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THE WIDE DENJOY INTEGRAL AS THE
LIMIT OF A SEQUENCE OF

STEPFUNCTIONS IN A SUITABLE
CONVERGENCE

Abstract

In this paper we shall prove that a function f : [a, b] → R that is
D–integrable on [a, b] can be defined as the limit of a D-controlled con-
vergent sequence of stepfunctions (see the second part of Theorem 2).
In the last section we show that Ridder’s α- and β-integrals can also
be defined as the limit of some controlled convergent sequences of step-
functions (see Theorem 4).

1 Introduction

E. J. McShane in [11], and F. Riesz and B. Sz-Nagy in [14] developed the
Lebesgue integration on an interval I ⊂ Rn using the monotone convergence of
stepfunctions. In [10], Lee and Chew showed that a function f : [a, b]→ R that
is D∗–integrable on [a, b] can be defined as the limit of a controlled convergent
sequence of stepfunctions. However, their proof is not complete (that this
result is indeed true is shown in [5]).

In a recent paper [7], Kurzweil and Jarńık proved an analogue result of
Lee and Chew for the multidimensional case. For the one-dimensional case,
we shall prove that a function f : [a, b]→ R that is D–integrable on [a, b] can be
defined as the limit of a D-controlled convergent sequence of stepfunctions (see
the second part of Theorem 2). In the last section we show that Ridder’s α-
and β-integrals can be defined as the limit of controlled convergent sequences
of stepfunctions (see Theorem 4).

The results in this paper are heavily based on Lemma 3, and its proof uses
a technique that seems to be new (see Remark 3).
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We denote by |X| the outer measure of the set X. Let m(A) denote the
Lebesgue measure of A, whenever A ⊂ R is Lebesgue measurable. Let C
denote the class of continuous functions. We denote by

C([a, b]) = {f : [a, b]→ R : f ∈ C}

and

Cap([a, b]) = {f : [a, b]→ R : f is approximately continuous on [a, b]} .

Definition 1. ([1], p. 165). Let F : [a, b] → R, xo ∈ (a, b). If there is a
measurable set E ⊂ [a, b] such that

lim inf
h→0+

m(E ∩ (xo, xo + h))

h
>

1

2
and lim inf

h→0+

m(E ∩ (xo − h, xo))
h

>
1

2

and

lim
x→xo
x∈E

F (x) = F (xo) ,

then F is said to be preponderantly continuous at xo. The definition of the
preponderant continuity of F at a and b is obvious. We denote by Cpr([a, b]) =
{F : [a, b]→ R : F is preponderantly continuous at each x ∈ [a, b]} .

Let (L1([a, b]), ‖ · ‖1) be the Banach space of all Lebesgue integrable func-
tions on [a, b]. We denote by B1 the Baire one functions, and by DB1 the
Darboux Baire one functions. A function F : [a, b] → R is said to satisfy
Lusin’s condition (N), if |F (Z)| = 0 whenever Z ⊂ [a, b] with |Z| = 0. For the
definitions of V B and AC see [15].

Definition 2. ([12], p. 91). A function f : [a, b]→ R is said to be a stepfunc-
tion if we can subdivide [a, b] by the points

c0 = a < c1 < c2 < · · · < cn = b

into a finite number of subintervals, in the interior of which f is constant. Let

S([a, b]) = {f : [a, b]→ R : f is a stepfunction}

Remark 1. By the proof of Theorem 6 of [12], p. 172 (see also the comments
on pp. 199-200), it follows that S([a, b]) and C([a, b]) are dense in the Banach
space (L1([a, b]), ‖ · ‖1).
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Definition 3. Let E ⊆ [a, b]. A function F : [a, b] → R is said to be ACG
(respectively AC∗G, V BG, V B∗G) on E if there exists a sequence of sets
{En} with E = ∪nEn, such that F is AC (respectively AC∗, V B, V B∗) on
each En. If in addition the sets En are supposed to be closed we obtain the
classes [ACG], [AC∗G], [V BG], [V B∗G]. Note that ACG and AC∗G used
here differ from those of [15] (because in our definitions the continuity is not
assumed).

Definition 4. Let P be a real set and Fn : P → R, n = 1, 2, . . . .

• ([2], p. 38). The sequence {Fn}n is said to be UAC on P if it has
the following property: for every ε > 0 there is a δε > 0 such that∑m
k=1 |Fn(βk) − Fn(αk)| < ε for all n = 1, 2, . . . , whenever {[αk, βk]},

k = 1, 2, . . . ,m is a finite set of nonoverlapping closed intervals with
endpoints in P and

∑m
k=1(βk − αk) < δε.

• The sequence {Fn}n is said to be UACG on P , if P = ∪Pk and {Fn}n
is UAC on each Pk. If in addition each Pk is supposed to be closed then
{Fn}n is said to be [UACG] on P .

Remark 2. If P is a closed set then our condition “[UACG] on P” is exactly
the “UACG on P” from [2], p. 38 (the assertion can be proved by using the
technique of Theorem 9.1 of [15], p. 233). This was pointed out by Bullen in
[2] (p. 308).

Also, the condition “[UAC∗G] on P” in this paper is exactly the “UAC∗G
on P” from [2], p. 38 (the assertion can be proved by using the technique of
Theorem 9.1 of [15], p. 233).

Definition 5. Let P ⊂ [a, b] and Fn : [a, b]→ R, n = 1, 2, . . ..

• ([2], p. 38). The sequence {Fn}n is said to be UAC∗ on P if it has the
following property: for every ε > 0 there exists a δε > 0 such that

m∑
k=1

O(Fn; [αk, βk]) < ε , n = 1, 2, . . . ,

whenever {[αk, βk]}, k = 1, 2, . . . ,m is a set of nonoverlapping closed
intervals with endpoints in P and

∑m
k=1(βk − αk) < δε.

• The sequence {Fn}n is said to be UAC∗G on P , if P = ∪Pk and {Fn}n
is UAC∗ on each Pk. If in addition each Pk is supposed to be closed
then {Fn}n is said to be [UAC∗G] on P .
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2 Sequential definitions for D∗–integral and D–integral

Lemma 1. Let F : [a, b]→ R, P be a closed subset of [a, b] and let A ⊂ [a, b]\P
be a finite set. If F ∈ AC on P then F ∈ AC on P ∪A.

Proof. For ε > 0 let δε > 0 be given by the fact that F ∈ AC on P . Then
ηε := inf{δε, d(P ;A), |x− y| : x, y ∈ A, x 6= y} > 0 is a “δ” that satisfies the
definition of F being AC on P ∪A.

Lemma 2. Let F : [a, b] → R and let {Pi}, i = 1, 2, . . . , n be a finite set of
closed subset of [a, b]. Suppose that for each i = 1, 2, . . . , n there exists a set
Hi that is the union of a finite set of nonoverlapping closed intervals (some of
them might be degenerate), such that int(Hi1)∩ int(Hi2) 6= ∅ for i1 6= i2. If F
is AC on each Pi then F is AC on Q, where Q = ∪ni=1(Pi ∩Hi).

Proof. Let c = inf(Q), d = sup(Q). By Lemma 1, we may suppose without
loss of generality that each component of Hi contains at least two points of
Pi and has the endpoints in Pi (if for example [α, β] is a component of Hi

that contains at least two points of Pi then we replace [α, β] if necessary,
with [α

′
, β

′
], where α

′
= inf(Pi ∩ [α, β]) and β

′
= sup(Pi ∩ [α, β]) ). Let

G := int([c, d] \ ∪ni=1Hi). Then G is an open set that contains only a finite
number of components (i.e. maximal open intervals contained in G). Let η
be the length of the shortest component (or components) of G. Let ε > 0.
For ε/2i, i = 1, 2, . . . , n, let δi > 0 be given by the fact that F is AC on Pi.
Let δ ∈ (0,minni=1{η, δi}) and let {[aj , bj ]}, j = 1, 2, . . . ,m be a finite set of
nonoverlapping closed intervals with endpoints in Q and

∑m
j=1(bj − aj) < δ.

We shall say that an interval [aj , bj ] is of the first kind if (aj , bj) ⊂
int(∪ni=1Hi), otherwise the interval will be of the second kind. Note that
for any interval [aj , bj ] of the second kind, there exists a unique point cj ∈
(aj , bj) ∩Q such that

(aj , cj) ∪ (cj , bj) ⊂ int(∪ni=1Hi) . (1)

Indeed, aj belongs to some component [α
′
, β

′
] of the figure ∪ni=1Hi, and bj

belongs to some other component [α
′′
, β

′′
] of the same figure. Then β

′
=

α
′′

=: cj (if not then bj − aj > η, a contradiction). Therefore we have (1).
Since |F (bj) − F (aj)| ≤ |F (cj) − F (aj)| + |F (bj) − F (cj)| , we may suppose
without loss of generality that each interval [aj , bj ] is of the first kind. Then

m∑
j=1

|F (bj)− F (aj)| <
n∑
i=1

∑
j

(aj ,bj)⊂int(Hi)

|F (bj)− F (aj)| <
n∑
i=1

ε

2i
< ε .

Therefore F ∈ AC on Q.
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Lemma 3 (Main lemma). Let F : [a, b] → R, F ∈ [ACG] on [a, b]. Then
there exists an increasing sequence of closed sets {Qn}, n = 1, 2, . . . such that
[a, b] = ∪∞n=1Qn and F is AC on each Qn. Moreover, if for each positive
integer n we define Fn : [a, b] → R such that Fn(x) = F (x) on Qn ∪ {a, b}
and Fn is linear on the closure of each interval contiguous to Qn∪{a, b}, then
each Fn is AC on [a, b] and {Fn}n is [UACG] on [a, b].

Proof. Since F ∈ [ACG] on [a, b] it follows that there exists a sequence
of closed sets {Pn}, n = 1, 2, . . . such that [a, b] = ∪∞n=1Pn and F is AC on
each Pn. We may suppose without loss of generality that a, b ∈ P1. For each
positive integer i let Gi := [a, b] \ (∪ik=1Pk). We may suppose that each Gi

has infinitely many components and is of the form Gi = ∪∞j=1(aij , b
i
j). Let

Gim := ∪mj=1[aij , b
i
j ], i = 1, 2, . . . ,m = 1, 2, . . . . Let Q1 := P1 and for each

positive integer n ≥ 2 let

Qn := P1 ∪ (P2 ∩G1
n) ∪ (P3 ∩G2

n) ∪ · · · ∪ (Pn ∩Gn−1n ) . (2)

Clearly {Qn} is an increasing sequence of closed sets. We show that

[a, b] = ∪∞n=1Qn . (3)

Let x ∈ [a, b]. If x ∈ P1 then clearly x ∈ ∪∞n=1Qn . Suppose that x /∈ P1. Then
there exists a positive integer n ≥ 2 such that

x ∈ Pn \ (∪n−1i=1 Pi) = Pn ∩Gn−1 .

Let m be such that x ∈ (an−1m , bn−1m ). Then x ∈ Pn ∩Gn−1m . For m ≤ n

Gn−1m = ∪mj=1[an−1j , bn−1j ] ⊆ ∪nj=1[an−1j , bn−1j ] = Gn−1n ,

so x ∈ Pn ∩ Gn−1n ⊂ Qn. If m > n then x ∈ Pn ∩ Gn−1m ⊂ Qm. Therefore
x ∈ Qmax{m,n} ⊂ ∪∞i=1Qi, so we have (3).

We show that F is AC on each Qn. Clearly F is AC on Q1. If for
each i ∈ {2, 3, . . . , n}, the set Pi ∩ Gi−1n = ∅ then Qn = Q1, so F is AC on
Qn. Suppose that there exists i ∈ {2, 3, . . . , n} such that Pi ∩ Gi−1n 6= ∅ and
denote by A = {i ∈ {2, 3, . . . , n} : Pi ∩ Gi−1n 6= ∅} = {i1, i2, . . . , ip}, with
i1 < i2 < · · · < ip. Clearly p ≤ n− 1. For simplicity reasons, we shall suppose
that p = n− 1, hence A = {2, 3, . . . , n}. For each i ∈ A we denote by Ain the
union of those components intervals of Gi−1n whose interiors contain points of
Pi. Clearly

Ain ∩ Pi = Pi ∩Gi−1n .

For simplicity reasons again we shall suppose that Ain = Gi−1n . Let
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Hn
n := Gn−1n

Hn−1
n := Gn−2n \ int(Gn−1n ) = Gn−2n \ int(Hn

n )

Hn−2
n := Gn−3n \ int(Gn−2n ∪Gn−1n ) = Gn−3n \ int(Hn−1

n ∪Hn
n )

...

H2
n := G1

n − int(G2
n ∪G3

n ∪ · · · ∪Gn−1n ) = G1
n − int(H3

n ∪H4
n ∪ · · · ∪Hn

n )

H1
n := [a, b] \ int(G1

n ∪G2
n ∪ · · · ∪Gn−1n ) = [a, b] \ int(H2

n ∪H3
n ∪ · · · ∪Hn

n )

It follows that each Hi
n is the union of a a finite set of nonoverlapping closed

intervals (some of them might be degenerate) and

int(Hi
n) ∩ int(Hj

n) = ∅ for i 6= j .

We show that the set Qn defined by (2) can be written as follows:

Qn = (Pn ∩Hn
n ) ∪ (Pn−1 ∩Hn−1

n ) ∪ · · · ∪ (P2 ∩H2
n) ∪ (P1 ∩H1

n) . (4)

We have
Pn ∩Gn−1n = Pn ∩Hn

n ;

Pn−1 ∩Gn−2n = Pn−1 ∩
(
Hn−1
n ∪ int(Gn−1n )

)
= Pn−1 ∩Hn−1

n ;

Pn−2 ∩Gn−3n = Pn−2 ∩
(
Hn−2
n ∪ int(Gn−2n ∪Gn−1n )

)
= Pn−2 ∩Hn−2

n ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P2 ∩G1
n = P2 ∩

(
H2
n ∪ int(G2

n ∪G3
n ∪ · · · ∪Gn−1n )

)
= P2 ∩H2

n ;

P1 = P1 ∩ [a, b] = P1 ∩
(
H1
n ∪ int(G1

n ∪G2
n ∪ · · · ∪Gn−1n )

)
= P1 ∩H1

n ;

therefore, from (2) we obtain (4). Now by Lemma 2, F ∈ AC on Qn.
We show the second part. Since F ∈ AC on Qn, each Fn ∈ V B∩C∩(N) =

AC on [a, b] (see the Banach-Zarecki Theorem). Let n be fixed. Since Fi is
AC on [a, b] for each i (particularly for i ≤ n − 1), Fi = F on Qn for each
i ≥ n and F ∈ AC on Qn, it follows that {Fi}i is UAC on Qn. Therefore
{Fn}n is [UACG] on [a, b].

Remark 3. If F ∈ [ACG] on [a, b] then there exists a sequence of closed sets
{Pi}i such that [a, b] = ∪iPi and F ∈ AC on each Pi. In Lemma 3, it seemed
natural to define the sets Qn as follows: Qn = ∪ni=1Pn. But in [3] (Remark 1,
p. 756), the author gave a simple example of a continuous function on [0, 1],
that is AC on two closed subsets E1 and E2 of [0, 1], and that is not AC on
E1∪E2. Having this in mind, Lemma 3 is quite unexpected, and the technique
used in the proof seems to be new.
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Lemma 4. Let F : [a, b] → R and let {Pn}n be an increasing sequence of
closed sets such that ∪nPn = [a, b]. For each n, let Fn : [a, b] → R such that
Fn(x) = F (x) if x ∈ Pn, and Fn is linear on the closure of each interval
contiguous to Pn ∪ {a, b}. Then {Fn}n converges pointwise to F on [a, b].
Moreover, if F is continuous on [a, b] then {Fn}n converges uniformly to F
on [a, b].

Proof. Let x ∈ [a, b]. Then there exists a positive integer nx such that
x ∈ Pnx . Since {Pn}n is increasing,

Fn(x) = F (x), ∀n ≥ nx .

It follows that {Fn(x)}n converges to F (x).

Suppose that F is continuous on [a, b]. Let ε > 0. Then there exists a
δε > 0 such that

O(F ; [α, β]) < ε , whenever [α, β] ⊂ [a, b] and β − α < δε .

Since {Pn}n is increasing and ∪nPn = [a, b], it follows that there exists a
positive integer nε such that

m([a, b] \Qn) < δε , (∀)n ≥ nε .

Since Fn−F = 0 on Qn and the length of each component interval of [a, b]\Qn
is less than δε for n ≥ nε, it follows that

|Fn − F | < ε on [a, b] , (∀)n ≥ nε ,

hence {Fn}n converges uniformly to F on [a, b].

Definition 6. Let (X, τ1) and (Y, τ2) be topological spaces and let A ⊂ X. A
function f : A→ Y is said to be continuous at a ∈ A if for each neighborhood
W of f(a) there is a neighborhood V of a such that f(A ∩ V ) ⊂W . f is said
to be continuous on a set B ⊂ A if it is continuous at each point of B.

Lemma 5. Let (X, τ1) and (Y, τ2) be two topological spaces, and let {Xi},
i = 1, 2, . . . , n be a finite set of closed subsets of X. Let f : ∪ni=1Xi → Y . If
for each i, f/Xi is continuous on Xi then f is continuous on ∪ni=1Xi.

Proof. Let a ∈ ∪ni=1Xi. Then a ∈ Xi for some i. Let

Ia = {i ∈ {1, 2, . . . , n} : a ∈ Xi} and Ja = {1, 2, . . . , n} \ Ia
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Let W be a neighborhood of f(a). For i ∈ Ia, since f/Xi is continuous at a,
there exists a neighborhood Vi such that f(Xi ∩ Vi) ⊂W . Since ∪i∈JaXi is a
closed set that does not contain a, it follows that

V :=
(
∩i∈IaVi

)
\
(
∪i∈JaXi

)
is a neighborhood of a. But

V ∩
(
∪ni=1Xi

)
= ∪i∈Ia(V ∩Xi) ,

hence
f
(
V ∩

(
∪ni=1Xi

))
= ∪i∈Iaf(V ∩Xi) ⊂W .

It follows that f is continuous at a.

Lemma 6. Let F : [a, b] → R and {Pi}i, i = 1, 2, . . . , n be closed subsets of
[a, b]. If F ∈ AC∗ on each Pi then F ∈ AC on Q := ∪ni=1Pi ∪ {a, b}.

Proof. Let G : [a, b] → R such that G(x) = F (x) for x ∈ Q and G is linear
on the closure of each interval contiguous to Q. Let α, β ∈ Q, α < β. Then

O(G; [α, β]) = O(F ;Q ∩ [α, β]) ≤ O(F ; [α, β]) .

It follows that G ∈ AC∗ on each Pi. Clearly F/Pi is continuous on Pi, so by
Lemma 5, F/Q is continuous on Q. It follows that G is continuous on [a, b]
(see for example Lemma 2 of [12], p. 101). By Lemma 3 of [3], G ∈ AC∗ on
Q. Therefore F ∈ AC on Q.

Lemma 7. Let F : [a, b]→ R, F ∈ [AC∗G] on [a, b]. Suppose that {Pi}i is a
sequence of closed sets such that ∪∞i=1Pi = [a, b] and F ∈ AC∗ on each Pi. For
every positive integer n let Qn := ∪ni=1Pi ∪ {a, b} and let Fn : [a, b]→ R such
that Fn(x) = F (x) for x ∈ Qn and Fn is linear on the closure of each interval
contiguous to Qn. Then each Fn is AC on [a, b] and the sequence {Fn}n is
[UAC∗G] on [a, b].

Proof. By Lemma 6, F ∈ AC on Qn, therefore Fn ∈ AC on [a, b] (see
the Banach-Zarecki Theorem). Fix some Pi. We show that {Fn}n ∈ UAC∗
on Pi. For ε > 0 let δj > 0, j = 1, 2, . . . , i − 1 be given by the fact that
Fj ∈ AC = AC∗ on [a, b]. For j ≥ i we have that Fj = F on Pi. Let α, β ∈ Pi,
α < β. Then

O(Fj ; [α, β]) = O(F ; [α, β] ∩ Pi) < O(F ; [α, β]) . (5)

For ε, let δi > 0 be given by the fact that F ∈ AC∗ on Pi. Let

δ := inf{δj : j = 1, 2, . . . , i} .
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Let {[ak, bk]}k, k = 1, 2, . . . ,m be a finite set of nonoverlapping closed intervals
with endpoints in Pi, such that

∑m
k=1(bk − ak) < δ. By (5), it follows that for

each n we have
∑m
k=1O(Fn; [ak, bk]) < ε , hence {Fn}n is UAC∗ on Pi.

Lemma 8. Let A([a, b]) be a dense subset of (L1[a, b], ‖·‖1). Let f : [a, b]→ R
be such that there exists F : [a, b] → R such that F is [ACG] (respectively
[AC∗G]) on [a, b] and F

′

ap = f (respectively F
′

= f) a.e. on [a, b]. Then there
exists a sequence {gn} ∈ A([a, b]) such that if

Gn(x) := (L)

∫ x

a

gn(t) dt, (∀)x ∈ [a, b]

then we have:

(i) gn converges pointwise to f a.e on [a, b];

(ii) Gn converges pointwise to F on [a, b];

(iii) Gn is [UACG] (respectively [UAC∗G]) on [a, b].

Moreover if F is continuous on [a, b] (therefore f is D– integrable (respectively
D∗–integrable) on [a, b]) then (ii) can be replaced by

(ii
′
) Gn converges uniformly to F on [a, b].

Proof. By Lemma 3 (respectively Lemma 7) there is an increasing sequence
{Qn}n of closed sets such that [a, b] = ∪∞n=1Qn. Also, for each n, the function
Fn is AC on [a, b] and {Fn}n is [UACG] (respectively [UAC∗G] on [a, b], where
Fn = F on Qn and Fn is linear on the closure of each interval contiguous to
Qn ∪ {a, b}. Let fn : [a, b]→ R, fn(x) := F

′

n(x) whenever Fn is derivable at x
and fn(x) := 0 elsewhere. Clearly {fn} is a sequence of Lebesgue integrable
functions on [a, b]. Since

f(x) = F
′

ap(x) = F
′

n(x) = fn(x) a.e. on Qn

(respectively

f(x) = F
′
(x) = F

′

n(x) = fn(x) a.e. on Qn )

and {Qn} is increasing with [a, b] = ∪∞n=1Qn, it follows that

fn converges pointwise to f a.e. on [a, b] (6)

Since A([a, b]) is dense in (L1[a, b], ‖·‖1) it follows that for each positive integer
n there exists a function gn ∈ A([a, b]) such that

(L)

∫ b

a

|gn(t)− fn(t)| dt < 1

2n
(7)
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By (7), using a consequence of Beppo Levi’s Theorem (see for example the
corollary at page 142 of [12]), we obtain that

lim
n→∞

|gn(t)− fn(t)| = 0 a.e. on [a, b] .

By (6), {gn} converges pointwise to f a.e. on [a, b], so we obtain (i).
By Lemma 4, {Fn}n converges pointwise to F on [a, b]. Moreover, if F is

continuous then {Fn}n converges uniformly to F on [a, b]. By (7) we have:

|Gn(x)− F (x)| ≤ |Gn(x)− Fn(x)|+ |Fn(x)− F (x)| <

< (L)

∫ b

a

|gn(t)− fn(t)| dt+ |Fn(x)− F (x)| < 1

2n
+ |Fn(x)− F (x)| .

Hence, we obtain (ii) and (ii
′
).

(iii) Since {Fi}i is [UACG] (respectively [UAC∗G]) on [a, b], there exists
a sequence {Pn}n of closed sets, such that {Fi}i is UAC (respectively UAC∗)
on each Pn. Let n be fixed and ε > 0. For ε/2, let ηε > 0 be given by the fact
that {Fi}i is UAC (respectively UAC∗) on Pn. Let mε be a positive integer
such that 1/2mε < ε/2. For each i = 1, 2, . . . ,mε − 1 let δi,ε be given for ε by
the fact that Gi is AC on [a, b]. Let

δε =
mε−1
inf
i=1
{ηε, δi,ε} .

Let {[aj , bj ]}j , j = 1, 2, . . . , p be a finite set of nonoverlapping closed intervals
with endpoints in Pn, such that

p∑
j=1

(bj − aj) < δε .

For each j = 1, 2, . . . , p let [αj , βj ] ⊆ [aj , bj ]. For i ≥ mε it follows that

p∑
j=1

|Gi(βj)−Gi(αj)| <

<

p∑
j=1

|Gi(βj)− Fi(βj) + Fi(βj)− Fi(αj) + Fi(αj)−Gi(αj)| <

<

p∑
j=1

|Fi(βj)− Fi(αj)|+
p∑
j=1

∣∣∣(L)

∫ βj

αj

(gi(t)− fi(t)) dt
∣∣∣ <
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<

p∑
j=1

|Fi(βj)− Fi(αj)|+
1

2i
≤

p∑
j=1

|Fi(βj)− Fi(αj)|+
ε

2

(see (7) and the fact that 1/2i < 1/2mε < ε/2). We obtain that

p∑
j=1

|G(bj)−G(aj)| ≤
p∑
j=1

|F (bj)− F (aj)|+
ε

2

and
p∑
j=1

O(G; [aj , bj ]) ≤
p∑
j=1

O(F ; [aj , bj ]) +
ε

2
.

Therefore {Gi}i is UAC (respectively UAC∗) on Qn. It follows that {Gi}i is
[UACG] (respectively [UAC∗G]) on [a, b].

Definition 7. Let fn : [a, b]→ R, n = 1, 2, . . . be D∗–integrable (respectively
D–integrable) functions, and let

Fn(x) := (D∗)
∫ x

a

fn(t) dt, x ∈ [a, b]

(respectively

Fn(x) := (D)

∫ x

a

fn(t) dt, x ∈ [a, b]
)
.

Let f : [a, b] → R. The sequence {fn}n is said to be (D∗)-controlled con-
vergent (respectively (D)-controlled convergent) to f on [a, b] if the following
conditions are satisfied:

1) limn→∞ fn = f a.e. on [a, b];

2) {Fn}n is uniformly convergent on [a, b];

3) {Fn}n is [UAC∗G] (respectively [UACG]) on [a, b].

Remark 4. The D∗ version of Definition 7 is in fact Definition 7.4 of [9],
p. 39. The D version is extracted from the hypotheses of Theorem 4.7., a) of
[2], p. 40 (see also Bullen’s comments on p. 308 of [2]).

Theorem 1 (Džvaršěı̌svili). (Theorem 47, p. 40 of [2]).
Let fn : [a, b]→ R, n = 1, 2, . . . be (D∗)-integrable (respectively (D)-integrable
functions). If {fn}n is (D∗)-controlled convergent (respectively (D)-controlled
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convergent) to a function f : [a, b]→ R then f is (D∗)-integrable (respectively
(D)-integrable) on [a, b] and

lim
n→∞

(D∗)
∫ b

a

fn(t) dt = (D∗)
∫ b

a

f(t) dt

(respectively

lim
n→∞

(D)

∫ b

a

fn(t) dt = (D)

∫ b

a

f(t) dt
)
.

Remark 5. For the D∗ version of Theorem 1 see also Theorem 7.4 of [9],
p. 39.

Theorem 2. Let A([a, b]) be a dense linear subspace of (L1[a, b], ‖ · ‖1). The
following conditions are equivalent

1) f : [a, b]→ R is D∗–integrable (respectively D–integrable) on [a, b];

2) There exists a sequence {fn}n ⊂ A([a, b]) such that {fn}n is D∗–controlled
convergent (respectively D–controlled convergent) to f on [a, b];

and we have

(D∗)
∫ b

a

f(t) dt = lim
n→∞

(L)

∫ b

a

fn(t) dt (8)

(respectively

(D)

∫ b

a

f(t) dt = lim
n→∞

(L)

∫ b

a

fn(t) dt
)
. (9)

Proof. 1) ⇒ 2) Let f : [a, b] → R be D∗–integrable (respectively D–
integrable) on [a, b]. Then there exists a function F : [a, b]→ R, F (a) = 0 such
that F ∈ [AC∗G] ∩ C (respectively F ∈ [ACG] ∩ C) on [a, b] and F

′
= f (re-

spectively F
′

ap = f) a.e. on [a, b]. By Lemma 8 and Definition 7, there exists
a sequence {fn}n ⊂ A([a, b]) that is D∗–controlled convergent (respectively
D–controlled convergent) to f on [a, b]. Also

(D∗)
∫ b

a

f(t) dt = F (b) = lim
n→∞

(L)

∫ b

a

fn(t) dt

(respectively

(D)

∫ b

a

f(t) dt = F (b) = lim
n→∞

(L)

∫ b

a

fn(t) dt
)
.

Therefore we have obtained (8) (respectively (9)).
2)⇒ 1) and relation (8) (respectively (9)) follow by Theorem 1.
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Remark 6. The D∗ version in Theorem 2, for A([a, b]) = S([a, b]), is in fact
The Equivalence Theorem of [10], p. 224 (see also [9], pp. 58–59). The D
version of Theorem 2 seems to be new.

3 Sequential definitions for some general descriptive
type integrals

Definition 8. Let A∗([a, b]) (respectively B∗([a, b])) be a class of functions
(not necessarily a linear space) having the following properties:

1) C([a, b])  A∗([a, b]) (respectively C([a, b])  B∗([a, b]));

2) If F1, F2 ∈ [AC∗G] ∩ A∗([a, b]) (respectively F1, F2 ∈ [ACG] ∩ B∗([a, b]))
and (F1−F2)

′
= 0 (respectively (F1−F2)

′

ap = 0) a.e. on [a, b] then F1−F2

is a constant on [a, b].

A function f : [a, b]→ R is said to be [A∗D∗]–integrable (respectively [B∗D]–
integrable) on [a, b] if

• there exists F : [a, b]→ R such that F ∈ [AC∗G]∩A∗([a, b]) (respectively
F ∈ [ACG] ∩ B∗([a, b]))on [a, b] and

• F ′
= f (respectively F

′

ap = f) a.e. on [a, b].

Then F is called the indefinite [A∗D∗]–integral (respectively [B∗D]–integral)
of f , and its increment F (b) − F (a) is called the definite [A∗D∗]–integral
(respectively [B∗D]–integral) of f on [a, b], denoted by

[A∗D∗]
∫ b

a

f(t) dt (respectively [B∗D]

∫ b

a

f(t) dt
)
.

Remark 7.

(i) Condition 2) in Definition 8 assures us that the [A∗D∗]–integral (respec-
tively [B∗D]–integral) is well defined.

(ii) If A∗([a, b]) = B∗([a, b] = Cap([a, b]) then [A∗D∗] is in fact Ridder’s α–
integral, and [B∗D] is Ridder’s β–integral (that is also called the Kubota
AD–integral [6], [13]).

(iii) If A∗([a, b]) = B∗([a, b]) = Cpr([a, b]) then [A∗D∗] and [B∗D] seem to be
new integrals. Proof. Clearly Cpr([a, b]) satisfies the conditions 1) of
Definition 8). We show 2) of the same definition. If F ∈ Cpr([a, b]) then
F ∈ DB1 on [a, b] (see for example [1], p. 166). Let F1, F2 ∈ Cpr([a, b]).
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Then F1 + F2 ∈ B1 on [a, b] and F1 + F2 satisfies the Young condition
i.e., for each x there exist two sequences xn ↗ x , yn ↘ x, such that

(F1 + F2)(x) = lim
n→∞

(F1 + F2)(xn) = lim
n→∞

(F1 + F2)(yn) .

By Theorem 1.1 (i), (ii) of [1], pp. 8–9, it follows that F1 + F2 ∈ DB1
on [a, b]. Suppose that F1, F2 ∈ [ACG] ∩Cpr([a, b]) and (F1 − F2)

′

ap = 0
a.e. on [a, b]. Then F1 − F2 ∈ DB1 ∩ (N) on [a, b]. By Theorem 1 of [8],
p. 61 (this theorem states the following: a function F ∈ DB1 ∩ (N) on
[a, b], with F

′
(x) ≥ 0 a.e. where F is derivable, is increasing and AC on

[a, b]), we obtain that F1 − F2 is a constant.

Definition 9. Let fn : [a, b] → R, n = 1, 2, . . . be [A∗D∗]-integrable (re-
spectively [B∗D]-integrable) functions, and let Fn : [a, b] → R be the [A∗D∗]
(respectively [B∗D]) indefinite integral of fn. Let f : [a, b] → R. The se-
quence {fn}n is said to be [A∗D∗]–controlled convergent (respectively [B∗D]–
controlled convergent) to f on [a, b] if the following conditions are satisfied:

1) limn→∞ fn = f a.e. on [a, b];

2) There exists F : [a, b] → R, F ∈ A∗([a, b]) (respectively F ∈ B∗([a, b]))
such that {Fn}n converges pointwise to F on [a, b];

3) {Fn}n is [UAC∗G] (respectively [UACG]) on [a, b].

Theorem 3 (A Džvaršěı̌svili type theorem). Let fn : [a, b]→ R, n = 1, 2, . . .
be [A∗D∗] (respectively [B∗D]) integrable functions, such that {fn}n is [A∗D∗]–
controlled convergent (respectively [B∗D]–controlled convergent) to a function
f : [a, b] → R on [a, b]. Then f is an [A∗D∗] (respectively [B∗D]) integrable
function on [a, b] and

lim
n→∞

[A∗D∗]
∫ b

a

fn(t) dt = [A∗D∗]
∫ b

a

f(t) dt

(respectively

lim
n→∞

[B∗D]

∫ b

a

fn(t) dt = [B∗D]

∫ b

a

f(t) dt
)
.

Proof. The proof of the first part is similar to that of Theorem 3 of [4], and
the proof of the second part is similar to that of Theorem 2 of [4].

Theorem 4. Let A([a, b]) be a dense linear subspace of (L1[a, b], ‖ · ‖1). The
following conditions are equivalent
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1) f : [a, b]→ R is [A∗D∗]–integrable (respectively [B∗D]–integrable) on [a, b];

2) There exists a sequence {fn}n ⊂ A([a, b]) such that {fn}n is [A∗D∗]–
controlled convergent (respectively [B∗D]–controlled convergent) to f on
[a, b];

and we have

[A∗D∗]
∫ b

a

f(t) dt = lim
n→∞

(L)

∫ b

a

fn(t) dt (10)

(respectively

[B∗D]

∫ b

a

f(t) dt = lim
n→∞

(L)

∫ b

a

fn(t) dt
)
. (11)

Proof. 1)⇒ 2) and (10) (respectively (11)) follow by Lemma 8 and Definition
9.

2)⇒ 1) and (10) (respectively (11)) follow by Theorem 3.
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Kiadó, Budapest, 1955.

[15] S. Saks, Theory of the integral, 2nd. rev. ed., vol. PWN, Monografie
Matematyczne, Warsaw, 1937.


