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Abstract

An example is given of a real connectivity function which is not
the composition of any finite collection of almost continuous functions.
We also investigate conditions under which the composition of two real
Darboux functions can be continuous.

In [6] I asked if every Darboux function from R to R is the composition
of two almost continuous functions. In the present note it is shown that the
answer is “no”. In fact, there exits a connectivity function which cannot be
written as the composition of finitely many almost continuous functions. This
example is not particularly difficult. I think we have overlooked this example
until now because no one expected it to exist. The composition of almost
continuous functions can be very nasty. Our function which is not such a
composition is as well behaved as a Darboux function can be and not be
almost continuous.

Natkaniec [7] has shown that if f is Darboux and nasty–that is, f−1(x)
is c-dense for every x, then f is the composition of two almost continuous
functions. To look at the other extreme, we need a Darboux function which
is not almost continuous but as nice as possible. Since a Darboux function of
Baire class 1 is almost continuous [1], the function we want must be totally
discontinuous on some perfect set. Jones and Thomas [5] give an example of
a function which is connectivity, continuous on the complement of the Cantor
set, but not almost continuous. Our example is a simple modification of the
Jones and Thomas example.

A function f : R → R is almost continuous if, given a closed set K ⊂ R2

such that graph(f) ∩ K = ∅, there exists a continuous function g : R → R
such that graph(g) ∩K = ∅. f is Darboux if f(C) is connected whenever C is
connected. f is a connectivity function if graph(f |C) is connected whenever C
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is connected. In this setting, an almost continuous function is a connectivity
function and a connectivity function is Darboux. The reader interested in
learning about these classes of functions should see the excellent survey articles
[4], [7] and [2].

We begin with two technical lemmas. The letter I denotes the closed unit
interval [0, 1].

Lemma 1. Suppose f : I → I, U ⊂ I is an open interval, f−1(U) is open and
not connected, f is continuous on each component of f−1(U) and f is either
increasing on every component of f−1(U) or is decreasing on all of them. Then
f cannot be almost continuous.

Proof. 1 If f is not Darboux, we are done; so we may assume that it is.
Assume f is increasing on components of f−1(U) . Choose a closed interval

[p, q] ⊂ U . Pick two components [a, b] and [c, d] of f−1([p, q]). The closed set
K1 = (I× [p, q])∪ ({a, c}× [q, 1])∪ ({b, d}× [0, p]) intersects the graph of every
continuous function from I into itself.

Figure 1: The closed set K

For each component (u, v) of f−1(U), we will remove a “tube” from K1.
(See Figure 1.) Since f(u) and f(v) cannot be in U , and f([u, v]) is connected,
it follows that f((u, v)) = U . Let s and t denote the unique points in (u, v) such
that f(s) = p and f(t) = q. Choose ε > 0 so that u < s− ε < s+ ε < t− ε <

1I thank the referee and Professors Jack Brown and Krzysztof Ciesielski for pointing out
errors in earlier version of this proof.
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t+ε < v. Let Vu,v be the union of all open line segments (x−ε, x+ε)×{f(x)}
centered at points (x, f(x)), where s ≤ x ≤ t. Finally, let K = K1 \

⋃
Vu,v,

where the union is taken over all components of f−1(U). K is a closed set,
K ∩ graph(f) = ∅ and K intersects the graph of every continuous function
from I into itself. Thus, f is not almost continuous.

Lemma 2. Suppose f : I → I and that there exist nondegenerate closed in-
tervals, [a, b], [c, d], [p, q] and [u, v] such that f−1([p, q]) = [a, b], f−1([u, v]) =
[c, d], [a, b] ∩ [c, d] = ∅, f is continuous [a, b] ∪ [c, d], f is increasing on [a, b]
and is decreasing on [c, d]. Then f is not almost continuous.

Proof. Choose x and y such that a < x < b and c < y < d. Then (I ×
[p, q])∪ ({x}× [q, 1])∪ ({x}× [0, p])∪ (I × [u, v])∪ ({y}× [v, 1])∪ ({y}× [0, u])
is a closed set which intersects the graph of every continuous function from I
into I. We can now remove a tube from I × [p, q] above [a, b] and a tube from
I × [u, v] above [c, d] and obtain a closed set with misses graph(f) but which
intersects the graph of every continuous function from I into I.

Let C denote the Cantor middle-thirds set. By a complementary interval
we mean the closure of a component of I \C. We define a function j : I → I as
follows. For each complementary interval [a, b], choose j|[a,b] to be continuous
and increasing with j(a) = 0 and j(b) = 1 . Let C◦ denote the points of C
which are not endpoints of complementary intervals. If x ∈ C◦, let j(x) = 0.
It follows from Lemma 1 that j is not almost continuous. Note that j is a
connectivity function.

Example 1. : The function j is not the composition of any finite collection
of almost continuous functions from I to I.

Proof. Assume that it is. Let j = fn ◦ · · · ◦f1, where fi is almost continuous.
Consider some complementary interval, [a, b]. Since j is one-to-one on [a, b],

f1 must also be one-to-one there. Since a one-to-one Darboux function on an
interval is continuous, it follows that f1 is monotone increasing or decreasing
on [a, b]. Thus, f1([a, b]) is a closed interval, and, by the same reasoning, f2
is one-to-one and continuous on f1([a, b]), f3 is one-to-one and continuous on
f2 ◦ f1([a, b]), and so on.

Let P0 denote the set of complementary intervals. For i = 1, . . . , n, let
Pi = {fi(P ) : P ∈ Pi−1}. Each member of Pi−1 is mapped homeomorphically
by fi onto a member of Pi.

Suppose P,Q ∈ P1. Then fn ◦ · · · ◦ f2 must map both P and Q homeo-
morphically onto I. The endpoints of these intervals, and only the endpoints,
are mapped to 0 and 1. Thus P ∩Q is either empty or is a common endpoint.
Similarly, for each i, the interiors of Pi are pairwise disjoint.
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Suppose x ∈ C◦. Since j(x) = 0, and interiors of members of Pi map onto
interiors of Pi+1, f1(x) is not in the interior of any member of P1, f2 ◦ f1(x) is
not in the interior of any member of P2, and so on. Thus, for each P ∈ Pi+1,
f−1
i (int(P )) is open, in fact, is the union of interiors of elements of Pi.

Now, we will prove by induction that for each i with 0 < i ≤ n, no two
members of Pi−1 are mapped by fi onto the same member of Pi and that fi
is either increasing on every member of Pi or is decreasing on all of them.

First, if f1([c, d]) = f1([a, b]), since fn ◦ · · · ◦ f1(d) = fn ◦ · · · ◦ f1(b) = 1,
we must have f1(b) = f1(d). Thus, if two or more elements of P0 map to the
same element of P1, f1 is increasing on all or is decreasing on all of these. By
Lemma 1, this is impossible. Now, by Lemma 2, f1 cannot be increasing on
one element of P0 and decreasing on another.

Assume now that we have the desired conditions for all i with 0 < i ≤ k−1.
Then fk−1 ◦ · · · ◦f1 increases on all members of P0 or decreases on all of them.
If fk([c, d]) = fk([a, b]), we can reason as above to conclude that fk(c) = fk(a).
Lemma 1 then rules this possibility out. Apply Lemma 2 again to complete
the induction.

By the above argument, fi induces a one-to-one correspondence between Pi
and Pi+1. Since Pn has [0, 1] as its only element, we have a contradiction.

Remark. Another way we could obtain a contradiction in the proof of Ex-
ample 1 is as follows. First, choose n to be the smallest integer such that j is
the composition of n almost continuous functions. Since the composition of a
continuous function and an almost continuous function is almost continuous,
none of f1, . . . , fn could be continuous. Once we have that f1 is increasing
(decreasing) on each complementary interval, we can use an argument similar
to the lemmas to show that f1 is increasing (decreasing) on I \ C. The next
step is a little delicate, but, using the fact that f1 sends points of C◦ only to
endpoints, we can then argue that f1 is continuous.

In the proof of Example 1, we made repeated use of the fact that if the
composition of two real Darboux functions is strictly monotone, then each
factor is continuous and strictly monotone. It is natural to ask: If g ◦ f is
continuous, where g and f are Darboux, then what can be said about g and
f?

Example 2. There exist f Darboux and discontinuous and g continuous such
that g ◦ f is continuous.

Define f : I → I as follows: Let f(C◦) = [0, 1/2] so that for each y ∈
[0, 1/2], f−1(y) is c-dense in C. For each complementary interval [a, b], define
[a, b] to be continuous so that f(a) = f(b) = 1/2 and f([a, b]) = [1/2, 1].
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Define g by g(x) = 0 for 0 ≤ x ≤ 1/2 and g(x) = x− 1/2 otherwise.

We will now show that all such examples will be similar to the above, in
that the discontinuities of one factor are crushed by intervals of constancy of
the other.

By the cluster set of f at a, denoted by C(f, a), we mean the set of all y
such that (a, y) is a limit point of the set {(x, f(x)) : x 6= a}. The cluster sets
of a Darboux function are connected.

Theorem 1. Suppose f and g are Darboux functions from R into itself and
that g ◦ f is continuous at a. If f is discontinuous at a, then g is constant on
C(f, a).

Proof. Pick y ∈ int(C(f, a)), where y 6= f(a). Since f is Darboux, there
exists a sequence {xn} converging to a such that f(xn) = y. By hypothesis,
g◦f(xn) converges to g◦f(a). Since g◦f(xn) = g(y), we must have g(y) = g◦
f(a). Since g is constant on int(C(f, a)) and is Darboux, the result follows.

Theorem 2. Suppose f and g are Darboux functions from R into itself and
that g ◦f is continuous at a. If g is discontinuous from the left (right) at f(a),
then f has a local minimum (maximum) at a. Thus, if g is discontinuous from
both sides at f(a), then f is constant in a neighborhood of a.

Proof. Assume g is discontinuous from the left at f(a). If f does not have
a local minimum at a, there exists a sequence {xn} converging to a, where
f(xn) < f(a). Because f is Darboux, we may choose {xn} so that {f(xn)}
converges to f(a). Since g is Darboux, there exists an increasing sequence
{yn} converging to f(a) where g(yn) = y for each n and y 6= g ◦ f(a). Passing
to a subsequence, we may assume that yn > f(xn). Since f is Darboux, there
exists zn between xn and a such that f(zn) = yn. But then, g ◦ f(zn) = y,
contradicting the continuity of g ◦ f at a.

Theorem 3. Suppose f and g are Darboux functions from R to R where f is
onto. If g ◦ f is continuous, then g is continuous.

Proof. Assume, on the contrary, that g is discontinuous at a, from, say, the
right. For each x such that f(x) = a, f has a maximum at x.

First, we claim that f−1((−∞, a]) is closed. For, if x was a limit point of
f−1((−∞, a]) and f(x) > a, then f would be discontinuous at x and [a, f(x)] ⊂
C(f, x). By Theorem 1, g would then be constant on [a, f(x)], a contradiction.

Now, pick z ∈ f−1(a + 1). At least one of f−1((−∞, a]) ∩ (−∞, z] and
f−1((−∞, a]) ∩ [z,∞) is nonempty, so assume f−1((−∞, a]) ∩ (−∞, z] 6= ∅.
Let t = max(f−1((−∞, a]) ∩ (−∞, z]). Then f(t) ≤ a. If f(t) < a, we have
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a contradiction because f is Darboux. If f(t) = a, we have a contradiction
because f must have a maximum at t.

The techniques of this paper do not seem to apply to the following question,
due to Ceder [3], which remains open.
Question. Is every real Darboux function the composition of two (finitely
many) connectivity functions?
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