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LOCALLY BOUNDED FUNCTIONS

1 Introduction

A well known property of continuous real-valued functions f : X → R, where
X is a topological space, is that for any x ∈ X, f is bounded on some neigh-
borhood of x. Here we discuss this property of continuous functions, which
we shall call “local boundedness”, in a more general context. R. V. Fuller’s
“subcontinuity” is shown to be equivalent to local boundedness. The clas-
sical theorem that a continuous real-valued function on a compact space is
bounded, is generalized and shown to be true for the larger class of locally
bounded functions. Certain classes of discontinuous functions are shown to be
locally bounded, and properties of locally bounded functions are studied.

Throughout this paper, X and Y denote topological spaces, with no special
properties unless otherwise indicated.

2 Basic Definitions

Definition 1. A function f : X → M, where M is a metric space, is locally
bounded if for any x in X there exists an open set U containing x such that
f is bounded on U .

If f : X → M is a continuous function and x is any point in X, then f is
bounded on the open set f−1[B(f(x), 1)], where B(f(x), 1) denotes an open
ball in M of radius 1. Hence we have the following theorem.

Theorem 1. If M is a metric space and f : X →M is a continuous function,
then f is locally bounded.
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In [1], J. Doboš applied the term “locally bounded” to functions in a man-
ner different from the present usage. In this paper these functions shall be
called “locally compact” in order to distinguish between the two concepts.

Definition 2. A function f : X → Y is locally compact at x in X if there
exists a compact subset K of Y such that x ∈ Int [f−1(K)].

It is easy to see that the concepts, “locally bounded” and “locally com-
pact”, are not equivalent; for if i is the identity mapping from the set of
reals with the usual metric into the the set of reals with the discrete metric,
then i is locally bounded but not locally compact. However, if a function
is locally compact and its codomain is a metric space, then it is also locally
bounded.

The term “locally compact” is more general than “locally bounded” since it
can be applied to functions whose codomains are topological spaces. A locally
bounded function must have a metric space as its codomain. Also, it is possible
for a function f : X → M to be locally bounded under one metric on M and
not locally bounded under an equivalent metric on M . For example, consider
the usual metric on R and the metric ρ defined by ρ(x, y) = |x−y|/(1+|x−y|).
These are equivalent metrics on R, but since the latter is bounded, any func-
tion from X into (R, ρ) is locally bounded.

3 A Condition Equivalent to Local Boundedness

The notion of subcontinuity was introduced in [2] and has been studied in [5].

Definition 3. A function f : X → Y is subcontinuous if for any net (xa) in
X such that (xa) converges to p in X, there is a subnet, (f(xs(b))), of (f(xa))
that converges to some point q in Y .

Theorem 2. Let f : X → M be a function, where X is a first countable
Hausdorff space and M is a metric space. A sufficient condition that f be
locally bounded is that f be subcontinuous. If M = R, then the condition is
also necessary.

Proof. We will prove sufficiency first. Assume f is not locally bounded at
some point x0 in X, and let d be the metric on M . Let

D = {(U, n) : U is a neighborhood of x0 and n ∈ N}.

Then D can be directed by the relation ≤, where (U, n) ≤ (V,m) if and only
if V ⊂ U and n ≤ m. Since f is not locally bounded at x0, for each a = (U, n)
in D there is an element xa in U such that d(f(xa), f(x0)) > n. As can be
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easily shown, the net (xa : a ∈ D) converges to x0. Since f is subcontinuous,
there exists a subnet (xs(a) : a ∈ D′) such that (f(xs(a))) converges to some
point y in M . Let m be a natural number such that d(f(x0), y) ≤ m. There
exists a ∈ D′ such that d(f(xs(b)), y) < 1 for all b ∈ D′ such that b ≥ a.
Hence

(∗) d(f(x0), f(xs(b))) < m+ 1

for all b ∈ D′ such that b ≥ a. There exist a natural number k > m+ 1 and a
neighborhood U of x0 such that (U, k) ≥ s(a). Also, there exists b ∈ D′ with
b ≥ a such that s(b) ≥ (U, k). This implies that d(f(x0), f(xs(b))) > m + 1,
which contradicts (∗). Hence f is locally bounded.

Now suppose that f : X → R is locally bounded. Let (xa) be any net in X
converging to a point p. Since f is locally bounded, there exist an open set U
containing p and a number M such that |f(x)| ≤M for all x ∈ U . Since (xa)
eventually lies in U , (f(xa)) eventually lies in [M,−M ], which is compact.
Hence there is a subnet (xs(a)) such that (f(xs(a))) converges to some point
in [M,−M ].

Remark 1. The necessity part of this theorem remains valid if R is replaced
by a metric space whose closed balls are compact.

A comparable equivalence between subcontinuity and local compactness
can also be shown. The necessity portion of the proof of the next theorem
requires the following theorem of Fuller [2, Theorem 2.1]: If f : X → Y is a
subcontinuous function, where Y is completely regular, then for each compact
subset K of X, the set f(K) is compact.

Theorem 3. Let f : X → Y be a function, where Y is Hausdorff. A sufficient
condition that f be subcontinuous is that f be locally compact. If X is locally
compact and Y is completely regular, the condition is also necessary.

Proof. To prove sufficiency, let (xa) be a net in X converging to a point x
in X. Since f is locally compact, there is a compact subset K of Y such that
x ∈ Int[f−1(K)]. Since [f−1(K)] contains the tail of (xa), the net (f(xa)) is
eventually in K; hence (f(xa)) contains a convergent subnet.

To show necessity, suppose f : X → Y is a subcontinuous function, where
X is locally compact and Y is completely regular. Let x be any point in X.
Then there is a compact neighborhood K of x. By Theorem 2.1 of [2], the set
M = f(K) is compact, and x ∈ Int [f−1(M)].

Remark 2. Since continuous functions are subcontinuous, it is immediate
that continuous functions from locally compact spaces into completely regular
spaces are locally compact.
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4 Functions which are Locally Bounded

As we have seen, subcontinuous functions are locally bounded. The question
naturally arises as to what other kinds of noncontinuous functions are locally
bounded.

Evidently, if a real-valued function f : R → R has a removable dis-
continuity at a point x0, then it is bounded on a neighborhood of x0, for
since f approaches a limit L at x0, there is a neighborhood U of x0 such
that |f(x) − L| < 1 for all x in U − {x0}. Thus, f is bounded on U by
max{|L|+ 1, |f(x0)|}.

From [3] and [4] we have the following:

Definition 4. A function f : X → Y has at worst a removable discontinuity
at a point x of X if there is a point y in Y such that for each open set V
containing y, there is an open set U containing x such that f(U − {x}) ⊂ V .

Theorem 4. Let f : X →M be a function, where M is a metric space. If f
has at worst a removable discontinuity at a point x0 in X, then f is bounded
on some open set containing x0; that is, f is locally bounded at x0.

Proof. If f has at worst a removable discontinuity at the point x0, then
there exists an open ball B(y, 1) in M and an open set U containing x0 such
that f(U − {x0}) ⊂ B(y, 1). Since B(y, 1) is a bounded subset of M , the set
B(y, 1) ∪ {f(x0)} is also a bounded subset of M . Hence f is locally bounded
at x0.

Upper or lower semicontinuity is not a sufficient condition for a function
to be locally bounded. Let

f(x) =

{
ln |x|, if x 6= 0,

0, if x = 0.

Then f is upper semicontinuous, but it is not locally bounded at 0.

Since a bounded function is also locally bounded, it is easy to find exam-
ples of nonmeasurable locally bounded functions; for example, consider the
characteristic function χP , where P is a nonmeasurable set.

Consider the function f : (0, 1) → R that is 0 at each irrational number
and has the value q at each rational number p

q , where p and q are relatively
prime natural numbers. This function is not locally bounded at any point of
(0, 1).
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5 Properties of Locally Bounded Functions

It is evident that, since a continuous function is not necessarily bounded on
its domain, a locally bounded function need not be bounded on its domain.
However, if the domain of a continuous function is compact, then the function
is bounded. The same thing is true of locally bounded functions.

Theorem 5. Let X be a compact space, and let f : X → R be a locally
bounded function. Then f is bounded.

Proof. The proof of this is essentially the same as that used for continuous
functions on compact spaces. The space X can be covered with open sets
on which f is bounded. Since X is compact, it can be covered with a finite
number of these open sets. Hence, f is bounded on X.

In the preceding theorem, it is not enough that X be locally compact as
the example of the identity function i : R→ R clearly illustrates.

Theorem 6. If f : X → R is locally bounded and has a closed graph, then f
is continuous.

Proof. (Corollary of Theorem 3.4 [2]).

Corollary 1. Suppose that the function f : R ×R → R has a closed graph,
and that for each x the functions fx and fx, defined by fx(y) = f(x, y) and
fx(y) = f(y, x), are locally bounded. Then f is continuous.

Proof. By Theorem 6 the function f is separately continuous. Thus f is
continuous by Theorem 1 of [6].

6 Spaces of Locally Bounded Functions

In this section we will examine certain spaces of locally bounded functions.
Let LB(X,M) denote the set of all locally bounded functions from X into M ,
where M is a metric space. A natural topology to consider for LB(X,M) is
the compact-open topology, which has as a subbasis sets of the form

(K,U) = {f ∈ LB(X,M) : f(K) ⊂ U},

where K is compact and U is open.
It is easy to show that LB(X,M) with the compact-open topology is Haus-

dorff; however, we will show a slightly stronger result.

Theorem 7. Let x ∈ X and let ωx : LB(X,M)→M be the point evaluation
map defined by ωx(f) = f(x). Then ωx is continuous.
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Proof. Let f ∈ LB(X,M) and let U be a neighborhood of f(x). If g ∈
({x}, U), then ωx(g) = g(x) ∈ U . Hence ωx is continuous.

Theorem 8. The space LB(X,M) with the compact-open topology is T2 1
2
,

that is, each pair of points can be separated with closed neighborhoods of the
points.

Proof. Let f and g be distinct points in LB(X,M). Then there exists x ∈ X
such that f(x) 6= g(x). Since M is a metric space, it is normal. Hence there
exist disjoint neighborhoods Uf and Ug of f(x) and g(x), respectively, such
that Uf and Ug are disjoint. Since ωx is continuous, ω−1x (Uf ) and ω−1x (Ug)
are disjoint closed neighborhoods of f and g.

The space LB(X,M) is not, in general, regular. Let I denote the closed
interval [0, 1]. Then we have the following theorem.

Theorem 9. The space LB(I,R) with the compact-open topology is not reg-
ular.

Proof. Let

f(x) =

{
x, if x ∈ Int(I),
1
2 , otherwise.

Then f ∈ LB(I,R) and f(I) = Int(I). Hence f ∈ (I, Int(I)). Suppose that
LB(I,R) is regular. Then there exist compact sets K1, . . . ,Kn and open sets
U1, . . . , Un such that

(∗) f ∈
n⋂

i=1

(Ki, Ui) ⊂
n⋂

i=1

(Ki, Ui) ⊂ (I, Int(I)).

(Without any loss of generality it may be assumed that Ui ⊂ I for each i.)
This implies that ∪ni=1Ki ⊃ I and ∪ni=1Ui ⊂ I. Hence at least one set Kj

contains an increasing sequence (xn) such that limxn = 1. This sequence can
be chosen so that if xn ∈ Ki for some n and i, then xn ∈ Ki for all n. Hence
each set Ki either contains (xn) or it does not contain any term of (xn).

Let

g(x) =

{
1, if x = xn for some n,

f(x), otherwise.

Then g /∈ (I, Int(I)). We will show that g ∈ ∩ni=1 (Ki, Ui) and thereby contra-
dict (*). Let ∩mi=1(Ji, Vi) be a basic open neighborhood of g. If ∪mi=1Ji contains
no element of the sequence (xn), then f = g on ∪mi=1Ji; hence f ∈ ∩mi=1(Ji, Vi)
and (∩ni=1(Ki, Ui)) ∩ (∩mi=1(Ji, Vi)) 6= ∅. Now suppose that xj ∈ ∪mi=1Ji for
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some j. Let H = ∩{Ui : (xn) ⊂ Ki}. Since f((xn)) ⊂ f(Ki) ⊂ Ui for each
i such that (xn) ⊂ Ki, it follows that f((xn)) ⊂ H, and since f(xn) = xn
and xn → 1, we may conclude that 1 ∈ H. Now xj ∈ Ji for some i, so
1 = g(xj) ∈ g(Ji) ⊂ Vi. Hence, if Gj = ∩{Vk : xj ∈ Jk}, then Gj is a neigh-
borhood of 1 for each j such that xj ∈ ∪mi=1Ji. Thus, Gj ∩ H 6= ∅ for each
such j. For each such j let yn ∈ Gn ∩H. Let

h(x) =

{
yn, if x = xn for some n and xn ∈ ∪mi=1Ji,

f(x), otherwise .

Then h ∈ (∩ni=1(Ki, Ui)) ∩ (∩mi=1(Ji, Vi)). Hence LB(I,R) is not regular.

A well-known theorem on function spaces states that if X is homeomorphic
to Y and U is homeomorphic to V , then UX and V Y with the compact-open
topology are homeomorphic. A similar but weaker statement can be made
about LB(X,M).

Theorem 10. Let g : X → Y be continuous and let Tg : LB(Y,M) →
LB(X,M) be defined by Tg(f) = f ◦ g. Then Tg is continuous.

Proof. Let f ∈ LB(Y,M) and let (K,V ) be a subbasic open neighborhood
of f ◦ g. Then f ◦ g(K) ⊂ V , and since g(K) is compact, it follows that f ∈
(g(K), V ). Now if h ∈ (g(K), V ), then h ◦ g ∈ (K,V ); that is Tg(h) ∈ (K,V ).
Hence (g(K), V ) ⊂ T−1g (K,V ).

Corollary 2. If X is homeomorphic to Y , then LB(X,M) is homeomorphic
to LB(Y,M).

Proof. Let h : X → Y be a homeomorphism. It is easily verified that Th is
bijective and that T−1h = Th−1 . It follows from the previous theorem that Th
and T−1h are both continuous.

Remark 3. It is not clear whether or not LB(X,M1) and LB(X,M2) are
homeomorphic when M1 and M2 are. Certainly, the natural attempt at defin-
ing a homeomorphism fails. For example, let M1 = (0, 1) and M2 = R with
the usual metric. If h : M1 → M2 is a homeomorphism, then a natural func-
tion H on LB(X,M1) is defined by H(f) = h◦f . However this does not work!
Every function f : X → M1 is in LB(X,M1), but h ◦ f is not necessarily
locally bounded; hence H does not map LB(X,M1) into LB(X,M2). Thus, we
leave this as an open question.
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