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ORDINARY DERIVATIVES VIA
SYMMETRIC DERIVATIVES AND A

LIPSCHITZ CONDITION VIA A
SYMMETRIC LIPSCHITZ CONDITION

Abstract

If a subset A of the real line is a countable union of closed, strongly
symmetrically porous sets, then there exists a Lipschitz everywhere sym-
metrically differentiable function f such that A is the set of all non-
differentiability points of f . Since there are closed strongly symmetri-
cally porous sets of Hausdorff dimension 1, our construction answers a
problem posed by J. Foran in 1977. We also obtain results concerning
smallness of the set of points at which a continuous function fulfills the
symmetric Lipschitz condition but does not fulfill the ordinary Lipschitz
condition.

1 Introduction and Notation

In this article we will consider real functions defined on the real line R. By
the symmetric derivative of a function f at a point x ∈ R we mean

f ′s(x) := lim
h→0+

f(x+ h)− f(x− h)

2h
;

we consider here only finite symmetric derivatives.
Let us recall that f satisfies the Lipschitz condition at x ∈ R if

lim sup
h→0

∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ <∞.
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Following [9], we say that a function f : R → R fulfills the symmetric
Lipschitz condition at a point x if

lim sup
h→0+

∣∣∣∣f(x+ h)− f(x− h)

2h

∣∣∣∣ <∞.
We shall use the following notation.

C(f) = {x : f is continuous at x},
D(f) = {x : f ′(x) ∈ R exists},

SD(f) = {x : f ′s(x) ∈ R exists},
L(f) = {x : f fulfils the Lipschitz condition at x}

and

SL(f) = {x : f fulfils the symmetric Lipschitz condition at x}.

Let E ⊂ R, x ∈ R and r > 0. Then we define s(E, x, r) as the supremum
of all numbers h > 0 for which there exists a p > 0 such that p + h ≤
r, (x+ p, x+ p+ h) ∩ E = ∅ and (x− p− h, x− p) ∩ E = ∅. The symmetric
porosity of E at x is defined as

ps(E, x) := lim sup
r→0+

s(E, x, r)

r
.

We say that E is symmetrically porous at x (d-symmetrically porous at x)
if ps(E, x) > 0 (ps(E, x) ≥ d). If E is 1-symmetrically porous at x, we say
that E is strongly symmetrically porous at x.

A set E ⊂ R is symmetrically porous (strongly symmetrically porous, d-
symmetrically porous) if it is symmetrically porous (strongly symmetrically
porous, d-symmetrically porous) at each of its points.

A set E is called σ-symmetrically porous (σ-strongly symmetrically porous,
σ-d-symmetrically porous) if it is a countable union of symmetrically porous
(strongly symmetrically porous, d-symmetrically porous) sets.

Khintchine [5] proved that the set SD(f) \ D(f) is of Lebesgue measure
zero for each measurable function f . Foran [4] (and independently also Pono-
marev [7]) constructed a continuous function on R which has a finite symmetric
derivative everywhere and is differentiable at no point of a nonempty perfect
set. Thus the set SD(f) \ D(f) can be uncountable also for a continuous
function f . Foran in his article asked two questions.
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The first question asks whether there exists a continuous function f which
has a finite symmetric derivative everywhere and the set of all non-differentiabi-
lity points of f has a positive Hausdorff dimension. Note that Foran observed
that this set has Hausdorff dimension zero in his example. Thomson ([9], p.
266) conjectured that this question has positive answer; we will see that his
intuition was right on target.

Foran’s second question, which asks whether each perfect set of measure
zero is the set of all non-differentiability points for a continuous function which
has a finite symmetric derivative everywhere, was answered negatively by
Belna, Evans and Humke [1]. They proved that, for a continuous function
f , the set SD(f) \D(f) is σ-porous and used the fact ([10]) that there exists
a perfect set of measure zero which is not σ-porous.

Evans in [2] factually proved the following result which improves the result
of [1] and generalizes the previous result of (the preprint of) [12].

Theorem E. Let f : R→ R be given. Then the set
(SD(f)\D(f))∩C(f) is σ− (1−ε) -symmetrically porous for each 0 < ε < 1.

This result was formulated in [2] in the case SD(f) ⊂ C(f) only, but it is
obvious that the same arguments give also the above result.

In [12] this result was proved for continuous f only. The fact that Theorem
E is a true improvement of the result of [1] was proved in [3].

The natural problem of a complete characterization (or at least a complete
characterization of smallness) of sets SD(f) \ D(f) for continuous f (or for
symmetrically differentiable continuous f is Problem 42 of [9]) and seems to
be open.

The main result (Theorem 3.2) of the present article says that if A ⊂ R
is a countable union of closed strongly symmetrically porous sets, then A =
SD(f)\D(f) for a Lipschitz everywhere symmetrically differentiable function
f . The corresponding construction is similar to that of [7] but it contains also
some small new ideas.

Theorem E and Theorem 3.2 suggest that, if a simple characterization
discussed above exists, it must probably deal with a type of symmetric poros-
ity. We obtain a simple characterization in the class of perfect symmetric sets
only. However, this result is strong enough to easily imply a positive answer to
Foran’s first question mentioned above. The set R \D(f) can have Hausdorff
dimension 1 for a Lipschitz everywhere symmetrically differentiable function
f .

In Section 4 we consider the size of SL(f) \L(f). First we show (Theorem
4.1) that the notes [12] and [2] easily give that (SL(f) \ L(f)) ∩ C(f) is σ-
strongly symmetrically porous for each f : R → R. Thus SL(f) \ L(f) is
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σ-strongly symmetrically porous if C(f) = R, in particular for each Baire one
function f .

The basic constructions used in the proof of Theorem 3.2 easily give that,
if F ⊂ R is a countable union of closed strongly symmetrically porous sets,
then there exists a continuous function f such that F ⊂ SL(f) \ L(f) (even
F ⊂ SD(f)\L(f)). Note that we cannot demand here SL(f) = R, see Remark
4.9.

The same constructions give a complete characterization of those symmet-
ric, perfect sets that are of the form SL(f) \ L(f) (or SD(f) \ L(f)) for a
continuous function f . In particular, we obtain that SD(f) \ L(f) can be of
Hausdorff dimension 1 for a continuous function f .

It should be mentioned that Theorem 4.1 was originally contained in an un-
published note written (and originally also submitted for publication) in 1996.
The results of Section 3 were presented on the Workshop in Real Analysis,
Budapest 21.6.-24.6.1997.

We adopt the following notation.
The four Dini derivates of f at x are denoted by D+f(x), D+f(x), D−f(x)

and D−f(x).
Lebesgue measure on R is denoted by λ.
If I ⊂ R is an interval, we frequently write |I| instead of λI.
The symbols A and intA denote the closure and the interior of a set A,

respectively. The distance of two sets A,B is denoted by dist(A,B).
We say that a function f is K-Lipschitz if f is Lipschitz with the constant

K.
The support of f is supp(f) := {x ∈ R : f(x) 6= 0}.

2 Lemmas and Basic Constructions

We start with the following useful technical definitions.

Definition 2.1.

(a) By an I-system I we mean a finite (possibly empty) disjoint system of
nonempty bounded closed intervals. We put

ν(I) = sup{|I| : I ∈ I}.

(b) Let I,K be I-systems and let c > 0. We say that I is c-embedded in K if

(b1) for each I ∈ I there exists K ∈ K such that I ⊂ K and
dist(I,R \

⋃
K) = dist(I,R \K) > c|I|, and
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(b2) dist(I, J) > c|I| whenever I, J ∈ I, I 6= J .

The fact that a closed set is strongly symmetrically porous can be expressed
in different ways. One of them uses the notion of c-embedding of I-systems;
in the following lemma we formulate and prove the only implication we need.

Lemma 2.2. Let F ⊂ R be a nonempty bounded closed strongly symmetrically
porous set and let (cn)∞n=1 be a sequence such that cn > 1 and cn →∞. Then
there exist I-systems (In)∞n=0 such that, for every n ∈ N,

(i) In is cn-embedded in In−1,

(ii) ν(In) < 1/cn and

(iii) F =
⋂∞
k=0

⋃
Ik.

Proof. Find a, b ∈ R such that F ⊂ (a, b) and put I0 = {[a, b]}. Further
suppose that k ∈ N and that I0, . . . , Ik−1 were constructed so that, for every
0 ≤ n ≤ k − 1, the following conditions hold:

(a) conditions (i) and (ii) hold whenever n > 0,

(b) F ⊂ int(
⋃
In) and

(c) F ∩ I 6= ∅ whenever I ∈ In.

We want to construct Ik such that (i), (ii), (b) and (c) hold for n = k.
Since F ⊂ int(

⋃
Ik−1), we have ρ := dist(F,R \

⋃
Ik−1) > 0. Since F is

strongly symmetrically porous, we can assign numbers px > 0, hx > 0 to every
x ∈ F so that

(x+ px, x+ px + hx) ∩ F = ∅, (x− px − hx, x− px) ∩ F = ∅, (1)

hx > 8ckpx and (2)

6pxck < min(1, ρ). (3)

By the Borel covering lemma, we can find points x1, . . . , xm ∈ F such that,
putting pi := pxi , hi := hxi , the intervals (xi−pi−hi, xi+pi+hi), i = 1, . . . ,m,
cover the set F . By (1) we also have that the system of intervals Φ := {Ji :=
[xi − pi, xi + pi] : i = 1, . . . ,m} covers F . Moreover, we may and will suppose
that

no proper subsystem of Φ covers F. (4)

Now put
Ik = {[xi − 2pi, xi + 2pi] : i = 1, . . . ,m}.
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Let 1 ≤ i, j ≤ m and yi ∈ [xi−2pi, xi+2pi], yj ∈ [xj−2pj , xj +2pj ]. We may
and will suppose pj ≤ pi. First we shall show that yi 6= yj . In fact, otherwise
clearly

[xj − pj , xj + pj ] ⊂ (xi − 5pi, xi + 5pi)

and therefore (2) implies

[xj − pj , xj + pj ] ⊂ (xi − pi − hi, xi + pi + hi).

Consequently (1) gives [xj−pj , xj+pj ]∩F ⊂ [xi−pi, xi+pi] which contradicts
(4).

Thus we know that Ik is an I-system. Further (1) implies |xi−xj | ≥ pi+hi.
Consequently, using (2), we have

|yi − yj | ≥ pi + hi − 4pi > 8ckpi − 3pi > 5ckpi > ckλ[xi − 2pi, xi + 2pi]

≥ ckλ[xj − 2pj , xj + 2pj ].

If, moreover, z ∈ R \
⋃
Ik−1 is given, then (3) gives |z − xi| ≥ ρ > 6pick.

Therefore

|z − yi| ≥ 6pick − 2pi > 4pick ≥ ckλ[xi − 2pi, xi + 2pi].

Thus we have shown that (i) holds for n = k. By (3) we obtain λ[xi−2pi, xi+
2pi] = 4pi < 4/6ck < 1/ck which implies that (ii) holds for n = k as well.

The validity of (b) and (c) for n = k is obvious. Thus the sequence (In)∞n=0

is well defined. It clearly satisfies (i) and (ii); (iii) follows by (b),(c),(ii) and
the assumption cn →∞.

In the following construction, we build more complicated functions from
basic building blocks; functions gI which are assigned to each closed bounded
interval I. We need only the following properties of gI .

(a) gI is 4-Lipschitz and of the class C1 on R.

(b) supp(gI) ⊂ I and gI(x) ≥ 0 for each x ∈ R.

(c) gI attains its maximum which equals |I| at the center c of I and gI(c+h) =
gI(c− h) for all h ∈ R.

It is easy to see that such functions exist.
The following construction depends on a parameter 0 ≤ α < 1; we shall

apply it in the following with α = 0 and α = 1/2.

Construction Let 0 ≤ α < 1 and d > 1 be given. Further let I-systems I and
K such that I is 4d2-embedded in K be given We shall construct a function
ϕ = ϕ(α, d, I) (which does not depend on K) in the following way.
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To every interval I = [a, b] ∈ I, we assign the “right” interval Ir :=
[b+ d|I|, b+ 2d|I|] and the “left” interval I l := [a− 2d|I|, a− d|I|]. Put

ϕ = ϕ(α, d, I) :=
∑
I∈I

dα(gIr + gIl).

We shall need the properties of ϕ which are proved in the following lemma.

Lemma 2.3. The function ϕ = ϕ(α, d, I) constructed above has the following
properties:

(P1) ϕ is a non-negative C1 function on R with a compact support.

(P2) |ϕ(x)| ≤ dα+1ν(I) for each x ∈ R.

(P3) dist(supp(ϕ),
⋃
I) > 0 and suppϕ ⊂

⋃
K.

(P4) ϕ is 4-Lipschitz in the case α = 0.

(P5) If x ∈
⋃
I and h > 0, then |ϕ(x+ h)− ϕ(x− h)|/2h ≤ 4dα−1.

(P6) For every x ∈
⋃
I there exists 0 < h < 3ν(I)d such that ϕ(x+ h)/h >

dα/3.

Proof. To each I ∈ I assign an “enlarged” interval I∗ := [a − 2d2|I|, b +
2d2|I|]. Observe that

Ir ∪ I l ⊂ I∗ and {I∗ : I ∈ I} is a disjoint system. (5)

The first claim of (5) is obvious. To prove the second one, suppose on the
contrary that I∗ ∩ J∗ 6= ∅ for different I, J from I. We may and will suppose
|I| ≥ |J |. Then the distance between I and J is clearly at most 2d2|I| +
2d2|J | ≤ 4d2|I| which contradicts the assumption that I is 4d2-embedded in
K.

Using (5) and the definitions of ϕ and gI we immediately obtain the prop-
erties (P1)-(P4).

To prove (P5), suppose that x ∈ I = [a, b] ∈ I and h > 0 are given. Denote
c := (a + b)/2. If 0 < h ≤ d|I|, then clearly ϕ(x + h) = ϕ(x − h) = 0. If
d|I| < h ≤ 2d2|I|, then the points c + h, c − h, x + h, x − h belong to I∗ and
(5) implies that ϕ = gIr + gIl on I∗. Thus ϕ(c+ h)− ϕ(c− h) = 0 and

|ϕ(x+ h)− ϕ(x− h)| ≤|ϕ(c+ h)− ϕ(c− h)|+ |ϕ(c+ h)− ϕ(x+ h)|
+ |ϕ(c− h)− ϕ(x− h)|
≤0 + 4dα|c− x|+ 4dα|c− x| ≤ 8dα|I| < 8dα−1h.
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If h > 2d2|I|, then (5) gives that either ϕ(x + h) = gJl(x + h) or ϕ(x + h) =
gJr (x + h) for an interval J ∈ I, J 6= I. In both cases |ϕ(x + h)| ≤ d1+α|J |.
If ϕ(x + h) 6= 0, then clearly h + 2d|I| ≥ dist(I, J) ≥ 4d2|J |. Consequently
h > 2d2|J | and thus we have∣∣∣∣ϕ(x+ h)

2h

∣∣∣∣ ≤ dα+1|J |
4d2|J |

=
dα−1

4
.

Similarly we obtain |ϕ(x − h)/2h| ≤ dα−1/4. The inequalities proved above
immediately give (P5).

To prove (P6), suppose that an x ∈ I ∈ I is given. Put h := b+ 3
2d|I| − x.

Then clearly 0 < h < 3d|I| < 3ν(I)d and

ϕ(x+ h)

h
=
dα+1|I|
h

>
dα+1|I|
3d|I|

=
dα

3
.

Lemma 2.4. Suppose that 0 ≤ α < 1, (I)∞n=0 and (dn)∞n=1 are given so that
all In are I-systems, dn > 1. In addition assume

(i) In is 4d2n-embedded in In−1 for every n ∈ N,

(ii) (dn)α+1ν(In)→ 0, (dn)α+1ν(In) ≤ 1 for every n ∈ N and

(iii)
∑∞
n=1(dn)α−1 <∞.

Denote F :=
⋂∞
n=0

⋃
In. Then there exists a function f = fα such that

(iv) f is continuous, |f(x)| ≤ 1 for every x ∈ R and f is 4-Lipschitz in the
case α = 0,

(v) f is a C1 function on R \ F ,

(vi) f ′s(x) = 0 for every x ∈ F and

(vii) if x ∈ F , then

(a) D−f(x) ≤ 0,

(b) D+f(x) ≥ 1/3 in the case α = 0 and

(c) D+f(x) =∞ in the case α > 0.

Proof. Let ϕn = ϕ(α, dn, In) be the functions from the Construction. Put
f = fα =

∑∞
n=1 ϕn. By (i) and (P3) of Lemma 2.3 we have that the supports

of the functions ϕn are pairwise disjoint. This fact, (P1), (P2), (P4) and (ii)
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easily imply (iv) and (v). To prove (vi) suppose that x ∈ F and ε > 0 are
given. Observe that (P3) implies that ϕ′k(x) = 0 for each k. Using also (P5)
and (iii) we obtain

lim sup
h→0

∣∣∣∣f(x+ h)− f(x− h)

2h

∣∣∣∣ ≤ lim sup
h→0

n∑
k=1

∣∣∣∣ϕk(x+ h)− ϕk(x− h)

2h

∣∣∣∣
+ lim sup

h→0

∞∑
k=n+1

∣∣∣∣ϕk(x+ h)− ϕk(x− h)

2h

∣∣∣∣
≤0 +

∞∑
k=n+1

4dα−1 < ε,

if n is chosen sufficiently large. Thus f ′s(x) = 0.

If x ∈ F , then f(x) = 0, and since f is non-negative, we obtain (vii),(a).

For each index n by (P6) we can find an hn such that 0 < hn < 3ν(In)dn
and ϕ(x + hn)/hn > (dn)α/3. Since dn > 1, we obtain by (ii) that hn → 0.
Since

f(x+ hn)− f(x)

hn
≥ ϕn(x+ hn)

hn
>

(dn)α

3

and dn →∞ by (iii), we obtain (vii),(b) and (vii),(c).

3 Symmetric Derivatives

Proposition 3.1. Let F ⊂ R be a bounded closed strongly symmetrically
porous set. Then there exists a non-negative 1-Lipschitz function g such that
|g(x)| ≤ 1 for every x ∈ R, g is a C1-function on R \ F and, for every x ∈ F ,
we have

g(x) = 0, g′s(x) = 0, D−g(x) ≤ 0 and D+g(x) ≥ 1/12.

Proof. Put dn := 2n2 and apply Lemma 2.2 to F and cn := 4(dn)2. The
resulting I-systems (In)∞n=0 clearly satisfy assumptions (i)-(iii) of Lemma 2.4
for α = 0. Now it is clearly sufficient to find the corresponding f = f0 and
put g := f/4.

Theorem 3.2. Let A ⊂ R can be written in the form A =
⋃∞
n=1 Fn, where

each Fn is closed and strongly symmetrically porous. Then there exists a Lip-
schitz symmetrically differentiable function f on R such that A is the set of
all non-differentiability points of f .
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Proof. We may suppose that all Fn are bounded. For each n, we apply
Proposition 3.1 to F = Fn and obtain a corresponding function g = gn. Now
put f :=

∑∞
n=1(26)−ngn. Obviously, f is a Lipschitz function.

Let x ∈ R be given and put D :=
∑∞
n=1(26)−n(gn)′s(x). For each ε > 0

find k ∈ N such that
∑∞
n=k+1(26)−n < ε/3 and h0 > 0 such that∣∣∣∣∣

k∑
n=1

(26)−n
gn(x+ h)− gn(x− h)

2h
−

k∑
n=1

(26)−n(gn)′s(x)

∣∣∣∣∣ < ε

3

for every 0 < h < h0. Since each gn is 1-Lipschitz, we conclude that∣∣∣∣f(x+ h)− f(x− h)

2h
−D

∣∣∣∣
=

∣∣∣∣∣
∞∑
n=1

(26)−n
gn(x+ h)− gn(x− h)

2h
−
∞∑
n=1

(26)−n(gn)′s(x)

∣∣∣∣∣
≤

∣∣∣∣∣
k∑

n=1

(26)−n
gn(x+ h)− gn(x− h)

2h
−

k∑
n=1

(26)−n(gn)′s(x)

∣∣∣∣∣
+

∣∣∣∣∣
∞∑
k+1

(26)−n
gn(x+ h)− gn(x− h)

2h

∣∣∣∣∣+

∣∣∣∣∣
∞∑
k+1

(26)−n(gn)′s(x)

∣∣∣∣∣
<
ε

3
+
ε

3
+
ε

3
= ε

if 0 < h < h0. Therefore f ′s(x) = D and thus f is symmetrically differentiable.
Quite similar argument gives that f ′(x) =

∑∞
n=1(26)−n(gn)′(x) for each

x ∈ R \A.
Let now a point x ∈ A be fixed. Find k ∈ N such that x ∈ Fk and x /∈ Fn

for every n < k. Then the function
∑
n<k(26)−ngn is differentiable at x and

D+((26)−kgk)(x)−D−((26)−kgk)(x) ≥ 26−k
1

12
.

Since the function
∑∞
n=k+1(26)−ngn is Lipschitz with the Lipschitz constant∑∞

n=k+1(26)−n = (26)−k/25, we conclude that

D+f(x)−D−f(x) ≥ 1

12
(26)−k − 2

25
(26)−k > 0.

As an almost immediate consequence of this theorem and results of [3], we
obtain the following result on symmetric perfect sets. We use here the notation
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from [6]. Namely, if a sequence λ = (λn)∞n=1 with 0 < λn <
1
2 is given, then we

consider the symmetric perfect set (the “generalized Cantor set ” in [6]) C(λ) ⊂
[0, 1] which is constructed like the classical Cantor ternary set is so that, after
the n-th step of construction, we obtain 2n closed “remaining” intervals with
the same length λ1 . . . λn. Symmetric perfect sets are sometimes called also
“symmetric Cantor sets” and/or determined by a sequence (αn)∞n=1, 0 < αn <
1 (see [3]). Note that for αn = 1− 2λn the set C(αn) from [3] coincides with
the set C(λ) from [6].

Proposition 3.3. Let C = C(λ) ⊂ [0, 1] be a symmetric perfect set. Then
the following statements are equivalent.

(i) lim inf λn = 0.

(ii) There exists a Lipschitz function f on R which has a finite symmetric
derivative at all points, is of the class C1 outside C but f ′(x) exists at
no point x ∈ C.

(iii) There exists a function f on R such that C ⊂ (SD(f) \D(f)) ∩ C(f).

Proof. Theorem 3 and Theorem 5 of [3] give that (i) holds iff C is strongly
symmetrically porous. Thus Proposition 3.1 immediately gives the implication
(i) ⇒ (ii). The implication (ii) ⇒ (iii) is trivial. To prove the implication
(iii) ⇒ (i) suppose that (i) fails. Then we know by Theorem 3 of [3] that
there exists ε > 0 such that

C is (1− ε)− symmetrically porous at no point of C. (6)

By Theorem E (see Introduction) C =
⋃∞
n=1An where every An is

(1− ε)-symmetrically porous. By the Baire theorem we obtain that some An
is dense in a portion of C, which clearly contradicts (6).

The condition (i) implies that the Lebesgue measure of C is zero but it is
well-known that it implies no stronger smallness in the (Hausdorff) measure
sense. In particular, there exists a symmetric perfect set C of Hausdorff di-
mension 1 for which (i) holds. Thus Foran’s first question (see Introduction)
has a negative answer.

We shall now formulate and prove a more precise statement which deals
with Hausdorff measures Λh determined by non-decreasing functions
h : [0,∞)→ [0,∞), h(0) = 0 (see [6] or [8]).

Proposition 3.4. Let h : R→ R be an increasing function such that h(0) = 0
and h′(0) = ∞. Then there exists a symmetric perfect set C and a Lipschitz
function f on R with the following properties.
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(i) Λh(C) =∞, where Λh is the Hausdorff measure determined by h.

(ii) The function f is of the class C1 outside C, has a finite symmetric deriva-
tive at all points and f ′(x) exists at no point x ∈ C.

Proof. We will need the following fact (see [6], 4.11).
Fact Let C = C(λ) be a symmetric perfect set. Put sk = λ1 · · ·λk. If
g : [0,∞)→ [0,∞) is a continuous increasing function such that g(sk) = 2−k,
then 1/4 ≤ Λg(C(λ)) ≤ 1.

For each natural number k choose δk > 0 such that

h(x)

x
> (k + 2)! whenever 0 < x ≤ δk.

Further choose an increasing sequence of natural numbers (nk)∞k=1 such that
n1 > 2 and 2−nk < δk. Let (pn)∞n=1 be any fixed sequence such that

0 < pn < 1 and p :=

∞∏
1

pn > 0.

Now put λn = 1/k if n = nk and λn = pn/2 if no such k exists. Clearly
there exists a continuous increasing function h∗ : [0,∞) → [0,∞) such that
h∗(0) = 0 and h∗(λ1 · · ·λn) = 2−n. By the above mentioned fact we have

1/4 ≤ Λh∗(C(λ)) ≤ 1.

To prove Λh(C(λ)) = ∞, by Theorem 40 of [8] it is suffices to establish that

limx→0+
h∗(x)
h(x) = 0. To this end, consider 0 < x ≤ λ1 . . . λn1+1 and the corre-

sponding index n = n(x) for which λ1 · · ·λn+1 < x ≤ λ1 · · ·λn. Since clearly
n > n1, there exists the unique index k = k(x) such that
nk ≤ n < nk+1. Since λ1 · · ·λn+1 ≤ 2−nk < δk, we obtain

h∗(x)

h(x)
≤ 2−n

h(λ1 · · ·λn+1)
≤ 2−n

(k + 1)! · λ1 · · ·λn+1

≤ 2−n · (k + 1)!

(k + 2)! · p2−(n+1)
=

2

p(k + 2)
.

Since clearly k(x)→∞ when x→ 0+, we are done.

4 A Symmetric Lipschitz Condition

In the first part of this section we show how the notes [12] and [2] give the
following theorem.
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Theorem 4.1. For each function f : R → R, the set (SL(f) \ L(f)) ∩ C(f)
is σ-strongly symmetrically porous.

This theorem immediately implies, for example, the following result.

Proposition 4.2. Let f : R→ R be a function of Baire class one. Then the
set of all points at which f fulfills the symmetric Lipschitz condition but does
not fulfill the Lipschitz condition is σ-strongly symmetrically porous.

Note that the above theorem is analogous to [11, Theorem 2] which asserts
that, for each function f : R → R, the set of all points at which f fulfills
an one-sided Lipschitz condition but does not fulfill the Lipschitz condition is
σ-strongly porous.

M. J. Evans in [2, Proposition 1] proved the following result.

Proposition 4.3. For each function f : R→ R, the set (SL(f)∩C(f))\C(f)
is σ-strongly symmetrically porous.

Thus to prove our Theorem 4.1 it is sufficient to prove that

(SL(f) \ L(f)) ∩ C(f) is σ-strongly symmetrically porous. (7)

We will show that (7) easily follows from the following Lemma 4.4 which
is essentially the main part of [12, Lemma 1].

Lemma 4.4. Let f : R → R be a function, B > 0 and 1 > ε > 0 . For a
natural number m denote by Sm the set of all points x ∈ R at which
D+f(x) > B and

f(x+ h)− f(x− h)

2h
<
εB

8
whenever 0 < h <

1

m
. (8)

Then Sm ∩ C(f) is (1− ε)−symmetrically porous.

It is necessary to note that in the proof of [12, Lemma 1] it is only proved
that Sm is (1−ε)-symmetrically porous for a continuous function f . However,
as was pointed out and used in [2], the assumption of global continuity of f is
not used in the proof and thus the conclusion of the above lemma holds.

To prove (7), suppose that a point x ∈ M := (SL(f) \ L(f)) ∩ C(f) is
given. Then we can clearly find a natural number m such that∣∣∣∣f(x+ h)− f(x− h)

2h

∣∣∣∣ < m whenever 0 < h <
1

m
. (9)

Thus, denoting by Mm the set of all x ∈M for which (9) holds, we see that
M =

⋃∞
m=1Mm and that it is sufficient to prove that each Mm is σ-strongly
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symmetrically porous. Since x ∈ L(f) clearly iff all four Dini derivates of f at
x are finite, we have

Mm =(Mm ∩ {x : D+f(x) =∞}) ∪ (Mm ∩ {x : D+f(x) = −∞})
∪ (Mm ∩ {x : D−f(x) =∞}) ∪ (Mm ∩ {x : D−f(x) = −∞}).

Considering the functions f(−x),−f(x) and −f(−x) we easily see that it
is sufficient to prove that the set

Zm := Mm ∩ {x : D+f(x) =∞}

is strongly symmetrically porous. To this end choose an arbitrary 1 > ε > 0
and find B > 0 such that εB/8 > m. Then (9) and consequently also (8) is
satisfied for each x ∈ Zm. Since also D+f(x) = ∞ > B for each x ∈ Zm,
our Lemma 4.4 implies that Zm is (1− ε)-symmetrically porous. Thus Zm is
1-symmetrically porous, i.e. it is strongly symmetrically porous.

The second part of this section, which concerns the sets SL(f) \ L(f) is
analogical to Section 3 which deals with the sets SD(f) \D(f).

Proposition 4.5. Let F ⊂ R be a bounded, closed, strongly symmetrically
porous set. Then there exists a non-negative continuous function f such that
|f(x)| ≤ 1 for every x ∈ R, f is a C1 function on R \ F and, for every
x ∈ F , we have f(x) = 0, f ′s(x) = 0 and D+f(x) = ∞. In particular,
SD(f) = SL(f) = R and F = R \ L(f).

Proof. Put dn := 2n3 and apply Lemma 2.2 to F and cn := 4(dn)2.
The resulting I-systems (In)∞n=0 obviously satisfy the assumptions (i)-(iii) of
Lemma 2.4 for α = 1/2. Then the function f from the assertion of Lemma
2.4 has clearly all required properties.

Now we can simply prove an analogy of Proposition 3.3 on symmetric
perfect sets.

Proposition 4.6. Let C = C(λ) be a symmetric perfect set. Then the follow-
ing statements are equivalent.

(i) lim inf λn = 0.

(ii) There exists a continuous symmetrically differentiable function f which
is C1 on R \ C and D+f(x) =∞ for each x ∈ C.

(iii) There exists a function f on R such that C ⊂ (SL(f) \ L(f)) ∩ C(f).
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Proof. If (i) holds then C is strongly symmetrically porous by Theorem
5 of [3] and thus Proposition 4.5 implies (ii). The implication (ii) ⇒ (iii) is
trivial. The implication (iii) ⇒ (i) can be easily proved, using Theorem 4.1
and Theorem 3 of [3] and imitating the proof of the implication (iii)⇒ (i) of
Proposition 3.3.

Quite similarly as in Proposition 3.4, we easily see that Proposition 4.6
implies that (for a continuous f) the Lebesgue null set SD(f)\L(f) (and thus
also SL(f) \ L(f)) need not be small in any reasonable stronger (Hausdorff)
measure sense.

Proposition 4.7. Let h : [0,∞) → [0,∞) be an increasing continuous func-
tion with h(0) = 0 and h′+(0) = ∞. Then there exist a symmetric per-
fect set C and a continuous symmetrically differentiable function f such that
Λh(C) =∞, f is C1 on R \ C and C = R \ L(f).

Theorem 4.8. Let A ⊂ R be written in the form A =
⋃∞
n=1 Fn, where each Fn

is closed and strongly symmetrically porous. Then there exists a continuous
function g on R such that, for every x ∈ A, g′s(x) ∈ R exists but g is not
Lipschitz at x; in particular A ⊂ SL(g) \ L(g).

Proof. We may suppose that each set Fn is bounded. For each n, let f = fn
be a function which corresponds to F = Fn by Proposition 4.5. It is easy to
see that, for each n ∈ N, there exists a closed (even discrete) set Dn ⊂ R such
that Dn ∩A = ∅ and the distance function

dn(x) := dist(x, F1 ∪ · · · ∪ Fn ∪Dn)

is bounded by 1. Now put

g1 := f1, gn := n−2fn(dn−1)2 for n > 1 and g :=

∞∑
n=1

gn.

The function g is clearly continuous on R.
Now let x ∈ A be given and let k be a natural number with x ∈ Fk and

x /∈ Fn for each n < k. Observe that each dn has clearly finite both one-
sided derivatives, and therefore a finite symmetric derivative, at any point
y /∈ F1 ∪ · · · ∪ Fn ∪ Dn. The same property is satisfied also for functions
(dn)2, which are clearly also bounded by 1 and Lipschitz on R. By the above
observation, the function

∑
n<k gn is Lipschitz on R and has a finite symmetric

derivative at x.
Now denote s :=

∑∞
n=k+1 gn. For every n ≥ k + 1, clearly gn(x) =

dn−1(x) = 0 and |gn(x + h)| ≤ n−2(dn−1(x + h))2 ≤ n−2h2 for every h ∈ R.
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Consequently, for every h 6= 0,∣∣∣∣s(x+ h)− s(x)

h

∣∣∣∣ ≤ |h|−1 ∞∑
n=k+1

n−2h2 = |h|
∞∑

n=k+1

n−2.

Thus s′(x) = 0. Since both fk and (dk−1)2 have a finite symmetric derivative
at x, we conclude that gk and g have finite symmetric derivatives at x.

On the other hand, gk is not Lipschitz at x. In fact, suppose that gk
is Lipschitz at x. Then, since we have observed that the function (dk−1)2 is
Lipschitz at x and dk−1(x) 6= 0, we easily conclude that also fk = k2(dk−1)−2gk
is Lipschitz at x, a contradiction. Since both

∑
n<k gn and s are Lipschitz at

x, we obtain that g is not Lipschitz at x.

Remark 4.9. If A in Theorem 4.8 is not nowhere dense, no corresponding
function g is symmetrically Lipschitz at all points. In fact, suppose that f is
a continuous function on R and SL(f) = R. Put

Sn := {x ∈ R :
|f(x+ h)− f(x− h)|

2h
≤ n whenever 0 < h <

1

n
}.

Then clearly R =
⋃∞
n=1 Sn and the continuity of f easily implies that all Sn

are closed. Thus the Baire category theorem easily gives that each interval I
contains a subinterval J which is contained in an Sm; it easily implies that f
is Lipschitz on J . Therefore R \ L(f) is nowhere dense.
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