂ X as follows: For
ε > 0, let

Nε(E) = max # of disjoint closed balls centered in E with radius ε/2.

Then, let

∆(E) = lim sup
ε→0

logNε(E)

log(1/ε)
.

This assigns a nonnegative number or infinity to ∆(E). It is possible to gener-
alize this definition to a partition of Φ, by comparing the asymptotic behavior
of Nε to that of Hausdorff functions (see [Mcc]). This level of generality will
not be needed here, however. For more information on the upper entropy
index, see [Ed] section 6.5.
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The next useful notion of dimension is the similarity dimension, which is
valid only for self-similar sets. Self-similar sets are obtained as follows: Let
m ∈ N and for i = 1, . . . ,m let fi : X → X be a similarity with ratio ri ∈
(0, 1). This means that for every x, y ∈ X we have ρ(fi(x), fi(y)) = riρ(x, y).
In this situation there exists a unique non-empty compact set E ⊂ X such that
E = ∪mi=1fi(E). The set E obtained this way is said to be self-similar. The
similarity dimension of the set E is defined to be the unique positive number
s0 such that

∑m
i=1 r

s0
i = 1. For more information on self-similar sets, see [Ed]

chapter 4.
The standard numerical Hausdorff dimension dimN (E), upper entropy in-

dex ∆(E), and similarity dimension s0 are related as follows:

dimN (E) ≤ ∆(E) ≤ s0.

In Euclidean space, this relationship may be strengthened, assuming the set
of contractions {fi}mi=1 satisfies the open set condition. This means that there
is an open set U , such that U ⊃ ∪mi=1fi(U) with this union disjoint. Assuming
the open set condition is satisfied, the above inequalities may be replaced with
equalities. For more information on the relationships between these dimen-
sions, see [Ed] sections 6.3 and 6.5.

A corollary to the main theorems (3.3 and 3.4) of this paper can now be
stated, to provide the gist of those results in a more concrete setting.

Corollary 1.1. Suppose E ⊂ Rn is a self-similar set satisfying the open set
condition. Let s0 be the similarity dimension of E and let ϕs(t) = 2−(1/t)s .
Then,

Hϕs(K(E)) =

{
∞ for s < s0

0 for s > s0.

Thus the Hausdorff dimension of E is clearly reflected in the Hausdorff
dimension of K(E). Analogous statements for the upper and lower entropy
indices and dimensions are proven in [Mcc].

1.4 Sequence Spaces

The main results will first be proven for some specific metric spaces called
sequence spaces and then transferred to a more general setting. Let m ∈ N+

and let the sequence space Ω be defined by Ω = {1, . . . ,m}N. A family of
metrics will be defined on Ω each inducing the product topology. First, some
useful terminology will be developed. An initial segment α of length n is an
element of {1, . . . ,m}n. There is, by definition, one initial segment of length
zero namely the empty segment denoted Λ. If α is an initial segment, write
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|α| to denote the length of α. For n ∈ N, let Ωn denote the set of all initial
segments of length n. Let Ω∗ = ∪∞j=0Ωj be the set of all initial segments. If
σ ∈ Ω write σ|n for the initial segment (σ1, . . . , σn) ∈ Ωn. A partial order
may be imposed on Ω∗ as follows: For α, β ∈ Ω∗, say α = (α1, . . . , αj) and
β = (β1, . . . , βk), write α < β if j < k and αi = βi for i = 1, . . . , j. If α < β,
then β is said to be a descendant of α. If α ∈ Ωn, then let α- denote the
unique element of Ωn−1 such that α- < α. Call α- the parent and α the child.
Also, if α ∈ Ωn is an initial segment, then let

[α] = {σ ∈ Ω : σi = αi for i = 1, . . . , n}.

For i = 1, . . . ,m, let 0 < ri < 1. The list (r1, . . . , rm) is called a contraction
ratio list for Ω. Given α = (i1, . . . , in) ∈ Ω∗, let r(α) = ri1 · · · rin and let
r(Λ) = 1. Define a metric d as follows:

1. d(σ, σ) = 0 for all σ ∈ Ω;

2. If σ, τ ∈ Ω have α as their longest common initial segment, then d(σ, τ) =
r(α).

In [Ed] it is shown that the numerical Hausdorff dimension of this sequence
space is given by ψs(t) = ts, where

∑m
i=1 r

s
i = 1. In fact it is shown that

Hs([α]) ≡ Hψs([α]) = r(α)s (1)

for every α ∈ Ω∗.

2 Computational Tools

2.1 The Density Lemma

Lower bounds for Hausdorff measures are frequently obtained by using a den-
sity lemma. See for example, [RayTr] theorem 1. In [RayTr] and other sources
it is assumed that Hausdorff functions are blanketed. That is, there is some
constant M > 0, such that ϕ(2t) < Mϕ(t). This is unsuitable for the purposes
here so the following generalization is needed.

Lemma 2.1. For a separable metric space X with a positive analytic measure
µ, x ∈ X, and δ > 0 let

µδ(x) = sup{µ(U) : x ∈ U and U is an analytic set with diam(U) ≤ δ}.

Let δk ↘ 0. Suppose that ϕ,ψ ∈ Φ satisfy ϕ(δk) ≤ Aψ(δk+1) for all k ∈ N.
Let E ⊂ X be a Borel set which satisfies µ(E) > 0 and

D
ϕ

µ(x, (δk)k) ≡ lim sup
k→0

µδk(x)

ϕ(δk)
< M <∞,
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for every x ∈ E. Then Hψ(E) ≥ µ(E)
MA > 0.

Proof. Let k0 ∈ N and choose 0 < ε < δk0 . Let

Ek0 = {x ∈ E : µδk(x) < Mϕ(δk) for every k ≥ k0}.

Note that ∪∞k0=1Ek0 = E. Suppose that C is an ε-cover of E and so of Ek0 .
For k ≥ k0 write

Ck = {U ∈ C : δk+1 < diam(U) ≤ δk}.

Any U ∈ Ck such that U ∩ Ek0 6= ∅ satisfies µ(U) < Mϕ(δk). So,

µ(Ek0) ≤
∑
U∈C

U∩Ek0 6=∅

µ(U) =

∞∑
k=k0

∑
U∈Ck

U∩Ek0 6=∅

µ(U)

≤M
∞∑

k=k0

∑
U∈Ck

ϕ(δk) ≤M
∞∑

k=k0

∑
U∈Ck

ψ(diam(U))
ϕ(δk)

ψ(δk+1)

= M

∞∑
k=k0

(
ϕ(δk)

ψ(δk+1)

∑
U∈Ck

ψ(diam(U))

)

≤MA

( ∞∑
k=k0

∑
U∈Ck

ψ(diam(U))

)

= MA

(∑
U∈C

ψ(diam(U))

)
.

Now µ(Ek0) → µ(E) as k0 → ∞. Thus,
∑
U∈C ψ(diam(U)) ≥ µ(E)/MA and

Hψ(E) ≥ Hψε (E) ≥ µ(E)/MA.

As an example, suppose that ψs(t) = 2−(1/t)s , c > 0, 0 < u < 1, and let
δk = cuk. Then for 0 < s1 < s2, we have

ψs2(δk)

ψs1(δk+1)
= 2−( 1

cuk
)s2+( 1

cuk+1 )s1

= 2−( 1

cuk
)s2(1−(cuk)s2 ( 1

cuk+1 )s1)

= 2−( 1

cuk
)s2(1−( 1

u )s1 (cuk)s2−s1) ≤ 2−
1
2 ( 1

cuk
)s2

for large k. This last term approaches zero as k → ∞. So given an analytic
set E ⊂ X, to show that Hψs1 (E) = ∞, it suffices to find a positive Borel
measure µ on E, M > 0, and an s2 > s1 such that

D
ψs2

µ (x, (cuk)k) < M
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for every x ∈ E. This yields the following corollary.

Corollary 2.1. Let ψs(t) = 2−(1/t)s and let E ⊂ X be an analytic set with

a Borel measure satisfying µ(E) > 0. If D
ψs

µ (x, (cuk)k) < M < ∞ for every

x ∈ E and every s < s0, then Hψs(E) > 0 for every s < s0.

2.2 s-Nested Packings

Part of the importance of sequence space is that it may be used to model
other spaces. In [Ed], for example, sequence spaces are used in the study
of self-similar sets in Rn. In this section, a condition on a closed subset E
of a complete separable metric space X will be defined. This condition will
allow the construction of a subset E′ ⊂ E which is Lipeomorphic to a certain
sequence space. This result will be used later to transfer results from sequence
space to more general spaces.

Now let E be as above, fix c, s > 0, ε ∈ (0, 1/4), and m > (1/ε)s + 1. Let

Ω = {1, . . . ,m}N be a sequence space with the metric d given by r(α) = cεn

for every α ∈ Ωn. An s-nested packing of E will be a collection of closed balls
{Bcε|α|(xα)}α∈Ω∗ satisfying:

1. xα ∈ E for every α ∈ Ω∗

2. Bcεn(xα) ∩Bcεn(xβ) = ∅ for distinct α, β ∈ Ωn.

3. Bcε|α|(xα) ⊂ B
cε|α-|/4(xα-) for every α ∈ Ω∗.

This definition also depends on c, ε, and m, however the important parameter
is s because dimensional bounds given later will be in terms of s. If E has such
an s-nested packing, then let E′ = ∩∞n=1 ∪α∈Ωn Bcε|α|(xα). The existence of
s-nested packings will be established later for self-similar sets. Define a map
g : Ω→ E′ by g(ω) = ∩∞n=1Bcεn(xω|n).

Lemma 2.2. The map g is bi-Lipschitz.

Proof. Let ω1, ω2 ∈ Ω. Choose n ∈ N so that d(ω1, ω2) = cεn. Then
g(ω1), g(ω2) ∈ Bcεn(xω1|n), so ρ(g(ω1), g(ω2)) ≤ 2cεn. For the lower bound,
note that g(ωi) ∈ Bcεn+1/4(xωi|n+1

) for i = 1, 2 and, by the choice of n,
Bcεn+1(xω1|n+1

) ∩Bcεn+1(xω2|n+1
) = ∅. So

cεn+1 ≤ ρ(xω1|n+1
, xω2|n+1

)

≤ ρ(xω1|n+1
, g(ω1)) + ρ(g(ω1), g(ω2)) + ρ(g(ω2), xω2|n+2

)

≤ cεn+1

4
+ ρ(g(ω1), g(ω2)) +

cεn+1

4
.
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So ρ(g(ω1), g(ω2)) ≥ cεn+1

2 = ε
2cε

n.

Next, it will be shown that this condition is non-vacuous by the construc-
tion of an s-nested packing for a self similar set E ⊂ X. Two sequence
spaces Ω1 and Ω2 will be used to analyze the set E. The first one is the

self-similar sequence space Ω1 = {1, . . . ,m1}N with metric d1 given by the
ratio list (ri)

m1
i=1 corresponding to the contraction ratios of (fi)

m1
i=1. Given

α = (α1, . . . , αn) ∈ Ωn1 , abbreviate fα1
◦ · · · ◦ fαn(E) by α(E). An s-nested

packing will be constructed in the metric space (E, ρ) rather than (X, ρ).
The reason for this is because for x ∈ E, α ∈ Ω∗1, and ε > 0 we have
α(Bε(x)) = Br(α)ε(α(x)) as long as only balls in (E, ρ) are considered. This is
due to the invariance of E under the transformations (fi)

m1
i=1 and not generally

true in the larger metric space (X, ρ).
Now, let s > 0, let r = min{ri}m1

i=1, and let c = 8
r max{diam(E), 1}. Fix

δ ∈ (0,min{ 1
4 ,

1
4 diam(E)}) such that N2δ(E) > (c/δ)s + 1. Such a δ certainly

exists if ∆(E) > s. Let ε = δ/c and let m2 = N2δ(E). The other sequence

space of interest is Ω2 = {1, . . . ,m2}N with metric d2 given by r(β) = cεn for
β ∈ Ωn2 .

An s-nested packing of E, using the above choices for c, ε, and m, may be
constructed as follows: Choose xΛ ∈ E arbitrarily. This gives Bc(xΛ). The
existence of {Bcε(xβ)}β∈Ω1

2
is guaranteed by the fact that N2δ(E) > (c/δ)s+1

since δ = cε. The construction will proceed by induction on the length of β.
Suppose that Bcε|β|(xβ) have been defined for |β| ≤ n. For β ∈ Ωn2 , choose
αβ ∈ Ω∗1 such that xβ ∈ αβ(E), and

diam(αβ(E)) ≤ 1

8

δn

cn−1
< diam(α-

β(E)).

In particular, αβ(E) ⊂ Bcε|β|/4(xβ). Since r = min{ri} we have:

diam(αβ(E)) ≥ r

8

δn

cn−1
=

r

8 diam(E)

δn

cn−1
diam(E) ≥ δn

cn
diam(E).

So N2δ(δn/cn)(αβ(E)) ≥ N2δ(E) = m2. Thus αβ(E) may be packed with m2

balls of radius δn+1/cn = cεn+1 to continue the induction.
For a useful generalization, note that if f : X → X is a bi-Lipschitz

map satisfying ρ(f(x), f(y)) ≥ rρ(x, y) for every x, y ∈ X, then f(Bε(x)) ⊃
Brε(f(x)). So if f : E → F is a bi-Lipschitz bijection and E has an s-nested
packing {Bcε|α|(xα)}α∈Ω∗ , then f induces an s-nested packing of F , namely
{Bcrε|α|(f(xα))}α∈Ω∗ . Putting all this together we obtain.

Theorem 2.1. If E ⊂ X has a subset which is Lipeomorphic to a self-similar
set F satisfying ∆(F ) > s, then E has an s-nested packing.
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3 Hausdorff Dimension of K(X)

In this section, the relationship between dim(E) and dim(K(E)) is investi-
gated. The plan is the following. First, it is shown that if Ω is a sequence
space with finite Hausdorff dimension s0 and ψs(t) = 2−(1/t)s , then

Hψ
s

(K(Ω)) =

{
∞ if s < s0

0 if s > s0.

This result is then used along with the notion of an s-nested packing to ob-

tain results in more general spaces. In this section, Ω = {1, . . . ,m}N is a
fixed self-similar sequence space with contraction ratio list (r1, . . . , rm) so that∑m

1 rs0i = 1, where s0 > 0 is fixed.

Theorem 3.1. For M > 0, let ϕM (t) = 2−M(1/t)s0 . Then, there exists an M
large enough so that HϕM (K(Ω)) <∞.

Proof. Choose 0 < u < min{ri} so that 1/us0 = n ∈ N. For every k ∈ N+,
let

Lk = {α ∈ Ω∗ : r(α) ≤ uk < r(α-)}
and let L0 = {Λ}. Each α ∈ Lk satisfies

uk+1 < r(α) ≤ uk

and
n−(k+1) < Hs0([α]) ≤ n−k (2)

by equation (1). Suppose that #(L1) = L. Then, since each β ∈ L1 satisfies
n−2 < Hs0([β]) ≤ n−1 for each k ∈ N, the number of descendants of β in Lk
cannot exceed nk. Otherwise, their total measure would exceed nkn−(k+1) =
1
n ≥ H

s0([β]). Similarly, the number of descendants of β in Lk must be at
least nk−2. So,

Lnk−2 ≤ #(Lk) ≤ Lnk. (3)

Let A ⊂ Lk be nonempty. Associate with A a set Ã ⊂ K(Ω) defined by:

Ã = {C ∈ K(Ω) : {α ∈ Lk : [α] ∩ C 6= ∅} = A}.

Such a set Ã is called a k-set and satisfies uk+1 < diam(Ã) ≤ uk. For a fixed
k, the set of all k-sets covers K(Ω). Since #(Lk) ≤ Lnk, there are no more

than 2Ln
k − 1 such k-sets. This leads to the following estimate:

HϕM
uk

(K(Ω)) ≤
(

2Ln
k

− 1
)
ϕM (uk)

≤ 2Ln
k

2−M(1/uk)s0 = 2Ln
k

2−Mnk ≤ 1
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as long as M ≥ L. Thus for M ≥ L, it follows that HϕM (K(Ω)) ≤ 1.

Now for the lower bound, let ψs(t) = 2−(1/t)s for s > 0.

Theorem 3.2. Hψs(K(Ω)) > 0, whenever s < s0.

Proof. Lk, L, u, n, and k-sets are defined as in the preceding proof. Given
A ⊂ Lk, define π(A) = #(A)/Lnk−2. Let n′ = 1/us < n, choose p ∈ (0, 1) so

that n′ < pn, then choose j ∈ N large enough so that
(
n′

pn

)j
< 1

n . A measure

µ, concentrated on those kj-sets Ã with π(A) ≥ pkj/nk, will be constructed.

µ will satisfy D
ψs

µ (E, (ukj+1)k) ≤ 1 for every E ∈ K(Ω) implying the result

by corollary 2.1. Recall that the definition of D
ψs

µ (E, (ukj+1)k) is given in
lemma 2.1.

The measure µ will be constructed recursively. The empty word Λ is the
only string of length 0 leading to the one 0-set Λ̃ = K(Ω). Define µ(K(Ω)) = 1.

Fix k ∈ N and suppose that µ has been defined for all kj-sets Ã such that
µ(Ã) > 0 only if π(A) ≥ pkj/nk. This condition is seen to be satisfied by Λ̃

by substituting k = 0 into inequality 3. If Ã is a kj-set of positive measure,
then distribute µ(Ã) evenly among all those (k + 1)j-sets B̃ ⊂ Ã such that

π(B) ≥ p(k+1)j

nk+1 . Such a set B̃ will be called an eligible descendent of Ã. A

lower bound on the number of eligible descendants of Ã is needed in order

to estimate µ(Ã) from above. Now #(A) ≥ pkj

nk
Lnkj−2, since π(A) ≥ pkj

nk
. If

α ∈ A ⊂ Lkj , then

n−(kj+1) < Hs0([α]) ≤ n−kj ,

by equation 2. Similarly, if β ∈ L(k+1)j , then

n−(k+1)j−1 < Hs0([β]) ≤ n−(k+1)j .

Thus if L(k+1)j,α is the set of descendants of α in L(k+1)j , then

nj−1 < #(L(k+1)j,α) < nj+1.

To form an eligible descendent B̃ ⊂ Ã proceed as follows: Take
[
pj p

kj

nk
Lnkj−2

]
of the α’s ∈ A and choose all possible descendants β to form part of the set
B. This guarantees that

#(B) ≥
[
p(k+1)j

nk
Lnkj−2nj−1

]
=

[
p(k+1)j

nk
Ln(k+1)j−3

]
,
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so that π(B) ≥ p(k+1)j

nk+1 . Thus, B̃ is an eligible descendant. We are now free to
choose descendants of the remaining[

pkj

nk
Lnkj−2

]
−
[
p(k+1)j

nk
Lnkj−2

]
≥ (1− pj)(p

kj

nk
Lnkj−2)− 1

α’s ∈ A in any combination. Since each α ∈ A has at least nj−1 descendants
β ∈ L(k+1)j and any possible non-empty subset of these may be chosen as
possible descendants, we get at least

(2n
j−1

− 1)(1−pj)( p
kj

nk
Lnkj−2)−1

eligible descendants B̃ ⊂ Ã. This means that any such B̃ satisfies

µ(B̃) ≤ (2n
j−1

− 1)−(1−pj)( p
kj

nk
Lnkj−2)−1µ(Ã).

Applying this recursively, we see that a kj-set satisfies

µ(Ã) ≤ (2n
j−1

− 1)−(1−pj)Ln−2(1+pjnj−1+···+(pjnj−1)k−1)−k

= (2n
j−1

− 1)
−(1−pj)Ln−2 (pjnj−1)k−1

pjnj−1−1
−k

≤ 2−L
′(pjnj−1)k

where L′ > 0 is a sufficiently small constant.
Now, if E ∈ K(Ω) and k is fixed, let

AE = {α ∈ Lkj : [α] ∩ E 6= ∅}.

Then ÃE is a kj-set and, so, satisfies diam(ÃE) > ukj+1. So any set F̃ ⊂ K(Ω)

such that diam(F̃ ) < ukj+1 and E ∈ F̃ , must also satisfy F̃ ⊂ ÃE . Thus,

µukj+1(E) < µ(ÃE). Let n′ = 1/us < n. Then,

µukj+1(E)

ψs(ukj+1)
≤ µ(ÃE)

ψs(ukj+1)
≤ 2−L

′(pjnj−1)k

2−(n′)kj+1

= 2(n′)kj+1−L′(pjnj−1)k → 0

as k →∞, since pjnj−1 > (n′)j by assumption.

The next order of business is to extend these theorems to more general sets
E. For the upper bound, let us suppose that E ⊂ F where F is the self-similar
set given by the maps (f1, . . . , fm) with ratio list (r1, . . . , rm). Let (Ω, ρ) be
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the corresponding self-similar sequence space. In this situation, it is shown in
[Ed] that there is a surjective Lipschitz map h : Ω→ F . Since a Lipschitz map
is continuous and the continuous image of a compact set is compact, h extends
naturally to a Lipschitz map h̃ : K(Ω) → K(F ). Thus the upper bound for
K(Ω) holds for K(E). By composing the map h with another if necessary, it is
also clear that F need not be strictly self-similar, but only the Lipschitz image
of a self similar set. This is summarized in the following theorem.

Theorem 3.3. Let E ⊂ F ⊂ X, where X is a separable metric space and F
is the Lipschitz image of a self-similar set with ratio list (r1, . . . , rm) such that∑m
i=1 r

s0
i = 1. Let ϕM (t) = 2−M(1/t)s0 . Then, there is an M > 0 large enough

so that HϕM (K(E)) <∞.

For the lower bound, suppose that E has an s0-nested packing. Then we
may extract a subset E′ ⊂ E, which is bi-Lipschitz equivalent to a self-similar
sequence space (Ω, ρ) of finite Hausdorff dimension s0 by lemma 2.2. Again,
the bi-Lipschitz map g : Ω → E′ extends to a bi-Lipschitz map g̃ : K(Ω) →
K(E′). Thus, we have the following theorem.

Theorem 3.4. Let ψs(t) = 2−(1/t)s . Suppose that E has an s0-nested packing.
Then for s < s0 we have Hψs(K(E)) > 0.

As noted in corollary 1.1, these theorems apply to self-similar sets. It is
natural to ask whether these theorem hold (or fail) for other types of sets.
The next theorem is an example showing that no general estimate can hold.
For every ϕ ∈ Φ, there is countable metric space X so that Hϕ(K(X)) >
0. It is interesting to note that the following metric space yields this same
unexpected behavior for the entropy dimensions (see [Mcc]). Suppose that
X = {x0, x1, . . . , x∞} is a countable metric space with metric ρ satisfying
ρ(xn, x∞) = an ↘ 0 and ρ(xn, xm) ≥ an for m < n <∞. Clearly Hϕ(X) = 0
for every ϕ ∈ Φ. But the following is also true:

Theorem 3.5. Let (X, ρ) be as above and suppose ϕ ∈ Φ satisfies ϕ(an) =
2−n. Then 1

2 ≤ H
ϕ(K(X)) ≤ 1.

Proof. A set T ∈ K(X) is isolated if and only if x∞ 6∈ T . Let

K′(X) = {T ∈ K(X) : x∞ ∈ T}.

Then K(X) \ K′(X) is countable so that Hϕ(K(X) \ K′(X)) = 0.
Turn now to K′(X). For fixed n ∈ N, each set A ⊂ {x0, . . . , xn−1} deter-

mines a set
Ãn = {T ∈ K′(X) : A = T ∩ {x0, . . . , xn−1}}.
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Note that if S, T ∈ Ãn, then any point xk ∈ S with k ≥ n satisfies ρ(xk, x∞) ≤
an. So dist(xk, T ) ≤ an, since x∞ ∈ T . Since S and T agree on A, it follows

that dist(xk, T ) ≤ an for every xk ∈ S and vice versa. So diam(Ãn) ≤ an. In

fact, A ∪ {x∞} and A ∪ {xn, x∞} ∈ Ãn, so that diam(Ãn) = an. Now there
are 2n such A’s contained in {x0, . . . , xn−1}. So

Hϕan(K′(X)) ≤ 2nϕ(an) = 2n2−n = 1.

So Hϕ(K′(X)) ≤ 1.
For the lower bound, a measure µ on K′(X) will be constructed recursively.

Let µ(K′(X)) = 1. Fix m ∈ N and suppose that µ has been constructed so

that A ⊂ {x0, . . . , xn−1} implies µ(Ãn) = 2−n for every n ≤ m. Note that if
A ⊂ {x0, . . . , xm−1}, then

Ãm = {T ∈ Ãm : xm ∈ T} ∪ {S ∈ Ãm : xm 6∈ S}.

Divide µ(Ãm) evenly between these two sets. In this way µ is constructed so

that µ(Ãn) = 2−n for any n ∈ N and A ⊂ {x0, . . . , xn−1}.
Now suppose that B̃ ⊂ K′(X) satisfies an+1 < diam(B̃) ≤ an. Let T ∈ B̃

and let A = T ∩ {x0, . . . , xn−1}. Then B̃ ⊂ Ãn, so

µ(B̃) ≤ 2−n = 2 · 2−(n+1) = 2ϕ(an+1) < 2ϕ(diam(B̃)).

Thus if {B̃k}∞k=1 is an ε-cover of K′(X), we have

∞∑
k=1

ϕ(diam(B̃k)) ≥ 1

2

∞∑
k=1

µ(B̃k) ≥ 1

2

and so

Hϕ(K′(X)) ≥ Hϕε (K′(X)) ≥ 1

2
.
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