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AN w-LIMIT SET FOR A LIPSCHITZ
FUNCTION WITH ZERO TOPOLOGICAL
ENTROPY

Abstract
Let @ be the middle thirds Cantor set in [0, 1], and take C to be the
countable set containing the midpoints of the intervals complementary
to @, together with {f%}. We develop a Lipschitz function f : [fi, 1] —
[—i, 1] that possesses zero topological entropy, and for which Q U C —
an uncountable set with isolated points — is an w-limit set of f.

1 Introduction

The iterative properties of continuous functions have received considerable
attention in recent years. In particular, much has been learned about the
structure of the w-limit sets that various classes of continuous functions pos-
sess. Bruckner and Smital have characterized the structure of w-limit sets for
the class of continuous functions as well as those continuous functions with
zero topological entropy [2], [3].

Theorem 1. Let F' be a nonempty closed set. Then F is an w-limit set for a
continuous function if and only if F is either nowhere dense, or F is a union
of finitely many nondegenerate closed intervals.

Theorem 2. Let F' C (0,1) be a nonempty infinite closed set. Then F is
an w-limit set for a continuous function f : [0,1] — [0, 1] with zero topological
entropy if and only if F = QUC, where Q is a Cantor set, and C' is countable,
dense in F if nonempty, and such that for any interval J contiguous to @,
card(JNC) <1if0 orlisindJ, and card(J NC) < 2 otherwise.
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In [4] we investigate how the structure of possible w-limit sets is affected
by considering classes of functions better behaved than the typical continuous
function. We endow the class of closed sets K contained in [0,1] with the
Hausdorff metric p, and show that the typical closed set in {K, p} cannot be
an w-limit set for any Lipschitz function. This is in marked contrast to the
continuous case since all of these typical sets are Cantor sets, and therefore
w-limit sets of non-Lipschitz continuous functions. The main result of [§]
shows, however, that every nowhere dense compact set is homeomorphic to
an w-limit set for a differentiable function with bounded derivative. The sig-
nificant cleavage between the class of w-limit sets for continuous functions
and the class of w-limit sets for Lipschitz functions must, then, be measure
based. In [9] we make some progress towards characterizing w-limit sets for
Lipschitz functions, but many questions remain. In this note we answer one of
those queries by showing that a Lipschitz function possessing zero topological
entropy can have an infinite w-limit set with isolated points.

We proceed through a couple sections. In section two we develop some
notation, give a few definitions and review those previously known results that
will be useful in the course of our construction. Section three is dedicated to
the development of the Lipschitz function f : [—i, 1] — [—i, 1] possessing zero
topological entropy that also has an infinite w-limit set with isolated points.

2 Preliminaries

In the ensuing section we will develop a Lipschitz function f : [—%, 1] — [—i, 1]
that possesses zero topological entropy as well as an uncountable w-limit set
with isolated points. We call a function f : [a,b] — [a,b] Lipschitz if there
exists a real number M such that | f(z)— f(y) |[< M | z—y | for all  and y in
[a,b]. A set E is called an w-limit set for a continuous function f mapping a
compact interval I into itself if there exists an x in I such that ' = w (z, f) is
the cluster set of the sequence {f™(2)}52, = {=, f(z), f(f(z)),...}. There are
many ways in which one can characterize those continuous functions f : I — I
that possess zero topological entropy. In [6] one finds a comprehensive list of
such characterizations. For our purposes, however, it suffices to note that the
topological entropy h(f) of a continuous function f is zero if and only if the
period of every periodic point of f is a power of two.

An important tool in the development of our function is the following
theorem due to Smital [7].

Theorem 3. Let f : I — I be a continuous function with zero topological
entropy, and let E be an infinite w-limit set of f. Then there is a sequence
{Je}52, of f-periodic intervals so that, for any k,
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e J;, has period 2F;

o Jii1 Uf2k(Jk+1) C Ji;

o EC U2 fi(Jy):

o EN fi(Jy) # 0 for every i.

To simplify our work with the f-periodic intervals f%(.J;), we code them
with finite tuples of zeros and ones using a device found in [5]. Let N denote
the natural numbers, and take N to be the set of sequences composed of zeros
and ones. If n €N and n = {n;}2,, we let n | & = (n1,n2,...,n). Set
0 = {0,0,0,....} and 1 = {1,1,1,....}. Now, define a function A : N' = N
given by A(n) = n+ 10, where addition is modulus two from left to right. For
each k € N and ¢ € N put Fy;, = J, and FAi(1)|k = f¥(Jy). Thus, for every
m and n in A and k € N there is a j € N such that A/(m | k) = n | k; the
above relations define Fy; for all n € N and k € N. In the construction that
follows, we will take Fy ;1 to lie to the left of Fy; o for all n € N and k € N.

We let @ be the middle thirds Cantor set contained in [0, 1], and take C'
to be the set comprised of the midpoints of the complementary intervals of Q
contained in [0, 1], together with the point {—£}.

3 Example

A brief discussion of the ideas behind our construction may prove helpful.
Our intention is to reverse Smital’s Theorem, and let the sets Fy,), determine
our function f, rather than the other way around. We start with the compact
interval [—1, 1], and split it so that each midpoint c of an interval (a, b) comple-
mentary to () is always contained in the same periodic interval Fy,;, as the right
endpoint b, for each k. We also take Fy1 C int(Fy);) for each k (see Theo-
rem 3.1,[1]). Moreover, if we set F = NP2 Fyjp = N3 [an|k, bajk] = [an, bnl,
then Fy, = [an, bn] for an a, € C and b, = max{z : ¢ € Q,z < a,} whenever
n has a tail of ones, and Fy, = {z} is a singleton otherwise. The trick is not so
much to find sets Fy, |, for which we can do this, but to insure that the function
f to which they give rise is Lipschitz and has zero topological entropy.

We begin our construction by defining inductively the f-periodic inter-
vals Fy. Let Fy = [—i,%] and Fy = [% - %,1], and suppose Fyp_1 =
[anjp—1,bnpp—1]. o[ k—1#1][k—1,set Fap_10 = [bap—1 — (3)" —
()" bajp—1] and Fyje—11 = [anje—1 + 577 [5(3)']; bujp—1 — 2(3)¥], where
j is the length of the string of ones in which n | & — 1 terminates, and
Il =((k—-1)—j4. Ifn|k—-1=1]Fk-1, we define Fyp_19 as we
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did above, but in this case set Fyjp_11 = [agp—1 + %%[%(%)},bmk_l —
2(3)*]. We let G = (max Fy, min Fy) = (by,a0), and in general, take Gy, =
(max Fy k1, min Fyjx.0) = (bnjk,1, anjk,0). For each n €N, let Fy, = N2, Fy
= M2, [anjk, bujk] = [an,bn]. It follows that C' = {a, : n €M}, where M
consists of all the elements of N having a tail of ones. If we let S be composed
of all z such that {z} = F,, for some n €N, then S consists of all the elements
of () except for those that are the right endpoint of an interval complementary
to @, and {0}. If we take B = {by : n €M}, then Q = SU B.

Now, set L = QU C U {an, : neN,k € N}. We begin to define our
function f : [-1,1] = [, 1] by describing its behavior on L. If z € S, define
f(z) so that {f(2)} = Fam) when {z} = F,. On C U B we define f so that
flan) = aqm) and f(bn) = ba(m), and when n | k& # 1 | k, we let f(aq,) =
aAm)|k- We complete our definition of f on L by setting f(aqx) = ag|p+1-

Our map f : L — L is continuous. To show this, it suffices to establish the
continuity of f at each point of C, B and S as the remaining points of L are
isolated. We show that f is continuous at a; and by; the proofs for the other
points of @ U C' are similar. To show that f is continuous at aq, let U be a
neighborhood of f(a1) = ag = sup(Q U C) = 1. There exists k € N such that
Foj, C U. Let V = (aq|p41,b) where b € (a1,b1) = (—%,O). Then VNL =
{ay); :j > k+1}U{as}, and f(VNL) = {agjj41 : j > k+1}U{ao} C For, C U.
We conclude that f is continuous at a;. Now, let U be a neighborhood of
f(b1) = bp = sup(Q U C) = 1. Choose k € N so that Fo, C U. Let
V' = (b,by|x41) where b € (a1,b1). Then sup{f(z) : x € VN L} =1, and
inf{f(z) : x € VN L} = f(a1)k+1,0) = Go+11 C For C U, so that f is
continuous at by, too.

We now extend our function linearly to the intervals contiguous to the
closed set L obtaining a function also denoted by f that is continuous on all
of [-1,1]. Our next task is to verify that f : [-1,1] — [—1, 1] does indeed
have zero topological entropy. From our development of f, one sees that
f(Gn|k) = G_A(n)|k forn|k#1|k GC f(G), and G0|k @ f(Gl|k). From
this we conclude that fzk is linear on G|, and has a slope greater than one.
Thus, G contains exactly one periodic point, which is necessarily a repelling
fixed point, and each Gy, contains exactly one periodic point of period 2k,
which is also repelling (1). We also note that f(Fyz) = Fa(n)r Whenever
n|k#1|k and f(Fy) is a proper subset of Fy; (2). From (1) and (2),
Bruckner and Ceder are able to conclude that for each = € [—i 1], either
w(z, f) is a 2% cycle for some k, or w(x, f) C N, Unen Fupi ([1], proof of
Theorem 4.3). Since N2 Unenr [ contains no cycles, it follows that f must
be a 2°° function, and that h(f) is zero.

We now establish that our function f : [-1,1] — [—2,1] is Lipschitz.
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We begin by noting that f is increasing on conv([Fy,) for each & € N U
{0}, and since f(Fyjr,0) = Fojk,1, one sees that f | Fy o is Lipschitz with
growth constant three. Since f(G) = conv(Fy U G U Fy1) and, in general,
J(G1ji) = conv(Fo,1 U Gopr U Fojkt1,1), it follows from the similarity within
our construction that f | Gy, is Lipschitz for a particular constant M that
works for all k € NU {0}. In fact, we can take M = 162, as a tedious but
not terribly difficult calculation shows. In a rather straightforward way one
also shows that f is Lipschitz of constant 3% on [*i’ f%]. To establish that
f is Lipschitz at @ = 0, we note that f(0) = 1, and w is largest when
2

[1-f(a1ik,0)l 1—ag|x,1 ha 3
=a . Forallk >1 o = : 35— = 2. We conclude
Yy 1|k,0 = 5 T[0—a|k0l aie,o < 3k1+1 2 s

then, that f: [—1,1] — [—1,1] is indeed a Lipschitz function.

That Q U C' is an w-limit set of f follows from the observation that the
orbit of ag is {ank : n €N,k € N}, so that w(ao, f) = QU C. It is worth
noting that while taking @ to be the middle thirds Cantor set, and choosing
C to be the midpoints of its complementary intervals, somewhat simplified
our construction, we clearly did not minimize the Lipschitz constant of the
resulting function. In fact, for any d > 1 we can take a Cantor set () and an
appropriate countable set of points C' so that Q U C' is an w -limit set for a

Lipschitz function f with zero topological entropy and Lipschitz constant less
than d.
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