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1 Historical background

A function f : R→ R is said to have the intermediate value property provided
that if p and q are real numbers such that p 6= q and f(p) < f(q), then for
every y ∈ (f(p), f(q)) there exists a number x between p and q with f(x) = y.
In 1875, G. Darboux showed that there exist functions with the intermediate
value property that are not continuous [37]. Because of his work with functions
having the intermediate value property, these functions are called Darboux
functions.

In 1907, J. Young [122] studied real-valued functions defined on an interval
with the following property: for every x ∈ R there exist sequences {xn} and
{yn} such that xn ↗ x, yn ↘ x, and both f(xn) and f(yn) converge to f(x).
In [122], J. Young showed that for Baire class 1 functions, Darboux functions
and functions having this property of Young are equivalent. In more general
spaces, functions having the property of Young are said to be peripherally
continuous. (See [59, 60, 121].)

K. Kuratowski and W. Sierpiński, in 1922, showed that for real-valued
Baire class 1 functions defined on an interval, Darboux functions and functions
with a connected graph are equivalent [79].

I. Maximoff, in 1936, showed that for real-valued Baire class 1 functions
defined on an interval, Darboux functions and functions with a perfect road
are equivalent [86].

J. Stallings, in 1959, defined almost continuous functions in the sense of
Stallings and extendable functions [114].

In [14], J. Brown showed that for real-valued Baire class 1 functions defined
on an interval, Darboux functions and almost continuous functions in the sense
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of Stallings are equivalent. In [16], J. Brown, P. Humke, and M. Laczkovich
showed that for real-valued Baire class 1 functions defined on an interval,
Darboux functions and extendable functions are equivalent.

From the preceding we see that for Baire class 1 functions f : R → R,
Darboux functions have been characterized in several ways. For further infor-
mation concerning these functions see the first three chapters of the book [17]
by A. M. Bruckner.

2 Basic definitions

Our terminology is standard. We consider only real-valued functions of one
real variable. No distinction is made between a function and its graph. By R
and I we denote the set of all reals and the interval [0, 1], respectively. The
family of all subsets of a set X is denoted by P(X). The family of all functions
from a set X into Y is denoted by Y X . By C and Const we denote the families
of all continuous functions and all constant functions. The symbol |X| stands
for the cardinality of a set X. The cardinality of R is denoted by c. For the
cardinal number κ we write [X]κ to denote the family of all subsets Y of X
with |Y | = κ. In particular, [X]1 stands for the family of all singletons in
X and [X]2 for the family of all doubletons in X. By a Cantor set we mean
any non-empty perfect nowhere dense subset of R. Moreover, we say that a
set A ⊂ R is Cantor dense in a set X ⊂ R, if A ∩ J contains a Cantor set
whenever J is a non-empty open interval J with J ∩ X 6= ∅. By (a, b) we
denote an open interval with end-points a and b, i.e., the set of all x ∈ R such
that min{a, b} < x < max{a, b}.

The following is a list of the definitions of the different types of functions
that will be investigated. Note that we have abbreviated these classes of
functions with letters on the left.

Let X and Y be topological spaces and let f : X → Y be a function. Then:

D – f is a Darboux function if f(C) is connected whenever C is connected in
X;

PC – f is peripherally continuous if for every x ∈ X and for all pairs of open
sets U and V containing x and f(x), respectively, there exists an open
subset W ⊂ U such that x ∈ W and f(bd (W )) ⊂ V , where bd (W )
denotes the boundary of W ;

Conn – f is a connectivity function if the graph of f restricted to C, denoted
by f�C, is connected in X × Y whenever C ⊂ X is connected;
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ACS – f is an almost continuous function in the sense of Stallings, if U is an
open subset of X × Y containing the graph of f , then U contains the
graph of a continuous function g : X → Y [114];

Ext – f is an extendable function if there exists a connectivity function g :
X × I→ Y such that f(x) = g(x, 0) for all x ∈ X [114].

The class of all Darboux functions from X to Y we shall denote by D(X,Y ),
or shortly, by D, when X and Y will be clear from a context (usually, X =
Y = R). Similarly, for other Darboux like classes.

The next definitions concern only real-valued functions defined on R (or,
on subspaces of R). Then:

PR – f has a perfect road if for every x ∈ R, there exists a perfect set P
having x as a bilateral limit point such that f�P is continuous at x [86];

WCIVP – Weak Cantor Intermediate Value Property: f ∈WCIVP if for all
p, q ∈ R with p < q and f(p) 6= f(q), there exists a Cantor set C ⊂ (p, q)
such that f(C) is between f(p) and f(q) [48];

CIVP – Cantor Intermediate Value Property: f ∈ CIVP if for all p, q ∈ R
with p 6= q and f(p) 6= f(q) and for every Cantor set K between f(p)
and f(q), there exists a Cantor set C between p and q such that f(C) ⊂
K [47];

SCIVP – Strong Cantor Intermediate Value Property: f ∈ SCIVP if for all
p, q ∈ R with p 6= q and f(p) 6= f(q) and for every Cantor set K between
f(p) and f(q), there exists a Cantor set C between p and q such that
f(C) ⊂ K and f�C is continuous [102];

PB – Property B: f ∈ PB if for all pairs of open intervals I and J , if I∩f−1(J)
is uncountable, then I ∩ f−1(J) contains a non-empty perfect set [44].

Theorem 2.1. If f : R→ R, then

• f ∈ D if and only if f has the intermediate value property;

• f is a connectivity function if and only if the entire graph of f is con-
nected;

• f is peripherally continuous if and only if it satisfies the Young condition:

for every x ∈ R there exist sequences {xn} and {yn} such that
xn ↗ x, yn ↘ x, and both f(xn) and f(yn) converge to f(x).
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• Conn ⊂ D ⊂ PC and PR ⊂ PC

The preceding is a brief survey of some of the known facts concerning the
families of functions defined.

3 Darboux like functions in the class RR

Stallings defined almost continuous functions in the sense of Stallings (ACS)
in [114] and proved the implications

Ext ⊂ ACS and ACS ⊂ Conn.

Thus in the class of all functions RR, we have the following implications.

C - Ext -ACS - Conn - D - PC

PR�
���

���
�:XXXXXXXXz

Chart 1

Note that all inclusions in Chart 1, denoted by →, are proper. (See [16].)

The following contains a survey of research that has been done concerning
these properties. In this investigation a series of questions were asked by the
first of the Authors in a lecture given at the Banach Center in November of
1989 [43]. We will now give an update on the status of those questions. The
first question:

Question 3.1. What is both a necessary and sufficient condition for an almost
continuous function in the sense of Stallings to be an extendable function?

is one on which the first Author has spent a great amount of time. This
question also led to most of the others questions.

F. Roush and R. Gibson in their investigation of the characterization
of extendable functions defined the properties WCIVP, CIVP, and SCIVP.
(See [45, 47, 48, 102].) These properties were given the following names due to
their similarity to the intermediate value property. Hence they are Darboux
like functions.

In reference to the question

“Does ACS ⊂ Ext?”

asked by Stallings in [114], Gibson and Roush in [48], defined the weak Cantor
intermediate value property(WCIVP), and proved the following results.
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Theorem 3.2. (Gibson, Roush [48]) In the class II we have

• if f ∈ Ext, then f ∈WCIVP,

• there exists a function f : I→ I such that f ∈ ACS and f /∈WCIVP.

Hence in the class of all real functions defined on subintervals of R we have

Corollary 3.3. Ext ⊂ (ACS ∩WCIVP) and ACS 6= Ext.

Theorem 3.4. (Gibson, Roush [51]) In the class II we have

• if f ∈ Ext then f ∈ PR;

• there exists a function f : I→ I such that f ∈ ACS but f /∈ PR.

Hence in the class of all real functions defined on subintervals of R we have

Corollary 3.5. Ext ⊂ ACS ∩ PR.

In [51], Gibson and Roush posed the following question:

“Does there exists a function f : I → I such that f ∈ ACS ∩ PR
but f /∈ Ext?”.

Rosen, Gibson, and Roush in [102] gave an affirmative answer to this ques-
tion by proving the following theorem

Theorem 3.6. (Rosen, Gibson, Roush [102]) In the class II we have

• if f ∈ Ext, then f ∈ SCIVP;

• there is a function f ∈ (ACS ∩ PR) \ CIVP.

Since SCIVP ⊂ CIVP, hence in the class of all real functions defined on
subintervals of R we have

Corollary 3.7. Ext 6= (ACS ∩ PR).

It was stated in [51] that CIVP ⊂ PR but it was not proved. The proof of
that statement now follows.

Theorem 3.8. If f : R→ R is a function and f ∈ CIVP, then f ∈ PR.

Proof. Select any x ∈ R. Assume that there exists ε > 0 such that f is
constant on no subinterval of [x− ε, x] having x as a right endpoint.

Let xn be a increasing sequence in (x−ε, x) such that xn → x, f(xn) 6= f(x)
and f(xn) → f(x). Select any Cantor set Kn between f(x) and f(xn) such
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that Kn is a subset of (f(x)− 1/n, f(x) + 1/n). Since f ∈ CIVP, there exists
a Cantor set Cn between xn and x such that f(Cn) is a subset of Kn. Let A
be the union of all Cn and {x}. Then A is a perfect set and f�A is continuous
at x (from the left). In a similar way we can construct a perfect set B such
that f�B is continuous at x (from the right).

If f is constant on [x−ε, x] or [x, x+ε] for some ε > 0, let A = [x−ε, x] or
B = [x, x+ ε]. Now if P = A∪B, then P is a perfect set with x as a bilateral
limit point and f�P is continuous at x.

For real-valued functions f : R→ R we have only the following implications
among the classes of functions defined above. This is an expansion of the
previous diagram. (See the papers by Brown, Humke and Laczkovich, [16];
Rosen, Gibson and Roush [102]; and Banaszewski and Natkaniec, [8].)

C - Ext ACS ∩ PR WCIVP- -
PPPPPPq

6

ACS - Conn - D
@
@R

PC

SCIVP
���

CIVP PR
@
@R

- -
@
@R �

��

PB

Chart 2

Note that in the class RR all inclusions in Chart 2 are proper.
We now recall some additional questions from [43] and give the answer, if

it is known.

Question 3.9. If f ∈ CIVP, is f ∈ SCIVP?

Answer: No. K. Banaszewski and T. Natkaniec in [8] constructed a
Sierpiński-Zygmund (SZ) function f : R → R having the CIVP and observed
that every function in SZ does not have the SCIVP. (See Theorem 4.8.) Thus
f ∈ CIVP \ SCIVP.

Question 3.10. If f ∈ (ACS ∩ CIVP), is f ∈ Ext?

Answer: No. If the real line R is not a union of less than continuum many
of its meager subsets, K. Banaszewski and T. Natkaniec in [8] constructed
f ∈ (ACS ∩ CIVP ∩ SZ). (See Theorem 4.10.) Since f ∈ SZ, f /∈ SCIVP.
Therefore f /∈ Ext. Moreover, quite recently, K. Ciesielski [28] constructed in
ZFC an example f ∈ (ACS ∩ CIVP) that is continuous on no perfect subset.
Thus f 6∈ SCIVP and consequently, f 6∈ Ext.
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The next question remains open1.

Question 3.11. If f ∈ (ACS ∩ SCIVP), is f ∈ Ext?

In [45] it was shown that if f : [a, b]→ R and f ∈ D, then

WCIVP = PB = PR.

Also we discussed the following questions which have negative answers.

Question 3.12. If f ∈ (ACS ∩ PR), is f ∈ Ext?

Answer: No. See Corollary 3.7.

Question 3.13. If f ∈ (Conn ∩ PR), is f ∈ ACS?

Answer: No. See [16] and [45].

Question 3.14. If f ∈ D ∩ PR, is f ∈ Conn?

Answer: No. See [16] and [45].
Each of the functions defined in the answers to Questions 3.13 and 3.14

has a graph that is a Gδ set, and hence is Borel measurable. Thus they satisfy
the SCIVP. (See subsection 3.2.)

However we left open the following question.

Question 3.15. If f ∈ ACS and has a Gδ graph, is f ∈ Ext?

3.1 Darboux like functions in the first class of Baire

Darboux like functions that belong to the first class of Baire were studied in
many papers. (See also the survey of J. Ceder and T. L. Pearson [26].)

Theorem 3.16. (See [17].) In Baire class one the following properties are
equivalent:

Conn = D = PR = PC.

Theorem 3.17. (Brown [14]) In Baire class one,

ACS = Conn.

Theorem 3.18. (Brown, Humke, Laczkovich [16]) In Baire class one,

Ext = ACS.
1Recently H. Rosen proved under CH that there exists f ∈ ACS ∩ SCIVP \ Ext [107].

Actually, his proof works under assumption that the union of less than c many meger sets
is meger.
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Corollary 3.19. In Baire class one the following properties are equivalent

Ext = ACS = Conn = D = SCIVP = CIVP = PR = PC.

Now we will state the relations that hold in the first class of Baire between
Darboux functions and PB and WCIVP functions.

First, because every Borel measurable function has the property PB, so

PC ∪WCIVP ⊂ PB.

On the other hand, the characteristic function of the halfline (0,∞) belongs
to PB \ (PC ∪WCIVP). Thus

PB 6⊂ PC and PB 6⊂WCIVP.

3.2 Darboux like functions that are Borel measurable

For Borel measurable function, Brown, Humke and Laczkovich proved the
following theorem.

Theorem 3.20. (Brown, Humke, Laczkovich [16]) In the class of Borel mea-
surable functions the following implications hold

Ext⇒ ACS⇒ Conn⇒ D⇒ PR⇒ PC.

Moreover, those implications are not reversible except for possibly Ext⇒ ACS.

Thus we have the following open question. (See also Question 3.15.)

Question 3.21. If f : I→ I is a Borel measurable function and f ∈ ACS, is
f ∈ Ext?

The next example is strictly connected with the Question 3.21.
Example. (Cesáro) Let ϕ : I→ I be defined by

ϕ(x) = limn→∞
a1 + . . .+ an

n

where ai are given by the unique nonterminating binary expansion of the
number x = (0.a1a2 . . .).

The function ϕ is called the Cesáro-Vietoris function. Note that ϕ belongs
to the second class of Baire [17]. Vietoris proved in 1921 that ϕ is connected:
ϕ ∈ Conn [117]. In 1975, J. Brown proved that ϕ ∈ ACS [15]. The following
problem remains open:
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Question 3.22. Does the Cesáro-Vietoris function ϕ belong to Ext?

Note that the solution of Question 3.22 in the negative implies also the
negative answer to the Question 3.21.

Note also that in the class of Borel measurable functions,

D ⊂ SCIVP = CIVP.

Thus, ACS ∩ PR = ACS.

3.3 Darboux like functions that are Lebesgue measurable

Theorem 3.23. (Brown, Humke, Laczkovich [16]) In the class of all Lebesgue
measurable functions the following relations hold:

C - Ext -ACS - Conn - D - PC

PR�
��

���
��:XXXXXXXXz

Moreover, all those inclusions are proper.

3.4 Darboux like functions that are Marczewski measurable

Recall that a function f : X → Y is said to have property-(s) or to be (s)-
measurable provided that

(s) – for each non-void perfect subset P of X there exists a non-void perfect
subset Q of P such that the restriction f�Q is continuous.

Marczewski defined property (s) for sets in [85] and showed that the class of
(s)-measurable (Marczewski measurable) functions and the class of functions
(functions with property (s)) studied by Sierpiński in [108] were the same.
Note that each Borel measurable function is Marczewski measurable.

Theorem 3.24. (Gibson, Roush [52]) There exists a connectivity function
g : I2 → I and p ∈ I such that the extendable function f : I→ I given by f(x) =
g(x, p) does not have property (s). Thus f is not Marczewski measurable.

J. B. Brown, P. Humke, and M. Laczkovich in [16] stated the problem that
can be formulated as follows:

Question 3.25. How are the Darboux like properties related within the func-
tion classes:

U – universally measurable functions;
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Bw – functions with the Baire property in wide sense;

Br – functions with the Baire property in restricted sense;

(s) – Marczewski measurable functions?

See [78] for definitions and discussion. Generally, this problem remains
open. However, we know that the answer depends on some additional set
theoretical assumptions. Namely, concerning this problem, I. Rec law and
R. G. Gibson, [55], proved the following theorems.

Theorem 3.26. (Gibson, Rec law [55]) For functions f : R→ R, the following
are equivalent:

(i) U ∩D ⊂ PR;

(ii) U ∩ACS ⊂ PR;

(iii) there is no universally null set of size of the continuum on the real line.

Theorem 3.27. (Gibson, Rec law [55]) For functions f : R→ R, the following
are equivalent:

(i) Br ∩D ⊂ PR;

(ii) Br ∩ACS ⊂ PR;

(iii) there is no always of the first category set of size of the continuum on
the real line.

4 Darboux like properties in the class of Sierpiński-Zyg-
mund functions

The next theorems are connected with a theorem of Blumberg from 1922.

Theorem 4.1. (Blumberg [9]) For every f : R→ R there exists a dense subset
D of R such that the restriction f�D of f to D is continuous.

The set D constructed by Blumberg is countable. In a quest whether it
can be chosen any bigger Sierpiński and Zygmund proved in 1923 the following
theorem. This theorem shows that we cannot prove in ZFC a version of the
Blumberg theorem in which the set D is uncountable.

Theorem 4.2. (Sierpiński, Zygmund [110]) There exists a function f : R→ R
whose restriction f�X is discontinuous for any subset X of R of cardinality c.
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Every function that satisfies the assertions of Theorem 4.2 is called to be
a Sierpiński-Zygmund function (shortly, SZ-function):

SZ – f is SZ-function if the restriction f�X is discontinuous for any subset
X of R of cardinality c.

In 1981, J. Ceder constructed an example of connectivity SZ function.

Theorem 4.3. (Ceder [24]) Assume the Continuum Hypothesis (CH). Then

SZ ∩ Conn 6= ∅.

This result was improved by K. Kellum.

Theorem 4.4. (Kellum [74]) Assume the Continuum Hypothesis (CH). Then

SZ ∩ACS 6= ∅.

On the other hand, it is easy to observe that

SZ ∩ SCIVP = ∅.

Thus

Theorem 4.5. SZ ∩ Ext = ∅.

The PR functions in the class SZ were considered by Darji in 1993.

Theorem 4.6. (Darji [38]) There exists f ∈ SZ ∩ PR.

Answering a question posed by Darji, in 1996 Balcerzak, Ciesielski and
Natkaniec proved the following theorem

Theorem 4.7. (Balcerzak, Ciesielski, Natkaniec [1])

(a) If R is not a union of less than continuum many of its meager subsets
(thus under CH and MA) then there exists an f ∈ SZ ∩ PR ∩ACS.

(b) There is a model of ZFC in which every Darboux function f : R→ R is
continuous on some set of cardinality continuum.

In particular, in this model we have SZ ∩ACS = SZ ∩D = ∅.

K. Banaszewski and T. Natkaniec replaced PR property in Theorem 4.6
by CIVP.

Theorem 4.8. (K. Banaszewski, Natkaniec [8]) There exists f ∈ SZ∩CIVP.
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Thus we obtain the following.

Corollary 4.9. SCIVP 6= CIVP.

Similarly, part (a) of Theorem 4.7 is improved as follows.

Theorem 4.10. (K. Banaszewski, Natkaniec [8]) If R is not a union of less
than continuum many of its meager subsets, then there exists an f ∈ SZ ∩
CIVP ∩ACS.

Corollary 4.11. If R is not a union of less than continuum many of its
meager subsets, then

Ext 6= ACS ∩ CIVP.

5 Darboux like and additive functions

In 1942, F. B. Jones constructed a function f : R→ R such that

(1) f is additive, i.e., f(x+ y) = f(x) + f(y) for each x, y ∈ R;

(2) f intersects every closed subset P of R2 with uncountable x-projection
dom (P ).

Such a function was studied in several papers.

Theorem 5.1. Let f : R→ R be the Jones’ function. Then

(1) f is connectivity; (Jones [68])

(2) f is almost continuous in the sense of Stallings; (Kellum [74])

(3) f does not have the WCIVP, thus it is not extendable. (Rosen [103])

Darboux like properties in the class Add of additive functions were also
considered by J. Smı́tal [111] and by Z. Grande [56]. Grande in his paper [56]
posed the following, very interesting question. It was presented during the
Joint US-Polish Workshop in Real Analysis in  Lódź, Poland, in July 1994, but
still remains open2. (See also [57].)

Question 5.2. Does there exist a discontinuous additive almost continuous
in the sense of Stallings (or connected) function whose graph is “small” in the
sense of measure or category?

2Recently K. Ciesielski and U. Darji find under CH the affirmative answer to this prob-
lem.(Private communication.)
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Recall that there are discontinuous additive Darboux functions possessing
small graph both in the sense of measure and in the sense of category. (See [2].)

Recently Darboux like functions in the class Add were considered by D. Ba-
naszewski in his doctor’s thesis. In particular, he proved the following

Theorem 5.3. (D. Banaszewski [2]) For every f ∈ Add the following condi-
tions are equivalent

(i) f ∈ PR;

(ii) f has a perfect road at 0;

(iii) f has a perfect road at some x ∈ R;

(iv) f ∈WCIVP.

Theorem 5.4. (D. Banaszewski [2])

(1) There exists f ∈ Add ∩ PR such that f 6∈ CIVP ∪D.

(2) There exists f ∈ Add ∩ACS such that f 6∈ PR.

(3) There exists f ∈ Add ∩ CIVP such that f 6∈ D.

(4) There exists f ∈ Add ∩D such that f 6∈ Conn.

D. Banaszewski posed also the following open question.

Question 5.5. Does there exist f ∈ Add ∩ Conn \ACS?

Moreover, we are unable to construct a discontinuous function f ∈ Add ∩
Ext. Note that it is easy to construct a discontinuous function f ∈ Add ∩
SCIVP ∩ACS. (This holds because there exists a Hamel base which contains
a perfect set.)

6 Darboux like functions versus quasi-continuity

We now give some facts that are related to a different kind of discontinuity. In
this investigation we will also discuss some relations with the previous classes
of functions. Recall the following notions.

Let f : X → Y be a function. Then:

ACH – f is an almost continuous function in the sense of Husain, if for every
x ∈ X and for each open neighborhood V of f(x) in Y , cl (f−1(V )) is a
neighborhood of x.
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CT – f is said to be of the Cesaro type if there exist non-empty open sets U
and V in X and Y , respectively, such that U ⊂ cl (f−1(y)) for all y ∈ V .

QC – f is said to be quasi-continuous if for every x ∈ X and for all pairs of
open sets U and V containing x and f(x), respectively, there exists an
non-empty open subset W ⊂ U such that f(W ) ⊂ V .

CLIQ – Let Y be a metric space with metric %. Then f is cliquish if for every
x ∈ X, for each open neighborhood U of x and for every ε > 0 there
exists a non-empty open subset W ⊂ U such that %(f(y), f(z)) < ε, for
all y, z ∈W .

T. Husain defined the notion of almost continuous functions in the sense of
Husain in [63]. Note that the function f : [0, 1]→ R defined by f(x) = sin( 1

x )
for x > 0, and f(0) = 0 is a Darboux function of Baire class 1 but is not
almost continuous in the sense of Husain. Thus this type of almost continuity
is different from the other in a very restrictive class of functions. It should
be noted that almost continuity in the sense of Husain was defined earlier
by H. Blumberg [9], who used the phrase “densely approached”. S. Kempisty
defined the notion of quasi continuous function in [77]. (See also [84].) Finally,
the notion of cliquishness was introduced by H. P. Thielman in [115].

Clearly, each function with values in a metric space, which is quasicontin-
uous, is cliquish. Moreover, it is worth to notice that for the real functions
defined on a Baire space,

• f ∈ QC iff the restriction f�C(f), of f to the set of all points at which
f is continuous, is dense in f ;

• f ∈ Cliq iff f is pointwise discontinuous, i.e., the set C(f) is dense in X.

• Each f ∈ Cliq has the Baire property.

Also, there exist quasi-continuous functions f : R→ R that are not almost
continuous in the sense of Husain nor in the sense of Stallings.

Darboux like functions in the class of quasi-continuous functions were stud-
ied in two papers, by R. Gibson and I. Rec law in [55], and independently, by
T. Natkaniec in [90].

Theorem 6.1. (Gibson, Rec law [55])

(1) There exists f : I→ I such that f ∈ PR ∩QC but f /∈ D.

(2) There exists f : I→ I such that f ∈ PR ∩ Cliq but f /∈ QC.

(3) There exists f : I→ I such that f ∈ QC ∩D but f /∈ Conn.
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(4) If f : R→ R and f ∈ QC, then f ∈ PR iff f ∈ PC.

(5) There exists f : I→ I such that f ∈ Cliq ∩ PC but f /∈ PR.

Gibson and Rec law also asked the questions, for functions f : R→ R,

Question 6.2. Does QC ∩ Conn ⊂ ACS?

This question is answered in the negative by A. Andryszczak (Nowik) and
M. Szyszkowski. (See [55].) They observed that the function f constructed
in [65] by J. Jastrzȩbski has the property that f ∈ QC ∩ Conn but f /∈ ACS.
(See also [90].)

Question 6.3. Does QC ∩ACS ⊂ Ext?

To answer this question, we prove the following

Theorem 6.4. There exists a quasi-continuous function f : I→ I in the class
ACS \ CIVP.

Proof. Let C be the ternary Cantor set and let (In,m)n,m be the sequence
of all components of I \ C such that

• for each n,
⋃
m In,m is dense in C.

Let (qn)n be a sequence of all rationals. Moreover, let C0 = C \
⋃
n,m cl (In,m)

and let B ⊂ C0 be a Bernstein set in C, i.e., B ∩ P 6= ∅ 6= C \ P for each
non-empty perfect set P ⊂ C.

Now let (Fα)α<c be a sequence of all minimal blocking sets in I × I such
that dom (Fα) ∩ C0 6= ∅. Note that |dom (Fα) ∩ B| = c for each α < c. For
each α < c choose (xα, yα) ∈ Fα such that

• xα ∈ B;

• xα 6= xβ for α 6= β.

Define f : I→ I by

f(x) =

 qn for x ∈
⋃
m cl (In,m);

yα for x = xα, α < c;
0 otherwise.

Observe that f0 = f�
⋃
n,m In,m is continuous and f0 is dense in f . Thus f is

quasi-continuous.
Now, f is almost continuous. Indeed, if F ⊂ I2 is a minimal blocking set

then either dom (F ) ⊂ cl (In,m) for some n,m ∈ N or F = Fα for some α < c.
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(See, e.g., [88].) Therefore either (x, qn) ∈ F for some x (because rng (F ) = R)
or (xα, yα) ∈ F ∩ f . Thus f ∩ F 6= ∅.

Finally, let K be a Cantor set such that K ⊂ I \Q. Then f−1(K) ⊂ B, so
it contains no Cantor set.

Corollary 6.5. QC ∩ACS \ Ext 6= ∅.

6.1 Decomposition of the continuity

Theorem 6.6. (D. B. Smith [113]) f : [a, b]→ R is continuous if and only if
it satisfies the conjunction of the following three conditions:

(1) f ∈ ACS;

(2) f ∈ ACH;

(3) f 6∈ CT.

With the examples given in the paper [113] and the examples given by
R. J. Fleissner [41] and by J. Brown [15] it follows that the three conditions
are not redundant. At a real variable conference at Auburn University and
at the XV Summer Symposium in Real Analysis held in Smolenice Castle,
Smolenice, Czechoslovakia, August 1991, R. Gibson answered the following
three questions. (Remember Chart 1! See page 496)

Question 6.7. In Theorem 6.6, if f ∈ ACS is replaced with the stronger
condition f ∈ Ext, are the three conditions redundant?

Answer: No. See [46].

Question 6.8. In Theorem 6.6, if the condition f ∈ ACS is replaced with the
weaker condition f ∈ D, is the theorem true?

Answer: Yes. See [46].

In [46], it is shown that if f : [a, b]→ R is almost continuous in the sense of
Husain, then f is peripherally continuous. Thus it follows that we can weaken
condition (1) of the theorem of B. D. Smith to include all Darboux functions,
but we can not weaken condition (1) to include all peripherally continuous
functions.

In [112], Smı́tal and Stanova proved the following theorem.

Theorem 6.9. (Smı́tal, Stanova [112]) There exists a function h : R → R
such that h ∈ ACS, h /∈ CT and h /∈ QC.
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This suggests the following problem.

Question 6.10. Does there exists a function h : R → R such that h ∈ Ext,
h /∈ CT, and h /∈ QC?

Answer: Yes. Recently H. Rosen remarked that the Croft’s function,
i.e., Darboux Baire 1 function h : R → R that equals 0 almost everywhere
(See [17].) belongs to the class Ext \ CT ∪QC.

J. Smı́tal and E. Stanova [112] gave a generalization of the theorem of
Smith by proving the following theorem.

Theorem 6.11. (Smı́tal, Stanova [112]) Let X be a T3 locally connected Baire
topological space. A function f : X → R is continuous if and only if it satisfies
the conjunction of the following three conditions:

(1) f ∈ ACS;

(2) f ∈ ACH;

(3) f 6∈ CT.

Question 6.12. Is Theorem 6.11 true when condition (1) is replaced with the
condition f ∈ D?

Answer: Yes. See [46].

7 Some characterizations of Darboux like functions

7.1 Extendability and peripheral families

The following question was posed in [43].

Question 7.1. Is there a ”nice condition” that characterizes extendable func-
tions?

See also Question 3.1. Concerning this question, Gibson and Roush in [53]
defined a family of peripheral intervals for a function f : I→ I.

Definition. Let f : I→ I be a function. A family of peripheral intervals (PI)
for f consists of a sequence of ordered pairs (In, Jn) of subintervals of I such
that

(1) In is open in I and the length of In converges to 0;

(2) for each x ∈ I and for any ε > 0 there exists (In, Jn) such that x ∈ In,
f(x) ∈ Jn, and the length of In and Jn are less than ε;
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(3) both endpoints of In map into Jn;

(4) if In and Im have points in common but neither is a subset of the other,
then Jn and Jm have points in common.

Then in the same paper [53], Gibson and Roush proved the following two
theorems.

Theorem 7.2. (Gibson, Roush [53]) Assume that for f : I→ I there exists a
family of PI. Then f is the restriction of a connectivity function F : I2 → I
such that F is continuous on the complement of I× {0}, where I is embedded
in I2 as I× {0}.

Note also that a function F in Theorem 7.2 can be chosen to be constant
on intervals {0} × I and {1} × I.

Theorem 7.3. (Gibson, Roush [53]) The existence of a family of PI is both
necessary and sufficient that a function f : I→ I be an extendable function.

It should be noted that Theorems 7.2 and 7.3 gives a result that is a
generalization of Tietze’s extension theorem for closed set I×{0} in I2 and for
an extendable function defined on I× {0}. The definition of a family of PI is
long and difficult to deal with3. Thus can this definition of a family of PI be
replaced with a “nice condition”?

7.2 Negligible sets

Assume that K is a class of functions from X into Y and g ∈ K. A set M ⊂ X
is called g-negligible with respect to K, if every function f : X → Y which
agrees with g on X \M belongs to K.

In 1970, J. Brown proved the following result.

Theorem 7.4. (Brown [12]) If K = Conn and g ∈ II ∩ K then the following
statements are equivalent:

(i) g is dense in I2;

(ii) every nowhere dense subset of I is g-negligible with respect to K;

(iii) there exists a dense subset of I which is g-negligible with respect to K.

In [74] K. Kellum showed that Brown’s characterization is still valid when
K is replaced by the class ACS. A stronger result for the class Ext was obtained
recently by H. Rosen.

3Nevertheless it can be useful. See [66].
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Theorem 7.5. (Rosen [101]) If K = Ext and g ∈ II ∩ K then the following
statements are equivalent:

(i) g is dense in I2;

(ii) every nowhere dense subset of I is g-negligible with respect to K;

(iii) there exists a dense Gδ subset of I which is g-negligible with respect to
K.

Note that the analogous result holds also in the class of all real functions
defined on R [32, 105]. Theorem 7.5 together with examples of extendable
functions that are dense in I2 (See [13, 15].) and extendable functions that are
dense in R2 (See [32, 105].) are the useful instruments to construct extendable
functions. (See [31, 32, 91, 105, 106].)

7.3 Darboux like functions that are characterizable by images,
preimages and associated sets

Recall the following definitions. For the families A,B ⊂ P(R) we define

CA,B = {f ∈ RR : (∀A ∈ A) (f(A) ∈ B)},

and

C−1A,B = {f ∈ RR : (∀B ∈ B) (f−1(B) ∈ A)}.

Also, we say that a family F of real functions is

• characterizable by images of sets if F = CA,B for some A,B ⊂ P(R);

• characterizable by preimages of sets if F = C−1A,B for some A,B ⊂ P(R);

• topologized if F = C−1A,B for some topologies A,B on R;

• characterizable by associated sets if there exists an A ⊂ P(R) such that

f ∈ F if and only if for every α ∈ R, the “associated” sets
Eα(f) = {x : f(x) < α} and Eα(f) = {x : f(x) > α} belong
to A.

(i.e., F = C−1A,B for B = {(a,∞) : a ∈ R} ∪ {(−∞, a) : a ∈ R}.)
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Clearly the class C can be defined by preimages of open sets, so it can
be topologized and characterized by associated sets. On the other hand, this
class cannot be characterized by images of sets [116].

The problem of characterizing some Darboux like functions by associated
sets has been studied in several papers.

Theorem 7.6.

• The class D cannot be characterized by associated sets (Bruckner [18]).

• The class Conn cannot be characterized by associated sets (Cristian,
Tevy [36]).

• The class ACS cannot be characterized by associated sets (Kellum [74]).

• The class Ext cannot be characterized by associated sets (Rosen [106]).

The problem of characterizing Darboux like functions by images and by
preimages of sets has been recently addressed by Ciesielski and Natkaniec.

Theorem 7.7. (Ciesielski, Natkaniec [31])

(1) The classes: Ext, ACS, ACS ∩ PR, Conn, D, SCIVP, CIVP, and
WCIVP cannot be characterized by preimages of sets.

(2) The classes: PR and PC can be characterized by preimages of sets as
CA,B with B being the natural topology on R. However, they can neither
be topologized nor be characterized by associated sets.

Theorem 7.8. (Ciesielski, Natkaniec [31])

(1) The classes: Ext, ACS, ACS ∩ PR, Conn, SCIVP, PR, and PC cannot
be characterized by images of sets.

(2) The classes: D, CIVP and WCIVP can be characterized by images of
sets.

We can complete those results and determine whether the classes ACS∩PR
and PB can be characterized by images or by preimages of sets.

Theorem 7.9.

(1) The class ACS∩PR can neither be characterized by images nor by preim-
ages of sets.
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(2) The class PB cannot be characterized by images. It can be character-
ized by preimages, however cannot be topologized nor characterized by
associated sets.

Proof. It is known that if F ⊂ RR is characterizable by images and Ext ⊂
F ⊂ D, then F = D [31, Theorem 4]. Thus, ACS∩PR cannot be characterized
by images.

Similarly, it is known that if F ⊂ RR is characterizable by preimages
and Ext ⊂ F , then F 6⊂ D [31, Theorem 5]. Thus, ACS ∩ PR cannot be
characterized by preimages.

Also, it is known that if F ∈ RR satisfies the following conditions

(1) Const ⊂ F ;

(2) for every distinct a, b ∈ R there exists f ∈ F with f(R) = {f(a), f(b)} ∈
[R]2;

(3) there exists Z ⊂ R such that any distinct a, b ∈ R the “characteristic”
function

ϕZa,b =

{
a if x ∈ Z,
b if x 6∈ Z

does not belong to F ,

then F cannot be characterized by images of sets. (See [31, Corollary 1].)
Therefore the class PB cannot be characterized by images.

However, PB = C−1A,B, where

• A ∈ A iff for each interval I ⊂ R, if |A ∩ I| > ω then A ∩ I contains a
non-empty perfect set;

• B is the natural topology on R

To see that PB cannot be topologized recall that if F is topologized and
PR ⊂ F then F = RR. (See [31, Corollary 3].)

Finally, we shall prove that PB cannot be characterized by associated sets.
Assume that PR ⊂ F and F can be characterized by associated sets. We will
prove that F \ PB 6= ∅.

Let A denote the family of all associated sets of F and let C be the ternary
Cantor set. Divide the set R \C onto two sets A0 and A1, each Cantor dense
in R. Let C1 be a subset of C such that |C1| = c and C1 contains no Cantor
set. Put C0 = C \ C1. Since the characteristic functions χ

A0∪C0 , χA1 ∈
PR ⊂ F , the sets A0 ∪ C0, A1 ∪ C1, A1, and A0 ∪ C belong to A. Then
f = χ

A0∪C0
−χA1

∈ F . However, f 6∈ PB, because the set f−1(−1, 1) = C1 is
of the size c and contains no Cantor set.
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8 Darboux like functions of n variables

First, we should notice that for n > 1, Chart 1 is no longer valid. Many of the
results that are presented in this survey follow from the following fact.

Theorem 8.1. (Hagan [59], Whyburn [121]) If f : In → I and n > 1, then
Conn = PC.

From the paper [114] by Stallings, it follows the following inclusions

Theorem 8.2. (Stallings [114]) Assume that n > 1.

(1) If f : In → I is a connectivity function, then f is almost continuous in
the sense of Stallings.

(2) If f : In → I is a connectivity function, then f is a Darboux function.

Thus in the class of real functions of n variables (for n > 1) the following
inclusions hold

Ext ⊂ Conn = PC ⊂ D ∩ACS.

The examples showing that D 6⊂ ACS and ACS 6⊂ D can be found in [88,
Examples 1.6 and 1.7]. An example of f : I2 → I such that f ∈ ACS∩D\Conn
is constructed in [102, Example 1]. The following open problem is posed by
K. Ciesielski and J. Wojciechowski [33].

Question 8.3. Is the inclusion Ext ⊂ Conn proper in the class of all real
functions of n variables, when n > 1?

From the paper [54], by Gibson, Rosen and Roush we have that if n > 1
and f : In → I is a connectivity function, then for any x ∈ In and for any line
segment L or a union of two line segment L1 and L2 containing x as a limit
point from two directions, there exists a perfect set P containing x as a limit
point from two direction such that f�P is continuous. Thus we can say that
if f : In → I is a connectivity function, then f has a perfect road.

A strengthening of this result have been obtained recently by K. Ciesielski
and J. Wojciechowski. (Note that it also implies that PC functions on R2 have
a two-dimensional version of SCIVP.)

Theorem 8.4. (Ciesielski, Wojciechowski [33]) Let n > 1 and g : Rn → R be
peripherally continuous. If X is a non-empty connected perfect subset of Rn,
then there exists a non-empty perfect subset P of X such that the restriction
g�P is continuous.
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It is a well-known fact that, if f : In → I, n > 1, is continuous and z
separates the range of f , then f−1(z) separates In. From the paper [102],
by Rosen, Gibson, and Roush it follows that the same conclusion holds for a
connectivity function f : In → I, n > 1. However, this is not true for Darboux
functions nor for almost continuous functions in the sense of Stallings, [114].

In particular, Rosen, Gibson and Roush proved in [102] that if f : I2 → I
is a connectivity function and z is an interior point of f(I2), then any point
of f−1([0, z)) and any point of f−1((z, 1]) lie in different quasi-components of
I2 \ f−1(z). They gave an example that shows that this conclusion is false for
Darboux functions.

In [103] H. Rosen proved: if for all z ∈ f(I2), any point of f−1([0, z)) and
any point of f−1((z, 1]) lie in different quasi-components of I2\f−1(z), then f is
a Darboux function. In Theorem 1 of [103], H. Rosen (using results from [120])
proved that if f : In → I, n > 1, and f ∈ PC, then the quasi-components and
the components of f−1(z) are the same.

For future work we make the following definition.

QCOMP – f : I2 → I has the QCOMP property if for every point z ∈ f(I2),
any point of f−1([0, z)) and any point of f−1((z, 1]) lie in different quasi-
component.

Clearly, if f : I2 → I, then

Conn = PC ⊂ QCOMP ⊂ D.

Define the function f : [−1, 1]× [0, 1]→ [−1, 1] as follows:

f(x, y) =

{
sin( 1

y ) if y > 0

0 if y = 0.

Clearly, the quasi-components and the components of the complement of
f−1(z), for all z ∈ [−1, 1], are the same. Hence f ∈ QCOMP ⊂ D. Also
f ∈ ACS.

However f /∈ Conn. Indeed, fix yk ∈ (0, 1] such that yk−1 > yk and
sin( 1

yk
) = 1 for k = 1, 2, 3, .... Let A = (

⋃
k([−1, 1] × {yk})) ∪ ({0} × [0, 1]) ∪

{(1, 0)}. Then A is connected but f�A is not connected.
Now, define the function g : [−1, 1]× [0, 1]→ [−1, 1] as follows:

g(x, y) =

{
sin( 1

y ) if y > 0

x if y = 0.

Clearly, the quasi-components of the complement of g−1(0) are not connected.
Thus g /∈ Conn = PC. However, g ∈ D∩ACS. Thus, D∩ACS \QCOMP 6= ∅.

This suggests the following open question.
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Question 8.5. If f : In → I, n > 1, and f ∈ QCOMP, is f ∈ ACS?

9 Algebraic operations

9.1 Compositions

At the 11th Summer Symposium on Real Analysis at Esztergom, Hungary,
R. Gibson asked the following question.

Question 9.1. If f, g ∈ Ext, is the composition g ◦ f ∈ Ext?

This question remains open.
Obviously, if h : X → Y is the composition of connectivity functions, then

h must be a Darboux function. On the other hand, we have the following.

Theorem 9.2.

(1) There exist almost continuous functions f : In → Im and g : Im → In
such that g ◦ f has no fixed point and is not almost continuous. (Kel-
lum [73])

(2) There exists almost continuous function f : R→ R such that f ◦f is not
almost continuous. (Kellum [75])

This suggests the following question. (See [89] or [57].)

Question 9.3. Is every Darboux function the composition of two (finite many)
of ACS (or Conn) functions?

Note that the classes SCIVP and CIVP are closed with respect to composi-
tions, so no f ∈ D\SCIVP can be expressed as the composition of extendable
functions. In particular, by Theorem 3.6, there are almost continuous func-
tions that cannot be written as the composition of extendable functions.

For functions defined on the plane, Question 9.3 was solved by H. Rosen.

Theorem 9.4. (Rosen [103]) There exists a Darboux function h : I2 → I that
is also an almost continuous function, that is not the composite of any two
connectivity functions f : I2 → I and g : I→ I.

Generally, for real functions defined on R, Question 9.3 remains open.
However, there are some partial results in this direction.

Theorem 9.5. (Natkaniec [89]) Assume that the covering of category is equal
to continuum. Then every function with dense level sets can be expressed as
the composition of two ACS functions.
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We do not know whether this theorem can be proved in ZFC. Question 9.3
has a surprising solution in the class Add of additive function. In fact, D. Ba-
naszewski proved recently the following theorem.

Theorem 9.6. (D. Banaszewski [2]) Assume that the covering of category is
equal to continuum and f : R→ R is an additive function. Then the following
are equivalent:

(i) dim(ker(f)) 6= 1;

(ii) f is the composition of two ACS additive functions;

(iii) f is the composition of two Conn additive functions.

Moreover, K. Ciesielski observed that Theorem 9.6 can be proved in ZFC,
without extra set-theoretic assumptions. (See [3].)

Theorem 9.7. (K. Banaszewski [5]) There exists a PR-function h : R → R
with the following property:

for every f : R→ R there exists f∗ ∈ PR such that f = f∗ ◦ h.

In particular, every real function can be expressed as the composition of two
PR-functions.

9.2 Pointwise limits

Theorem 9.8. Any real-valued function defined on an interval is the pointwise
limit of a sequence

• of Darboux functions (Lindenbaum [80]);

• of Conn functions (Phillips [99]);

• of ACS functions (Kellum [80]);

• of CIVP ∩D functions (K. Banaszewski [6]);

• of Ext functions (Rosen [101]).

9.3 Uniform limits

In this subsection we shall deal with the classes of uniform limits of sequences
of Darboux like functions. Let F denote the uniform limit of a class F .

Theorem 9.9. In the class of all functions from R into R,
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(1) The class D is not closed with respect to uniform limits. (Sierpiński [109])

(2) There exists f ∈ ACS \ D. Thus the classes ACS and Conn are not
closed with respect to uniform limits. (Kellum [80])

(3) The class PC is closed with respect to uniform limits. (Gibson, Roush [50])

(4) The class PR is closed with respect to uniform limits. (K. Banaszew-
ski [4])

(4) The class CIVP is not closed with respect to uniform limits. (K. Bana-
szewski [6])

(5) The class Ext is not closed with respect to uniform limits. (Rosen [104])

Moreover, we have the following examples.

Theorem 9.10. In the class of all functions from R into R,

(1) There exists f ∈ D \ Conn. (Gibson, Roush [50])

(2) There exists f ∈ Conn \ACS. (Jastrzȩbski [65])

(3) There exists f ∈ ACS \ Ext. (Rosen [106])

The class UL of all uniform limits of sequences of Darboux functions has
been described by A. Bruckner, J. Ceder and M. Weiss [22]. Note that the
following inclusions hold:

D ∪ CIVP ⊂ UL ⊂ PC.

The uniform closures of the classes CIVP and SCIVP are described by
K. Banaszewski.

Theorem 9.11.

(1) CIVP = PR ∩UL = WCIVP ∩UL (K. Banaszewski [6])

(2) SCIVP = CIVP (K. Banaszewski, T. Natkaniec [8])

Corollary 9.12. There is f ∈ PR ∩UL \D.

The answer to the following question is unknown.

Question 9.13. Does there exist f ∈ ACS ∩ PR \ Ext?

The following problems also remain open.
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Question 9.14. Characterize the uniform limits of sequences of Ext functions
(ACS functions, Conn functions or WCIVP functions).

Note that a partial solution of Question 9.14 for the class ACS is contained
in the paper by T. Natkaniec [88]. In [50], Gibson and Roush proved the
following theorems.

Theorem 9.15. (Gibson, Roush [50]) Let X be a metric space. Then the
uniform limit f of a sequence fm : X → R of peripherally continuous functions
is peripherally continuous.

As a corollary to Theorem 9.15 we have the following result.

Corollary 9.16. Let (fm) be a sequence of functions from In into I, where
n > 1. If each fm is a connectivity function and fm converges to f uniformly,
then f is a connectivity function.

9.4 Sums

It is known that every function f : R→ R is the sum of two:

• Darboux functions (Lindenbaum [80]);

• connectivity functions (Phillips [99]);

• almost continuous functions (Kellum [71]);

• perfect road functions (K. Banaszewski [4]);

• peripherally continuous functions (K. Banaszewski [4]).

At the 11th Summer Symposium on Real Analysis at Esztergom, Hungary,
R. Gibson proved that there are extendable functions f1, f2 ∈ RR such that
f1 + f2 6∈ PB. (See [44].) Thus Ext + Ext 6= Ext. Also he asked the following
question.

Question 9.17. If h : R → R is any function, does there exist functions
f, g ∈ Ext such that f + g = h?

Answer: Yes. H. Rosen in [105] proved that an arbitrary function f : R→
R can be written as the sum of two extendable functions. Toward this end he
gave an example of an extendable function g : R → R whose graph is dense
in R2. In a separate paper [32], K. Ciesielski and I. Rec law gave the same
results.

The problem, whether every bounded function can be written as the sum
of two bounded functions from a fixed class of Darboux like functions has been
studied recently in several papers.
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Theorem 9.18.

(1) Every bounded function f : R → R is the sum of two bounded Darboux
functions. (Maliszewski [82])

(2) Every bounded function f : R → R is the sum of two bounded almost
continuous functions. (Ciesielski, Maliszewski [29])

(3) There exists a bounded function f : R → R which is not the sum of two
bounded functions with perfect road. (Ciesielski, Maliszewski [29])

In particular, Theorem 9.18 generalizes the result of Darji and Humke that
every bounded function can be expressed as the sum of three bounded almost
continuous functions [39]. On the other hand, Theorem 9.18 shows that the
following result of Natkaniec is sharp.

Theorem 9.19. (Natkaniec [91]) Every bounded function f : R → R is the
sum of three bounded extendable functions.

Note also a surprising result of K. Ciesielski and J. Wojciechowski.

Theorem 9.20. (Ciesielski, Wojciechowski [33]) Assume that n > 1. Then

(1) Every function f : Rn → R is the sum of n+ 1 extendable functions.

(2) There exists f : Rn → R that is not the sum of n connectivity functions.

Note also that quite recently F. Jordan constructed a Baire one function
f : Rn → R that is not the sum of n Darboux functions (unpublished).

In 1959, H. Fast proved the following theorem:

Theorem 9.21. (Fast [40]) For every family F ⊂ RR with |F| ≤ c there exists
g ∈ RR such that g + f ∈ D for every f ∈ F .

In 1974, K. Kellum proved the analogous result for the class ACS of almost
continuous functions [71]. On the other hand, there is not g ∈ RR such that
g+f ∈ D for each f ∈ RR. The problem, for how big families of real functions
F there exists such a “uniform summand” will be study in Subsection 9.7.
Here we note that such a g can be found for some regular families F ⊂ RR of
the power 2c.

Theorem 9.22. (Natkaniec [88]) There exists g ∈ RR such that g+ f ∈ ACS
for each f ∈ RR with the Baire property (or, for each f that is Lebesgue
measurable).
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The similar result was obtained recently for the class Ext of extendable
functions.

Theorem 9.23. (Natkaniec, Rec law [95]) There exists g ∈ RR such that
g + f ∈ Ext for each f ∈ RR with the Baire property (for each f that is
Lebesgue measurable).

J. Ceder considered the analogous problem for classes of Borel measurable
functions.

Theorem 9.24. (Ceder [23]) Let A be a countable family of Baire α functions.
Then there exists a function f such that f + g is a Darboux function of Baire
class max(α+ 1, 3) for any g ∈ A.

Moreover, Ceder wrote in his paper: “We do not know, however, whether
or not Theorem 9.24 itself can be valid for families A with cardinality c.” This
problem was solved quite recently by Rec law and Natkaniec.

Theorem 9.25. (Natkaniec, Rec law [95]) For every α < ω1 there is a Borel
measurable function f such that f + g ∈ ACS for any g ∈ Bα.

For a class F ⊂ RR we can consider also the maximal additive family for F :

Ma(F) = {g ∈ RR : f + g ∈ F for all f ∈ F}

The maximal additive families for Darboux like functions were studied in sev-
eral papers.

Theorem 9.26.

(1) Ma(D) = Const (Radakovič [100]).

(2) Ma(Ext) = C (Jastrzȩbski, Natkaniec [66]).

(3) Ma(ACS) = Ma(Conn) = C (Jastrzȩbski, Jȩdrzejewski, Natkaniec [67]).

(4) Ma(PC) = Ma(PR) = C (K. Banaszewski [4]).

(5) If the additivity of category equals c, then Ma(CIVP) = Const (K. Ba-
naszewski [6]).

(6) If the additivity of category equals c, then Ma(SCIVP) = Const.

The proof of (6) is essentially the same as Banaszewski’s proof of (5). We
are unable to prove those equalities in ZFC.
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9.5 Products

Theorem 9.27. (K. Banaszewski [6]) Every function f : R → R can be ex-
pressed as the product of two SCIVP functions.

Note also that there are real functions that cannot be written as the prod-
uct of finite many of Darboux functions. The class of all products of Darboux
functions was characterized by J. Ceder.

Theorem 9.28. (Ceder [25]) A function f : R → R is the product of two
Darboux functions iff it satisfies the following condition

(JC) f has a zero in each subinterval in which it changes sign.

The analogous theorem was proved by T. Natkaniec for almost continuous
functions.

Theorem 9.29. (Natkaniec [89]) Assume that the additivity of category is
equal to c. A real function f : R→ R is the product of two almost continuous
functions iff it satisfies the condition (JC).

Recently A. Maliszewski shoved that the extra set-theoretical assumption
in Theorem 9.29 can be omitted [83]. Thus we have the following corollary.

Corollary 9.30. Assume that f : R→ R. The following conditions are equiv-
alent

(i) f is the product of two almost continuous functions;

(ii) f is the product of two connectivity functions;

(iii) f is the product of two Darboux functions;

(iv) f possesses the property (JC).

Corollary 9.30 suggests the following open questions.

Question 9.31. Assume that f : R→ R satisfies the condition (JC). Is it the
product of Ext (ACS ∩ PR) functions?

Question 9.32. Characterize products of Ext (Conn or D) functions from
Rn into R.

The maximal multiplicative families for Darboux like functions were stud-
ied in several papers. Recall that

Mm(F) = {g ∈ RR : fg ∈ F for all f ∈ F}
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Recall also that the maximal multiplicative family for the class of all Darboux,
Baire one functions is equal to the following class M defined by R. Fleiss-
ner [42].

M – f ∈ M iff it possesses the following property: if x0 is a right-hand (left-
hand) point of discontinuity of f , then f(x0) = 0 and there is a sequence
(xn) converging to x0 such that xn > x0 (xn < x0) and f(xn) = 0.

Theorem 9.33.

(1) Mm(D) = Const (Radakovič [100]).

(2) Mm(Ext) = M (Jastrzȩbski, Natkaniec [66]),

(3) Mm(ACS) = Mm(Conn) = M (Jastrzȩbski, Jȩdrzejewski, Natkaniec [67]).

(4) Mm(PC) = Mm(PR) = M (K. Banaszewski [4]).

(5) If the additivity of category equals c, then Mm(CIVP) = Const (K. Ba-
naszewski [6]).

(6) If the additivity of category equals c, then Mm(SCIVP) = Const.

The proof of (6) is essentially the same as Banaszewski’s proof of (5). We
are unable to prove those equalities in ZFC.

9.6 Maxima and minima

Theorem 9.34. (Natkaniec [91]) Every function f : I → I can be written as
min(max(f0, f1),max(f2, f3)), where fi ∈ Ext for i = 0, 1, 2, 3.

Note that the same result can be proved also for real functions defined
on R (c.f., [32, 105]).

Real functions defined on R that are the maximum of Darboux functions
were characterized by J. Ceder [21]. Such functions that are the maximum of
perfect road functions were described by K. Banaszewski [4]. Thus, notice the
following open problem.

Question 9.35. Characterize functions that are the maximum of functions
from other Darboux like classes.

A partial solution of Question 9.35 for the class ACS is contained in [88].
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9.7 Cardinal functions

Results from the previous subsections were recently strengthened by the con-
sideration of the following cardinal functions. (This functions were introduced
in[88, 92, 32]. See also the survey [27].)

a(F) = min
{
|H| : H ⊂ RR & ¬∃g ∈ RR ∀h ∈ H g + h ∈ F

}
∪{(2c)+}

= min
{
|H| : H ⊂ RR & ∀g ∈ RR ∃h ∈ H g + h /∈ F

}
∪{(2c)+}

m(F) = min
{
|H| : H ⊂ RR & ¬∃g ∈ RR \ {0} ∀h ∈ H g · h ∈ F

}
∪{(2c)+}

= min
{
|H| : H ⊂ RR & ∀g ∈ RR \ {0} ∃h ∈ H g · h /∈ F

}
∪{(2c)+}.

cout(F) = min
{
|H| : H ⊂ RR &¬∃g ∈ RR \Const ∀h ∈ H g ◦ h ∈ F

}
∪{(2c)+}

cin(F) = min
{
|H| : H ⊂ RR &¬∃g ∈ RR \Const ∀h ∈ H h ◦ g ∈ F

}
∪{(2c)+}

cr(F) = min
{
|G| : G ⊂ RR &¬∃h ∈ F ∀g ∈ G ∃f ∈ F f ◦ h = g

}
∪{(2c)+}

cl(F) = min
{
|G| : G ⊂ RR &¬∃h ∈ F ∀g ∈ G ∃f ∈ F h ◦ f = g

}
∪{(2c)+}

Values of those cardinal functions for Darboux like classes from R to R were
investigated by T. Natkaniec [88, 92, 93], K. Ciesielski and A. W. Miller [30],
K. Ciesielski and I. Rec law [32], and T. Natkaniec and I. Rec law [94]. Known
results are listed in the following table.

F Ext ACS Conn D SCIVP CIVP PR PC
a(F) c+ κ κ κ c+ c+ c+ 2c

m(F) 2 cf(c) cf(c) cf(c) 2 2 2 c
cout(F) 1 cf(c) cf(c) cf(c) 1 1 1 c
cin(F) 1 1 1 1 1 1 (2c)+ (2c)+

cr(F) 1 1 1 1 1 1 (2c)+ (2c)+

cl(F) 1 1 1 1 1 1 (2c)+ (2c)+

Table 1.

where κ = a(ACS) = a(Conn) = a(D) satisfies the inequalities c < κ ≤ 2c

and cf(κ) > c. Moreover, it is consistent with ZFC that κ can be equal to any
regular cardinal between c+ and 2c and that it can be equal to 2c independently
of the cofinality of 2c [30]. Additionally, the equalities (i, j) are proved
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in [32] for i = 1, 2 and j = 1, 7, 8;
in [94] for i = 2 and j = 2, 3, 4;
in [92] for i = 3, 4 and j = 1, 2, 3, 4, 5, 7, 8;
in [93] for i = 5, 6 and j = 7, 8.

Here (i, j) denotes the coordinates of given equality in our table; i denotes
the number of the line and j the number of the column. The other equalities
easily follow from the monotonicity of considered cardinal functions.

Table 1 can be easily complete for the other Darboux like classes.

Theorem 9.36. The following equalities hold for the classes WCIVP, PB and
ACS ∩ PR:

F ACS ∩ PR WCIVP PB
a(F) c+ c+ c+

m(F) 2 2 2
cout(F) 1 1 1
cin(F) 1 (2c)+ (2c)+

cr(F) 1 (2c)+ (2c)+

cl(F) 1 (2c)+ (2c)+

Table 2.

From cardinal functions defined above, the function a(F) has been studied
most extensively. In particular, K. Ciesielski and J. Wojciechowski proved
recently the following results.

Theorem 9.37. (Ciesielski, Wojciechowski [33]) In the class of real functions
defined on Rn, with n > 1, the following equalities hold:

a(Ext) = a(PC) = a(Conn) = a(D) = 2.

F. Jordan in [70] considered the function a(F) for complements of Darboux
like classes. An analogous function has been also studied for bounded Darboux
like functions in [29]. It is surprising that the result obtained for bounded
functions are essentially different than that described above. In particular,
K. Ciesielski and A. Maliszewski proved that

ab(ACS) = ab(Conn) = ab(D) = cf(c).

D. Banaszewski studied cardinal functions for additive Darboux like func-
tions [2].

For other results concerning cardinal functions, see the recent survey by
K. Ciesielski [27].
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