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ON THE APPROXIMATELY CONTINUOUS
INTEGRALS OF BURKILL AND KUBOTA

Abstract

The exact relations between the approximately continuous Perron
and Denjoy integrals of Burkill [1] and Kubota [5, 6] are re-established
by rectifying the faulty proofs of Kubota, and the related questions of
Gordon [3] are resolved completely.

In [2, p. 269] Gordon asked: Is there an approximately continuous inte-
gral that includes both the general Denjoy integral, D-integral [10], and the
approximately continuous Perron integral, AP -integral [1], of Burkill? This
is a pertinent question since Tolstoff [17, p. 658] gave a function which is D-
integrable but not AP -integrable. But this question was resolved long ago by
the author in the affirmative (see [15, p. 352], [12, 13]), by introducing the
(TaP )- and (TaD)- integrals where Ta is the approximate limit process.

A still earlier solution is the approximately continuous Denjoy integral,
AD-integral [5], and its equivalent the AP ∗-integral [6], of Kubota. But in [3]
Gordon asked the same question again, referring to a flaw in Kubota’s proof
[5, Theorem 2] that the AD-integral includes the AP -integral, and pointing
out also certain flaws both in the indirect attempt of Lee [7] and in the direct
attempt of Lin [8] to rectify Kubota’s proof.

In this note we assume that the reader is familiar with the notions of V B,
AC, V BG, Lusin’s condition (N), and approximate continuity and derivative
[10]. Also, we refer the reader to [15, p. 337] for the precise definitions of the
following concepts: AC above, AC below, ACG above, ACG below, ACG,
(ACG) above, (ACG) below, (ACG), (V BG) and (PAC). We mention that,
a function F is ACG [resp. V BG] on [a, b] if [a, b] is the union of a sequence
of sets {En}∞n=1 such that F is AC [resp. V B] on each En; if further each En
can be taken to be closed, then F is said to be (ACG) [resp. (V BG)] on [a, b].
Note that F is not required to be continuous on [a, b]. For (PAC) we shall
use the following equivalent definition:
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Definition (13, p. 296). A function F : [a, b] → R is (PAC) on [a, b] if for
every ε > 0 there exist an increasing sequence of sets {En} with union [a, b]
and a sequence of positive numbers {rn}, such that for every n and every finite
family {(ai, bi)} of pairwise disjoint open intervals with endpoints in En and
with

∑
i(bi − ai) < rn, we have

∑
i |F (bi)− F (ai)| < ε .

Now, we find that Kubota used in fact the following type of fallacious
arguments in three of his papers [4, 5, 6]:

• If {Mn} is a sequence of functions each of which is (ACG) below on
[a, b], then there exists a sequence of closed sets {Ek} with union [a, b]
such that each Mn is AC below on every Ek.

In the absence of other conditions, this is certainly not a valid argument (see
[3, p. 837]). We will show, however, that Kubota’s results [5, Theorem 2] and
[6, Theorem 3.6] are correct in the context of these two papers. This resolves,
in particular, the specific question 2 of Gordon [3, p. 838] in the affirmative.
We make no attempt to rectify the proof of [4, Theorem 4.1], as it appears
that Kubota abandoned [4] in favour of [5].

The related specific question 1 of Gordon [3, p. 838] is in essence the follow-
ing: If a function F satisfies the Lusin’s condition (N) and is approximately
continuous and V BG on [a, b], then must F be (ACG) on [a, b]? The an-
swer to this is an emphatic NO. Dwelling on this point, long ago the author
constructed a function [15, Example 3.1, p. 342] which is approximately con-
tinuous and (PAC), but not even ACG below or ACG above on [a, b]. It is to
be noted that, by [15, Theorem 3.6], a function is (PAC) on [a, b] iff it satisfies
the condition (N) and is (V BG) on [a, b].

In this connection Gordon obtained a set of sufficient conditions [3, The-
orem 4] for a function to be Baire∗ 1 on [a, b]. But this theorem is only a
very special case of a more extensive result of the author [16, Theorem 2.1,
p. 14]. It should be mentioned here that, Sargent [11, p. 117] calls a function
F continuous in the generalized sense, (CG), on [a, b] if [a, b] is the union of
a sequence of closed sets {En} such that F|En

is continuous for each n, and
O’Malley [9] calls such a function Baire∗ 1.

As a solution to his opening question Gordon offered the AKN -integral
[3, p. 834], using the concept of V BGN functions. But there appears to be
a serious oversight in his proof of the uniqueness of this integral, as it is not
at all obvious that the difference of two V BGN functions always satisfies the
Lusin’s condition (N). The difficulty lies in the use of the condition V BG
rather than (V BG). But if the condition V BGN is replaced by (V BG)N ,
then the resulting AKN -integral reduces to the (TaP ) and (TaD)- integrals
[12, 13, 15].
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We now prove the two results of Kubota. The derivative and the upper and
lower derivatives, in the approximate sense, of a function F will be denoted
by F

′

ap, ADF and ADF , respectively. The Lebesgue measure of a set E will
be denoted by |E|. We consider functions

f : [a, b]→ [−∞,+∞] and M,m : [a, b]→ (−∞,+∞) .

Burkill’s AP -integral [1, § 3] can be defined as follows.
If −∞ 6= ADM(x) ≥ f(x) for each x in [a, b], M(a) = 0, and M is

approximately continuous on [a, b], then the function M is called an AP -major
function of f on [a, b].

If ∞ 6= ADm(x) ≤ f(x) for each x in [a, b], m(a) = 0, and m is ap-
proximately continuous on [a, b], then the function m is called an AP -minor
function of f on [a, b].

The function f is said to be AP -integrable on [a, b] if f has both AP -
major functions M and AP -minor functions m and inf{M(b)} = sup{m(b)},
and then this common finite value is defined to be the definite AP -integral of

f on [a, b], denoted by (AP )
∫ b
a
f .

We remark that Burkill assumed f to be measurable and finite almost
everywhere. But these can be proved for AP -integrable f .

Kubota [5, § 3] defines the function f to be AD-integrable on [a, b] if there
is a function F which is approximately continuous and (ACG) on [a, b] and
is such that F

′

ap(x) = f(x) a.e. on [a, b], and then F (b) − F (a) is called the

definite AD-integral of f on [a, b], denoted (AD)
∫ b
a
f .

Theorem 1. The AD-integral includes the AP -integral.

Proof. Let f be AP -integrable on [a, b]. Then [1, § 4]

F (x) = (AP )

∫ x

a

f , F (a) = 0 , a ≤ x ≤ b ,

is well defined, F is approximately continuous on [a, b], and F
′

ap = f a.e. on
[a, b]. So the proof will be complete once we can show that F is (ACG) on
[a, b]. To this end, by [15, Theorem 3.5, p. 340] it is enough to show that F is
both (PAC) and (CG) on [a, b].

To show that F is (PAC) on [a, b] we use the method of proof of [14,
Theorem 5.4, p. 39]. Given ε > 0, select an AP -major function M and an
AP -minor function m of f on [a, b] such that

H(b) < ε where H = M −m.
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For each positive integer n and each point x in [a, b], put

Axn =

{
y ∈ [a, b] :

M(y)−M(x)

y − x
≤ −n or

m(y)−m(x)

y − x
≥ n

}
.

Then let En denote the set of points x in [a, b] such that

|Axn ∩ [u, v]| < 1

2
(v − u) if x ∈ [u, v] and v − u < 1

n
. (1)

Since Axn+1 ⊆ Axn , ADM(x) > −∞ and ADm(x) < ∞ for all n, x , clearly
{En} is an increasing sequence of sets with union [a, b].

Now, if u, v ∈ En and 0 < v − u < 1/n, then (1) implies that there are
points y ∈ (u, v) \ (Aun ∪Avn), and then we have

M(y)−M(u) > −n(y − u) , m(y)−m(u) < n(y − u) ,

M(v)−M(y) > −n(v − y) , m(v)−m(y) < n(v − y) .

Since M − F and F −m are nondecreasing, we get

F (v)− F (u) ≤M(v)−M(u) = H(v)−H(u) +m(v)−m(u)

< H(v)−H(u) + n(v − u)

and

F (u)− F (v) ≤ m(u)−m(v) = H(v)−H(u) +M(u)−M(v)

< H(v)−H(u) + n(v − u) .

Hence
|F (v)− F (u)| < H(v)−H(u) + n(v − u) .

Since H is nondecreasing on [a, b], it follows that for each n and for every
finite family of nonoverlapping intervals {[ui, vi]} with endpoints in En and
with

∑
i(vi − ui) < ε/n, we have∑

i

|F (vi)− F (ui)| < H(b)−H(a) + ε = H(b) + ε < 2ε .

Hence F is (PAC) on [a, b].
Finally, since M is approximately continuous and ADM > −∞ on [a, b],

as a special case of [16, Theorem 2.1, p. 14] M is (CG) on [a, b]. Also, M −F
is continuous on [a, b] since it is nondecreasing and approximately continuous
on [a, b]. Hence F = M − (M − F ) is (CG) on [a, b]. This completes the
proof.
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Remark. Since F is (ACG) on [a, b], there is a sequence of closed sets {Bn}
with union [a, b] such that F is AC on each Bn. Then for all AP -major
functions M and all AP -minor functions m of f on [a, b], since M − F and
F −m are nondecreasing on [a, b], obviously each M is AC below and each
m is AC above on every Bn. Thus the assertion of Kubota in his proof of [5,
Theorem 2] is true, though not in his way.

Kubota’s AP ∗-integral [6, § 3] is defined as follows.
The function M is called an AP ∗-upper function of f on [a, b] if M(a) = 0,

M is approximately continuous and (ACG) below on [a, b], and M
′

ap(x) ≥ f(x)
a.e. on [a, b].

The function m is called an AP ∗-lower function of f on [a, b] if m(a) = 0,
m is approximately continuous and (ACG) above on [a, b], and m

′

ap(x) ≤ f(x)
a.e. on [a, b].

The function f is said to be AP ∗-integrable on [a, b] if f has both AP ∗-
upper functions M and AP ∗-lower functions m on [a, b] and inf{M(b)} =
sup{m(b)}, and then this common finite value is defined to be the definite

AP ∗-integral of f on [a, b], denoted (AP ∗)
∫ b
a
f .

Theorem 2. The AD-integral is equivalent to the AP ∗-integral.

Proof. This was proved by Kubota [6, Theorem 3.6]. But, as discussed
above, there is a flaw in his proof that the AD-integral includes the AP ∗-
integral. So we will prove only this part.

Let f be AP ∗-integrable on [a, b]. Then [6, § 3]

F (x) = (AP ∗)

∫ x

a

f , F (a) = 0 , a ≤ x ≤ b ,

is well-defined, F is approximately continuous on [a, b], and F
′

ap = f a.e. on
[a, b]. So it remains only to show that F is (ACG) on [a, b], that is that F is
both (PAC) and (CG) on [a, b].

Given ε > 0, select an AP ∗-upper function M and an AP ∗-lower function
m of f on [a, b] such that

H(b) < ε where H = M −m.

Since M is (ACG) below and m is (ACG) above on [a, b], we can find a
sequence of closed sets {En} with union [a, b] such that, M is AC below and
m is AC above on each En. Then for each n there is a δn > 0 such that, for
every finite family of nonoverlapping intervals {[ap, bp]} with endpoints in En
and with

∑
p(bp − ap) < δn, we have∑

p

(M(bp)−M(ap)) > −
ε

2n
and

∑
p

(m(bp)−m(ap)) <
ε

2n
.
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Now, by [15, Lemma 2.1, p. 337], there is an increasing sequence of closed
sets {Fn} with union [a, b] such that

Fn = ∪nk=1Fkn , Fkn ⊆ Ek , dist(Fin, Fjn) ≥ 1

n
for i 6= j .

Consider any n and any finite family of nonoverlapping intervals {[ap, bp]} with
endpoints in Fn and with∑

p

(bp − ap) < min

{
1

n
, δ1, . . . , δn

}
.

Since dist(Fin, Fjn) ≥ 1/n for i 6= j, so for each p both ap and bp must belong
to precisely one of the sets Fkn, k = 1, 2, . . . , n. Then, since Fkn ⊆ Ek, we
clearly have

∑
(M(bp)−M(ap)) =

n∑
k=1

∑
ap∈Fkn

(M(bp)−M(ap)) >

n∑
k=1

−ε
2k

> −ε ,

∑
(m(bp)−m(ap)) =

n∑
k=1

∑
ap∈Fkn

(m(bp)−m(ap)) <

n∑
k=1

ε

2k
< ε .

Since M − F , F −m and H are nondecreasing, we get∑
(F (bp)− F (ap)) ≤

∑
(M(bp)−M(ap))

=
∑

(H(bp)−H(ap)) +
∑

(m(bp)−m(ap))

< H(b)−H(a) + ε = H(b) + ε < 2ε ,∑
(F (ap)− F (bp)) ≤

∑
(m(ap)−m(bp))

=
∑

(H(bp)−H(ap)) +
∑

(M(ap)−M(bp))

< H(b)−H(a) + ε = H(b) + ε < 2ε .

Thus |
∑

(F (bp) − F (ap))| < 2ε . Hence, clearly,
∑
|F (bp) − F (ap)| < 4ε .

Hence, as before, by definition F is (PAC) on [a, b].
Finally, both M − F and F − m are continuous on [a, b] since they are

nondecreasing and approximately continuous on [a, b]. Since, further, M is
AC below and m is AC above on each En, it follows readily from F = M −
(M −F ) = (F −m) +m that F|En

is continuous for each n. Hence F is (CG)
on [a, b], which completes the proof.
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