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Abstract

In the first part of this paper we show a powerful special case of
Lebesgue’s decomposition theorem, namely: if F is a V B function, sat-
isfying Lusin’s condition (N) on [a, b], then F (x) − F (a) = sF (x) +

(L)
∫ x

a
F

′
(t) dt , where sF is the saltus function of F . In the second part

we show that if F satisfies Lusin’s condition (N) on [a, b] then the func-
tions (from the decomposition theorem of Jordan) VF (x) := V (F ; [a, x])
and G(x) := F (x)− VF (x) also satisfy (N).

The following decomposition theorem of Lebesgue is well known:

Theorem A (Lebesgue’s decomposition theorem). ([7], p. 119).
If F is an additive function of bounded variation of an interval, the derivative
F

′
is summable, and the function F is the sum of a singular additive function

of an interval and of the indefinite integral of the derivative F
′
.

Moreover, if the function F is non-negative, we have for every interval Io

F (Io) ≥
∫
Io

F
′
(t) dt ,

equality holding only in the case in which the function F is absolutely contin-
uous on Io.

In the first part of this paper, for the special case of a function defined on
an interval [a, b], with bounded variation and satisfying Lusin’s condition (N),
Theorem A becomes

F (x)− F (a) = sF (x) + (L)

∫ x

a

F
′
(t) dt ,
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where sF is the saltus function of F (clearly sF is a singular function).
Moreover we obtain

V (F ; [a, x]) = SF (x) + (L)

∫ x

a

|F
′
(t)| dt ,

(for the definition of SF see Lemma 8).

The following decomposition theorem of Jordan is well known:

Theorem B (Jordan’s decomposition theorem). ([6], p. 218). A function
F : [a, b] → R is V B if and only if it is representable as the difference of two
increasing functions.

In fact from the proof of this theorem it follows that if F is V B on [a, b] then
the functions VF (x) := V (F ; [a, x]) and G(x) := F (x)− VF (x) are increasing.
The question is which properties of F will be preserved for VF and G? It is
known that if F is left, right or bilaterally continuous at a point x ∈ [a, b] then
so are VF and G ([6], p. 223).

In the second part of this paper we show that if F satisfies Lusin’s condition
(N) then VF and G also satisfy (N).

1 On Lebesgue’s decomposition theorem

We assume that the reader is familiar with the notions of V B, AC and Lusin’s
condition (N) (see [7], [6]). We denote by C the set of all continuous functions.
If F : [a, b]→ R and xo ∈ [a, b) (resp. xo ∈ (a, b]) then we denote by

F (xo+) = lim
x→xo
x>xo

F (x)

(
resp. F (xo−) = lim

x→xo
x<xo

F (x)

)
Lemma 1. (Theorem 1 of [6], p. 205). The sets of the discontinuity points of
an increasing function F : [a, b]→ R is at most countable. If x1, x2, x3, . . . are
all of the interior discontinuity points then

F (a+)− F (a) +
∑
k

(
F (xk+)− F (xk−)

)
+ F (b)− F (b−) ≤ F (b)− F (a) .

Definition 1 (The saltus of an increasing function). ([6], p. 206). Let F :
[a, b] → R be an increasing function. Let A = {a1, a2, . . .} be a countable
subset of [a, b] containing all the interior discontinuity points of F (that this
is possible follows by Lemma 1). We define sF : [a, b] → R by sF (a) = 0 and
for every x ∈ (a, b],

sF (x) = F (a+)− F (a) +
∑

t∈A∩(a,x)

(
F (t+)− F (t−)

)
+ F (x)− F (x−) .
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The function sF is called the saltus of F .
Let An = {a1, a2, . . . , an}. We define sF,n(a) = 0 and for every x ∈ (a, b],

sF,n(x) = F (a+)− F (a) +
∑

t∈An∩(a,x)

(
F (t+)− F (t−)

)
+ F (x)− F (x−) .

Remark 1. The functions sF and sF,n have the following properties:

(i) sF and sF,n are increasing on [a, b], so V B on [a, b];

(ii) sF,n(x)→ sF (x) for every x ∈ [a, b];

(iii) sF,n is a constant on each component of the open set (a, b)\An (therefore
sF,n is a step-function);

(iv) The function F−sF is increasing and continuous on [a, b] (see Theorem 2
of [6], p. 206).

Lemma 2 (Sarkhel and Kar). ([8] or [2], [4]).
V B ∩ (N) is a linear space on [a, b].

Lemma 3. Let F : [a, b]→ R be an increasing function. Then

sF (xo+)− sF (xo) = F (xo+)− F (xo) , xo ∈ [a, b)

sF (xo)− sF (xo−) = F (xo)− F (xo−) , xo ∈ (a, b] .

Proof. Let xo ∈ [a, b) and x > xo. Then

sF (x) = sF (xo)+F (xo+)−F (xo)+
∑

t∈A∩(xo,x)

(
F (t+)−F (t−)

)
+F (x)−F (x−) .

It follows that sF (xo+) = limx↘xo
sF (x) = sF (xo) + F (xo+) − F (xo) . Let

xo ∈ (a, b] and x < xo. Then

sF (xo) = sF (x)+F (x+)−F (x)+
∑

t∈A∩(x,xo)

(
F (t+)−F (t−)

)
+F (xo)−F (xo−) .

It follows that sF (xo) = sF (xo−) + F (xo)− F (xo−) .

Lemma 4. For sF defined above we have:

(i) sF ∈ (N) on [a, b] and s
′

F = 0 a.e. on [a, b];

(ii) If F ∈ (N) on [a, b] then F − sF ∈ AC on [a, b].



316 V. Ene

Proof. (i) We have

sF ([a, b]) ⊆ [0, sF (b)] \
(

(0, sF (a+))∪

∪
(
∪∞k=1

(
(sF (ak−), sF (ak)) ∪ (sF (ak), sF (ak+))

))
∪
(
sF (b−), sF (b)

))
.

By Lemma 3 we have

sF (a+) = F (a+)− F (a),

sF (ak+)− sF (ak−) = F (ak+)− F (ak−) for each k, and

sF (b)− sF (b−) = F (b)− F (b−).

Since

sF (b) = F (a+)− F (a) +

∞∑
k=1

(
F (ak+)− F (ak−)

)
+ F (b)− F (b−) ,

it follows that m(sF ([a, b])) = 0, hence sF ∈ (N) on [a, b]. Clearly sF is
derivable a.e. on [a, b]. By Krzyzewski’s Lemma (see [5] or [1], p. 70), we
obtain that s

′

F = 0 a.e. on [a, b].
(ii) By Lemma 2 and Remark 1, (iv), it follows that F−sF ∈ V B∩C∩(N) =

AC on [a, b] (see the Banach-Zarecki Theorem [7], p. 227).

Remark 2. That s
′

F = 0 a.e. in the proof of Lemma 4, (i), follows also from
the following theorem of Fubini: If F (x) =

∑
n Fn(x) is a convergent series

of monotone nondecreasing functions on [a, b] then F
′
(x) =

∑
n F

′

n(x) a.e. on
[a, b] ([7], p. 117), and Remark 1, (ii), (iii).

Definition 2. Let ∆ : a = xo < x1 < . . . < xn = b be a division of [a, b], and
let g : [a, b]→ R. We denote

V∆(g; [a, b]) =

n−1∑
k=0

|g(xk+1)− g(xk)|

and
V (g; [a, b]) = sup

∆
V∆(g; [a, b]) (see [6], p. 215) .

A division ∆1 : a = yo < y1 < . . . < ym = b is said to be finer than ∆ if
{xo, x1, . . . , xn} ⊂ {yo, y1, . . . , ym}. Clearly V∆(g; [a, b]) ≤ V∆1

(g; [a, b]) .
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Lemma 5. Let f : [a, b]→ R, f ∈ C ∩ V B, and let h : [a, b]→ R such that h
is constant on (a, b). Then

V (h; [a, b]) = |h(a+)− h(a)|+ |h(b)− h(b−)|

and
V (f + h; [a, b]) = V (f ; [a, b]) + V (h; [a, b]) .

Proof. The first part is obvious. We show the second one. Clearly

V (f + h; [a, b]) ≤ V (f ; [a, b]) + V (h; [a, b]) .

Let ε > 0. Since f is continuous on [a, b], there exists δ > 0 such that
|f(a) − f(x)| < ε/8 if x ∈ [a, a + δ), and |f(b) − f(y)| < ε/8 if y ∈ (b − δ, b].
Let

∆ : a = to < t1 < t2 < . . . < tn < tn+1 = b

be a division of [a, b] such that V∆(f ; [a, b]) > V (f ; [a, b]) − ε/2. We may
suppose without loss of generality that t1 ∈ (a, a + δ) and tn ∈ (b − δ, b)
(because if ∆1 is a finer division than ∆ then V∆1(f ; [a, b]) ≥ V∆(f ; [a, b])).
Then

V∆(f + h; [a, b]) =

= |f(t1)− f(a) + h(t1)− h(a)|+ |f(t2)− f(t1)|+ . . .+ |f(tn)− f(tn−1)|+

+|f(b)−f(tn) +h(b)−h(tn)| ≥ |h(t1)−h(a)|−2|f(t1)−f(a)|+V∆(f ; [a, b])−

−2|f(b)− f(tn)|+ |h(b)− h(tn)| > |h(a+)− h(a)| − 2
ε

8
+

+V (f ; [a, b])− ε

2
− 2

ε

8
+ |h(b)− h(b−)| = V (f ; [a, b]) + V (h; [a, b])− ε .

Therefore V (f + h; [a, b]) ≥ V (f ; [a, b]) + V (h; [a, b]), hence V (f + h; [a, b]) =
V (f ; [a, b]) + V (h; [a, b]).

Corollary 1. Let f : [a, b] → R, f ∈ C ∩ V B, and let g : [a, b] → R such
that g is constant on each of the intervals (a, c1), (c1, c2), . . ., (cm, b), where
a < c1 < c2 < . . . < cm < b. Then

V (g; [a, b]) = |g(a+)− g(a)|+

+

m∑
i=1

(|g(ci)− g(ci−)|+ |g(ci+)− g(ci)|) + |g(b)− g(b−)|

and
V (f + g; [a, b]) = V (f ; [a, b]) + V (g; [a, b]) .
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Proof. We have

V (g; [a, b]) = V (g; [a, c1]) +

m−1∑
i=1

V (g; [ci, ci+1]) + V (g; [cm, b]) =

∣∣g(a+)− g(a)
∣∣+ ∣∣g(c1)− g(c1−)

∣∣+ ∣∣g(c1+)− g(c1)
∣∣+ ∣∣g(c2)− g(c2−)

∣∣+ . . .+

+
∣∣g(cm−1+)−g(cm−1)

∣∣+∣∣g(cm)−g(cm−)
∣∣+∣∣g(cm+)−g(cm)

∣∣+∣∣g(b)−g(b−)
∣∣ =

=
∣∣g(a+)− g(a)

∣∣+

m∑
i=1

(
|g(ci)− g(ci−)|+ |g(ci+)− g(ci)|

)
+
∣∣g(b)− g(b−)

∣∣
(this equality was used before in [6], p. 231, but without proof). Now by
Lemma 5

V (f + g; [a, b]) = V (f + g; [a, c1]) +

m−1∑
i=1

V (f + g; [ci, ci+1]) +V (f + g; [cm, b]) =

= V (f ; [a, c1]) + V (g; [a, c1]) +

m−1∑
i=1

(V (f ; [ci, ci+1]) + V (g; [ci, ci+1]))+

+V (f ; [cm, b]) + V (g; [cm, b]) = V (f ; [a, b]) + V (g; [a, b])

Definition 3 (The saltus of a V B function). ([6], p. 219).
Let F : [a, b]→ R, F ∈ V B. Then we define sF : [a, b]→ R by

sF (x) = sVF
(x)− sG(x),

where VF (x) = V (F ; [a, x]) and G(x) = VF (x)− F (x). Clearly VF and G are
increasing (see Theorem B).

Lemma 6. ([6], p. 233). Let gn, g : [a, b] → R. If {gn}n converges pointwise
to g on [a, b] and there exists a positive number α such that V (gn; [a, b]) < α,
(∀) n = 1, 2, . . . , then V (g; [a, b]) ≤ α.

Lemma 7. Let g, gn : [a, b]→ R such that {gn}n converges pointwise to g on
[a, b] and V (gn; [a, b])↗ α for some positive number α. If

lim inf
n

V (gn − g; [a, b]) = 0

then V (g; [a, b]) = α.
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Proof. By Lemma 6 it follows that V (g; [a, b]) ≤ α. We show the converse
inequality. For ε > 0 let nε be a positive integer such that

V (gn; [a, b]) > α− ε

2
, (∀) n ≥ nε .

For each n ≥ nε we have

α− ε

2
< V (gn; [a, b]) = V (g − (g − gn); [a, b]) ≤

≤ V (g; [a, b]) + V (g − gn; [a, b]) .

Since lim infn V (g−gn; [a, b]) = 0, it follows that there exists a positive number
m ≥ nε such that V (g − gm; [a, b]) < ε/2. Therefore

α− ε

2
≤ V (g; [a, b]) +

ε

2
,

so α ≤ V (g; [a, b]). It follows that α = V (g; [a, b]).

Lemma 8. Let F , G, and VF be as in Definition 3.

(i) The set A of the interior discontinuity points of F is at most countable
and contains the sets of interior discontinuity points of VF and G. More-
over, if x ∈ A ∪ {a} then there exists F (x+) and for each x ∈ A ∪ {b}
there exists F (x−).

(ii) Let A = {a1, a2, a3, . . .}. Then sF (a) = 0 and for x ∈ (a, b],

sF (x) = F (a+)− F (a) +
∑

t∈(a,x)∩A

(
F (t+)− F (t−)

)
+ F (x)− F (x−) .

(iii) If A is infinite, let sF,n : [a, b] → R such that sF,n(a) = 0 and for
x ∈ (a, b],

sF,n(x) = F (a+)− F (a) +
∑

t∈(a,x)∩An

(
F (t+)− F (t−)

)
+ F (x)− F (x−) ,

where An = {a1, a2, . . . , an}. Let

rF,n(x) = sF (x)− sF,n(x) =
∑

t∈(a,x)∩(A\An)

(
F (t+)− F (t−)

)
.

We define SF : [a, b]→ R by SF (a) = 0 and for every x ∈ (a, b],

SF (x) = |F (a+)− F (a)|+
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+
∑

t∈A∩(a,x)

(|F (t+)− F (t)|+ |F (t)− F (t−)|) + |F (x)− F (x−)|

(this series is convergent, see [6], p. 235). Then we have

1) sF is V B on [a, b];

2) sF ∈ (N) on [a, b] and s
′

F = 0 a.e. on [a, b];

3) F − sF is continuous on [a, b];

4) sF,n(x)→ sF (x) for every x ∈ [a, b];

5) sF,n is a constant on each component of the open set (a, b)\An (there-
fore sF,n is a step-function) and

V (sF,n; [a, b]) = |F (a+)− F (a)|+

+

n∑
i=1

(
|F (ai)− F (ai−)|+ |F (ai+)− F (ai)|

)
+ |F (b)− F (b−)| .

6) If n→∞ then

V (rF,n; [a, b]) ≤
∑

t∈(a,b)∩(A\An)

(
|F (t+)−F (t)|+ |F (t)−F (t−)|

)
→ 0 ;

7) V (sFn ; [a, b])↗ SF (b);

8) V (sF ; [a, b]) = SF (b).

Proof. (i) See [6] (Corollary 2, p. 219 and Theorem 1, p. 223).
(ii) See [6] (p. 219).
(iii) 1) See the definition of sF ;

2) See Lemma 4, (i) and Lemma 2.
3) See [6] (p. 220).
4) This is obvious.
5) The first part is evident. We show the second part. For i = 1, 2, . . . , n,

sF,n(a+)− sF,n(a) = F (a+)− F (a) ;

sF,n(ai)− sF,n(ai−) = F (ai)− F (ai−) ;

sF,n(ai+)− sF,n(ai) = F (ai+)− F (ai) ;

sF,n(b)− sF,n(b−) = F (b)− F (b−) .

By Corollary 1 we obtain

V (sF,n; [a, b]) = |F (a+)− F (a)|+
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n∑
i=1

(
|F (ai)− F (ai−)|+ |F (ai+)− F (ai)|

)
+ |F (b)− F (b−)| .

6) Let a ≤ x1 < x2 ≤ b. Then

rF,n(x2)− rF,n(x1) =
∑

t∈[x1,x2)∩(A\An)

(
F (t+)− F (t−)

)
≤

≤
∑

t∈[x1,x2)∩(A\An)

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
,

hence

V (rF,n; [a, b]) ≤
∑

t∈[a,b)∩(A\An)

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
=

=
∑

t∈(a,b)∩(A\An)

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
→ 0 for n→∞ .

7) This is evident.
8) See 4), 6), 7) and Lemma 7.

Remark 3. SF ∈ (N) on [a, b] and S
′

F = 0 a.e. on [a, b] (the proof is similar
to that of Lemma 4, (i)).

Lemma 9. Let F : [a, b]→ R, F ∈ V B ∩ (N). Then F − sF ∈ AC on [a, b].

Proof. By Remark 1, (iv), the functions VF −sVF
and G−sG are continuous

on [a, b]. Let
ϕ = (VF − sVF

)− (G− sG) .

Then ϕ is continuous on [a, b]. But

F = VF −G = VF − sVF
+ sVF

− (G− sG + sG) =

= ϕ+ (sVF
− sG) = ϕ+ sF .

By Lemma 4, (i) the functions sVF
and sG belong to V B ∩ (N) on [a, b],

hence by Lemma 2, sF ∈ V B ∩ (N). Again by Lemma 2, it follows that
ϕ = F − sF ∈ V B ∩ (N)∩ C = AC on [a, b] (see the Banach-Zarecki Theorem
[7], p. 227).

Lemma 10. Let F : [a, b]→ R, F ∈ V B∩(N) and let F = H−h, where H and
h are some increasing functions given by Theorem B. Then sF = sH−sh, hence
sF does not depend on the choice of the functions H and h if F ∈ V B ∩ (N).
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Proof. By Lemma 9, F −sF ∈ AC on [a, b]. But F −(sH−sh) = (H−sH)−
(h− sh) is continuous (see Remark 1, (iv)). By Lemma 4, (i) and Remark 1,
(i), sH , sh ∈ V B ∩ (N) on [a, b]. Since F ∈ V B ∩ (N), by Lemma 2 it follows
that F − (sH − sh) ∈ V B ∩ (N) on [a, b]. From the Banach–Zarecki theorem
we obtain that F − (sH − sh) ∈ AC on [a, b]. Hence sF − (sH − sh) ∈ AC on
[a, b]. By Lemma 4, (i), it follows that

s
′

F = s
′

H = s
′

h = 0 a.e. on [a, b].

Then sF − (sH − sh) is constant on [a, b] (see for example Theorem 2 of [6],
p. 246). Since sF (a) = sH(a) = sh(a) = 0, it follows that the above constant
is zero, hence sF = sH − sh on [a, b].

Theorem 1. Let F : [a, b]→ R, F ∈ V B. Then F ∈ (N) on [a, b] iff

F (x)− F (a) = sF (x) + (L)

∫ x

a

F
′
(t) dt . (1)

Proof. “⇒” Suppose that F ∈ (N) on [a, b] and let ϕ = F − sF . Then
ϕ ∈ AC on [a, b] (see Lemma 9), and by Lemma 4, (i) we have that s

′

F = 0

a.e. on [a, b]. It follows that ϕ
′

= F
′
a.e. on [a, b]. By Theorem 3 of [6] (p. 255),

we obtain that

ϕ(x) = ϕ(a) + (L)

∫ x

a

ϕ
′
(t) dt = F (a) + (L)

∫ x

a

F
′
(t) dt .

Therefore we have (1).
“⇐” Suppose that (1) holds. The function F (a) + (L)

∫ x
a
F

′
(t) dt is AC on

[a, b] (see for example Theorem 1 of [6], p. 252), hence it is V B ∩ (N) on [a, b]
(for the (N) part see Theorem 3 of [6], p. 249). By Lemma 8, (iii), 2), 1), it
follows that sF ∈ V B ∩ (N) on [a, b]. From (1) and Lemma 2, we obtain that
F (x) = sF (x) + F (a) + (L)

∫ x
a
F

′
(t) dt is V B ∩ (N) on [a, b].

2 On Jordan’s decomposition theorem

Lemma 11. (Theorem 8 of [6], p. 259). Let f : [a, b] → R be a summable
function, and let

F (x) = (L)

∫ x

a

f(t) dt , x ∈ [a, b] .

Then

V (F ; [a, x]) = (L)

∫ x

a

|f(t)| dt , x ∈ [a, b] .
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Lemma 12. Let f, F : [a, b]→ R, F, f ∈ V B. If f is continuous on [a, b] then

V (f + sF ; [a, b]) = V (f ; [a, b]) + V (sF ; [a, b]) .

Particularly

V (F ; [a, b]) = V (sF ; [a, b]) + V (F − sF ; [a, b]) .

Proof. Clearly (f + sF,n)(x) → (f + sF )(x) if n → ∞ (see Lemma 8, (iii),
4)). By Corollary 1 and Lemma 8, (iii), 7), 8), we have

V (f + sF,n; [a, b]) = V (f ; [a, b]) + V (sF,n; [a, b])↗ V (f ; [a, b]) + SF (b) =

= V (f ; [a, b]) + V (sF ; [a, b]) .

By Lemma 8, (iii), 6) and Lemma 7, it follows that

V (f + sF ; [a, b]) = V (f ; [a, b]) + V (sF ; [a, b]) .

We show the second part. The function f := F − sF is continuous and V B
on [a, b] (see Lemma 8, (iii), 3)). Therefore

V (F ; [a, b]) = V (F − sF + sF ; [a, b]) = V (F − sF ; [a, b]) + V (sF ; [a, b]) .

Theorem 2. Let F : [a, b]→ R, F ∈ V B ∩ (N). Then

(i) VF (x) = SF (x) + (L)
∫ x
a
|F ′

(t)| dt;

(ii) VF ∈ (N) on [a, b].

Proof. (i) From Theorem 1 we obtain

(F − sF )(x) = F (a) + (L)

∫ x

a

F
′
(t) dt . (2)

We have

VF (x) = V (F ; [a, x]) = V (sF ; [a, x]) + V (F − sF ; [a, x]) =

= SF (x) + V (F − sF ; [a, x]) = SF (x) + V (F − sF − F (a); [a, x]) =

= SF (x) + (L)

∫ x

a

|F
′
(t)| dt

(for the second equality see Lemma 12; for the third equality see Lemma 8,
(iii), 8); the fourth equality is obvious; the last equality follows by Lemma 11
and (2).

(ii) This follows since SF ∈ (N) (see Remark 3), by Lemma 2 and (i).
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Corollary 2. Let F : [a, b] → R, F ∈ V B. Then F ∈ (N) on [a, b] if and
only if VF ∈ (N) on [a, b].

Proof. “⇒” See Theorem 2, (ii).
“⇐” This follows as the implication “⇐” in Lemma 6 of [3].

Remark 4. Corollary 2 extends Lemma 6 of [3], since here F is not supposed
to be continuous on [a, b].

Theorem 3 (A Jordan type theorem). Let F : [a, b] → R, F ∈ V B ∩ (N).
Then F is the difference of two increasing functions, each satisfying Lusin’s
condition (N).

Proof. By Theorem 2, (ii) we have that VF ∈ (N) on [a, b], and by Lemma
2, the function G = VF − F ∈ (N).
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