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ON THE NON-EXISTENCE OF CERTAIN
BOUNDED LINEAR PROJECTIONS

Abstract

It is known that there is a bounded linear operator A from the
space of bounded real functions to the subspace of bounded Lebesgue-
measurable functions such that for any Lebesgue-measurable function f
we have Af = f for a.e. x ∈ R. S. A. Argyros proved that A could not
be a projection; i.e. we can always find a bounded measurable function
f and a point x ∈ R for which (Af)(x) 6= f(x).

We give an independent proof and in particular we prove that there
does not exist a projection to the space of functions with the Baire
property, either.

S. A. Argyros proved in [AR] that there does not exist a bounded linear
projection from the space of all bounded real functions to the subspace of
all bounded Lebesgue-measurable functions and the subspace of all bounded
Borel-measurable functions.

In this paper we give an independent proof, and our proof covers more
general cases as well. In particular, we prove that such a projection does not
exist to the subspace of functions with the Baire property, either.

More precisely, we show that if M ⊆ P (R) is a σ-algebra, if there is a

σ-ideal K ⊂M, K 6=M and if P ⊆ N def
= M\K such that

(0) {x} ∈ M for all x ∈ R;

(1) for every N ∈ N there exists P ⊆ N,P ∈ P;

(2) given more than ω elements of N there exist infinitely many of them
with non-empty intersection;

(3) |P| ≤ 2ω and |P | = 2ω for all P ∈ P,
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then there is no bounded linear projection from the space of bounded functions
to the subspace of bounded M-measurable functions.

The special cases of measurable image functions or functions with the Baire
property follow by puttingM = Lebesgue measurable sets, K = sets of 0 mea-
sure, orM = sets with the Baire property, K = first category sets, respectively,
and in both cases we may choose P = Borel elements of N .

In what follows let B be the space of all bounded real functions, let F
denote the subspace of boundedM-measurable functions, and suppose we are
given a linear projection P : B → F . Pf is also denoted by f̃ , and ‖ f ‖ is
the usual sup norm of f .

Our main result is the following theorem.

Theorem. Making use of the notations above, for every K > 0 there exists
an f ∈ B such that ‖ f̃ ‖> K ‖ f ‖.

Proof. The proof is based on a series of lemmas. Suppose that for some K,
‖ f̃ ‖≤ K ‖ f ‖ holds for every f ∈ B.

Lemma 1. For every f ∈ B and m ∈ F we have ‖ f− f̃ ‖≤ (K−1) ‖ f+m ‖.

Proof. Let f ∈ B, a ∈ R be arbitrary, put d =‖ f ‖ −f(a) and let

n(x)
def
=

{
d if x = a

0 otherwise.

Then n ∈ F and hence

f̃(a) + d = f̃(a) + n(a) = f̃(a) + ñ(a) ≤‖ f̃ + n ‖≤

≤ K ‖ f + n ‖= K ‖ f ‖= (K − 1) ‖ f ‖ +f(a) + d.

That is f̃(a)− f(a) ≤ (K − 1) ‖ f ‖ holds for every a ∈ R and f ∈ B.

Applying this for −f we obtain −f̃(a) + f(a) ≤ (K − 1) ‖ f ‖. Therefore

‖ f − f̃ ‖≤ (K − 1) ‖ f ‖ (f ∈ B). Finally replacing f by f +m (m ∈ F) we
have

‖ f − f̃ ‖=‖ (f +m)− ˜(f +m) ‖≤ (K − 1) ‖ f +m ‖

for every m ∈ F .

Definition. A subset A ⊆ R is called
–large, if there is no N ∈ N such that N ⊆ (R \ A) (i.e. A intersects every
element of P),

–good, if {x|χ̃A(x) 6= 0} ∈ K, and bad, if it is not good.
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Lemma 2. There are at most countably many pairwise disjoint bad sets.

Proof. Suppose that the sets Aγ (γ ∈ Γ) are pairwise disjoint, bad, and
|Γ| > ω.

For the sake of brevity we put χγ = χ
Aγ . For every γ ∈ Γ, n ∈ N and

ε = ±1 let

Aγ,n,ε
def
= {x : ε(χ̃γ(x)) > 1/n}.

The sets Aγ are all bad. Hence for each γ there exists a pair (n, ε) such that
Aγ,n,ε ∈ N . Since |Γ| > ω, we may choose (n, ε) such that |{γ ∈ Γ|Aγ,n,ε ∈
N}| > ω.

Referring to (2) there exists an x such that x ∈ Aγ,n,ε holds for infinitely

many γ ∈ Γ, say, for γ1, γ2, ..., γN , ... . Consider now f =
∑N
i=1

χ
γi . Then

‖ f ‖= 1, |f̃(x)| =
∣∣∣ N∑
i=1

χ̃
γi(x)

∣∣∣ ≥ N/n > K,

if N is large enough. This contradiction proves the lemma.

Definition. A subset B ⊆ R is called very good, if it is large, good, and

(̃χB)
∣∣
B
≡ 0 holds.

Lemma 3. Every large good set A contains a very good subset.

Proof. A is a good set, therefore (̃χA)
∣∣
A

admits a support A∗ ⊆ A, A∗ ∈ K.

Let B
def
= A \ A∗. Then B is obviously good, (̃χA)

∣∣
B
≡ 0 and (χA∗)

∣∣
B
≡ 0.

Now by χA∗ ∈ F we have

χ̃
B = ˜(χA − χA∗) = χ̃

A − χA∗ .

Hence (̃χB)
∣∣
B
≡ 0. Finally, since A meets every set of the form N \ A∗

(N ∈ N ), B intersects every set N ∈ N .

Lemma 4. If we are given continuum many pairwise disjoint large sets Aγ
(γ ∈ Γ), |Γ| = 2ω, then for every γ we can choose an element γ∗ ∈ Aγ such
that the set A∗ = {γ∗|γ ∈ Γ} is large as well. (The set A∗ is called a diagonal
of our family Aγ (γ ∈ Γ).)

Proof. Since the cardinal number of P is at most 2ω, we can index the
elements of P by Γ: {Pγ |γ ∈ Γ} = P. (An element of P may have several
indices.) Choose γ∗ ∈ Aγ ∩ Pγ arbitrarily. Now the complement of A∗ =
{γ∗|γ ∈ Γ} does not contain any element of P as a subset. Thus it does not
contain any element of N , either.
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Definition. A system of sets A = {A;Aαi |i = 1, ..., N, α ∈ A} is called a comb
of degree N , if

(1) A ∩Aαi = α

(2) Aαi ∩Aαj = α (i 6= j)

(3) Aαi ∩A
β
j = ∅ (α 6= β).

A comb is good, if all the sets it contains are good, and it is very good, if the
sets it contains are very good.

The points of a comb are the points of the sets it contains, and two combs are
disjoint, if they have not got a common point.

Lemma 5. For every N there exist continuum many pairwise disjoint very
good combs of degree N .

Proof. We proceed by induction.

In the case N = 0 we have to show that there exist continuum many
pairwise disjoint very good sets. For that it is sufficient to show, that there
exist continuum many pairwise disjoint large sets, since by Lemma 2 there
are continuum many good sets among them, thus we can omit the bad sets.
Finally, by Lemma 3 every good set contains a very good subset.

We define the pairwise disjoint large sets by transfinite recursion.

Let Pα (α < Ω) be a well ordering of P to the initial ordinal number Ω of
continuum. (If |P| < 2ω, then we use one or more members of P repeatedly.)
For every ordinal α < Ω we choose a point pα,β ∈ Pβ (β ≤ α), and for every
α < Ω we choose additional points pβ,α ∈ Pα (β < α) such that all selected
points are different.

Before the α-th step less than continuum many points have been chosen.
Thus by |Pα| = 2ω we can always continue choosing different points. Hence
the sets Aα = {pα,β : β < Ω} are certainly pairwise disjoint and they are
obviously large as well since pα,β ∈ Aα ∩ Pβ ; that is, Aα intersects every
element of P.

N → N + 1

Suppose that we have proved the lemma for some N and let

Aγδ (γ, δ ∈ Γ× Γ, |Γ| = 2ω)

be a system of pairwise disjoint very good combs of degree N . For every γ
let Bγ be a diagonal of the sets Aγδ . Continuum many of these diagonals
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are good sets. Every large good diagonal has a very good subset, say Aγ =
{(γδ)∗|δ ∈ Γγ ⊆ Γ}. Define the comb

Aγ = {Aγ ; (Aγ)
(γδ)

∗

i |i = 1, ..., N + 1, δ ∈ Γγ},

where

(Aγ)
(γδ)

∗

i
def
=

{
(Aγδ)

(γδ)
∗

i if i = 1, ..., N,

Aγδ if i = N + 1.

These are pairwise disjoint very good combs of degree N + 1 completing the
proof of the lemma.

Now we return to the actual proof of our main result.
Take a comb A = {A;Aαi |i = 1, ..., N, α ∈ A} of degree N , where N ≥ K.

Choose a point α ∈ A arbitrarily and consider f
def
=
∑N
i=1

χ
Aαi

. Then we have

f(x) =

{
N if x = α,

0 or 1 otherwise.

Let

m(x) =

{
−N if x = α,

0 otherwise.

Clearly m ∈ F , and ‖ f + m ‖≤ 1. On the other hand, since the sets Aαi are

all very good, we have f̃(α) = 0. Therefore (f − f̃)(α) = N . Referring to
Lemma 1 we obtain

N ≤‖ f − f̃ ‖≤ (K − 1) ‖ f +m ‖≤ K − 1 < N.

This contradiction proves the Theorem.
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