Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, e-mail: hrosen@mathdept.as.ua.edu

DARBOUX QUASICONTINUOUS FUNCTIONS

Abstract

Let C(f) denote the set of points at which a function $f: I \to I$ is continuous, where I = [0, 1]. We show that if a Darboux quasicontinuous function f has a graph whose closure is bilaterally dense in itself, then f is extendable to a connectivity function $F: I^2 \to I$ and the set $I \setminus C(f)$ of points of discontinuity of f is f-negligible. We also show that although the family of Baire class 1 quasicontinuous functions can be characterized by preimages of sets, the family of Darboux quasicontinuous functions cannot. An example is found of an extendable function $f: I \to \mathbb{R}$ which is not of Cesaro type and not quasicontinuous.

1 Extensions

We begin with the following definitions of classes of functions which could be stated for \mathbb{R} instead of I or \mathbb{R}^2 instead of I^2 .

- D: A Darboux function $f: I \to I$ maps connected sets to connected sets, and so it has the intermediate value property.
- Conn: A connectivity function $F: I^2 \to I$ has the graph of its restriction F|C connected for each connected subset $C \subset I^2$. According to [15], [10], and [16], this is equivalent to
 - PC: $F : I^2 \to I$ is peripherally continuous if for each $x \in I^2$ and all open sets U with $x \in U$ and V with $F(x) \in V$, there exists an open set W containing x such that $W \subset U$ and $F(\operatorname{bd} W) \subset V$.
 - Ext: A function $g: I \to I$ is said to be extendable if there exists a connectivity function $G: I^2 \to I$ such that G(x, 0) = g(x) for all $x \in I$. For such

Mathematical Reviews subject classification: Primary 26Å15; Secondary 54C30 Received by the editors October 23, 1997

Key Words: Darboux function, quasicontinuous function, extendable connectivity function, Baire 1 function, characterizable by preimages, Cesaro type function

an extendable function g, we then say that a set $A \subset I$ is g-negligible if whenever $f: I \to I$ is such that f = g on $I \setminus A$ and the graph of f|A is a subset of the closure, \overline{g} , of the graph of g, then f is extendable, too.

- AC: Every open neighborhood in I^2 of the graph of an almost continuous function $f: I \to I$ contains the graph of a continuous function $g: I \to I$.
- QC: We say $f: I \to I$ is quasicontinuous if for each $x \in I$ and open sets U containing x and V containing f(x), there exists a nonempty open set $W \subset U$ such that $f(W) \subset V$. That is, f|C(f) is dense in the graph of f.
- DIVP: An $f: I \to I$ has the dense intermediate value property if $f(A) \in \mathcal{D}_0 = \{D \cap J : D \text{ is dense in } I \text{ and } J \text{ is a nonempty interval or singleton} \}$ for every $A \in \mathcal{D}_0$.
 - CT: A function $f: I \to I$ is of the Cesaro type if there exist nonempty open sets U and V in I such that for each $y \in V$, $f^{-1}(y)$ is dense in U. Note that this implies the graph of f is somewhere dense in I^2 .

Let $\ell_x = \{x\} \times I$. A function $f: I \to I$ has a closure that is bilaterally dense in itself if for each $x \in (0,1)$, $cl(f|(0,x)) \cap \ell_x = cl(f|(x,1)) \cap \ell_x$. It follows from [11] that for a Darboux function $f: I \to I, \overline{f} \cap \ell_x$ is a connected set for each $x \in I$, and C(f) is a dense G_{δ} subset of I if f also has a G_{δ} graph. Of course, a function f equals its graph $\{(x, f(x)) : x \in I\}$. Π_1 and Π_2 denote the x-projection and y-projection, respectively, of I^2 onto I. In [9], Gibson and Reclaw give an example of a Darboux quasicontinuous function $f: I \to I$ whose graph is not connected, and in [8], Gibson and Natkaniec give an example of an almost continuous quasicontinuous function $f: I \to I$ which is not extendable. Examination of many other examples in the literature revealed that whenever a Darboux quasicontinuous function fwas not extendable, then the closure of its graph failed to be bilaterally dense in itself. The first theorem shows that this is always the case. Example 1 in [9] is quasicontinuous with closure bilaterally dense in itself, but is not Darboux. Kellum and Garrett's function $f: I \to [-1, 1]$ in Example 1 of [12] is in AC, a G_{δ} set, but not of Baire class 1. Letting K denote the Cantor ternary set in I and $J = \{e_1, e_2, e_3, \dots\}$ the set of endpoints of the complementary intervals of K, they define

$$f(x) = \begin{cases} \sin \frac{1}{(m-x)(n-x)} & \text{if } x \text{ belongs to the component } (m,n) \text{ of } I \setminus K \\ 1 & \text{if } x \in K \setminus J \\ \frac{1}{r} & \text{if } x = e_r. \end{cases}$$

In [6], Gibson asks if this function is extendable. Since f is Darboux, quasicontinuous, and has a closure bilaterally dense in itself, then according to the following result, f is extendable and K is f-negligible.

Theorem 1. If $g: I \to I$ is a Darboux quasicontinuous function whose graph has a closure that is bilaterally dense in itself, then g is extendable, and $I \setminus C(g)$ is g-negligible.

PROOF. We identify I with the subset $I \times \{0\}$ of I^2 . By a "triangle" t, we mean $t = int(s^2)$ (the set theoretic interior of s^2 in the space I^2), where s^2 is a closed 2-simplex in I^2 with a 1-dimensional face lying in $I \times \{0\}$. The "base" b of t is $b = t \cap (I \times \{0\})$. For each positive integer n and $0 \le i \le 2^n - 1$, define $H\left(\frac{i}{2^n}, \frac{i+1}{2^n}\right) = \{x \in I : \overline{g} \cap \ell_x \text{ meets both } I \times \left\{\frac{i}{2^n}\right\} \text{ and } I \times \left\{\frac{i+1}{2^n}\right\}\}.$ Each $H\left(\frac{i}{2^n}, \frac{i+1}{2^n}\right)$ is closed and nowhere dense in I, and

$$\bigcup \{ H\left(\frac{i}{2^n}, \frac{i+1}{2^n}\right) : 0 \le i \le 2^n - 1 \} \subset \bigcup \{ H\left(\frac{j}{2^{n+1}}, \frac{j+1}{2^{n+1}}\right) : 0 \le j \le 2^{n+1} - 1 \}.$$

For $n = 1, 2, 3, \ldots$ and $0 \le i \le 2^n - 1$, we let $T_{n,i}$ denote a finite collection of disjoint triangles t_j of diameter $< \frac{1}{n}$ in I^2 whose bases b_j form a finite collection $B_{n,i}$ of disjoint open intervals of $I \times \{0\}$ with endpoints denoted endpts $(b_i) \subset C(g) \cup \{0,1\}$ such that

(1)
$$I \times \{0\} = \bigcup \{\operatorname{cl}(b_j) : b_j \in B_{n,i}\},\$$

(2)
$$T_{n,k}$$
 is a refinement of $T_{n,i}$ for $k > i$,

(3) $T_{n+1,0}$ is a refinement of $T_{n,2^n-1}$

. . .

- (4) $B_{n,k}$ is a refinement of $B_{n,i}$ for k > i,
- (5) $B_{n+1,0}$ is a refinement of $B_{n,2^n-1}$, and

(6)
$$\begin{array}{c} \text{if } 0 \text{ or } 1 \text{ is an endpoint of } b_j, \text{ then } \operatorname{cl}(t_j) \\ \text{is a neighborhood of } (0,0) \text{ or } (1,0), \text{ respectively , in } I^2 \end{array}$$

Picture the elements of each $T_{n,i}$ arranged like adjacent teeth of a handsaw and the sawteeth of the next collection, which is either $T_{n,i+1}$ or $T_{n+1,0}$, constructed inside the sawteeth of $T_{n,i}$.

Since $B_{n,i}$ is an open cover of $H\left(\frac{i}{2^n}, \frac{i+1}{2^n}\right)$ with mesh $< \frac{1}{n}$,

if $x \in I \setminus C(g)$, then there exist n and i such that $x \in H\left(\frac{i}{2^n}, \frac{i+1}{2^n}\right)$ in which case $x \in b_j$ or x = 0 or x = 1 and x is an endpoint of some

(7) $b_j \in B_{n,i}$, and we may assume $B_{n,i}$ is constructed so that $g(\text{endpts}(b_j) \setminus \{0,1\}) \in \left[\frac{i}{2^n}, \frac{i+1}{2^n}\right]$ because g has a closure that is bilaterally dense in itself and g|C(g) is dense in g.

We can define an extension $G: I^2 \to I$ of g so that for each n and i,

the variation of G on $bd(t_i)$ (the set theoretic boundary in I^2)

(8) is
$$<\frac{1}{n}$$
 for each $t_j \in T_{n,i}$,

if
$$x \in (I \setminus C(g) \cap H\left(\frac{i}{2^n}, \frac{i+1}{2^n}\right)$$
 and $x \in b_j \in B_{n,i}$, then

(9) $G(\operatorname{bd}(t_j)) \subset [\min g(\operatorname{endpts}(b_j)), \max g(\operatorname{endpts}(b_j))], \text{ but if } x = 0 \text{ or } 1$ and $x = \operatorname{endpt}(b_j), \text{ then } G(\operatorname{bd}(t_j)) = g(\operatorname{endpts}(b_j) \setminus \{0, 1\}).$ If $x \in C(g)$ and x = 0 or 1 and $x = \operatorname{endpt}(b_j)$ for some $b_j \in B_{n,i}$, then $G(\operatorname{bd}(t_j)) \subset [\min g(\operatorname{endpts}(b_j)), \max g(\operatorname{endpts}(b_j))], \text{ and}$

(10)
$$G$$
 is continuous on $I^2 \cup \{\operatorname{cl}(t_j) : t_j \in T_{n,i}\}$

Here is how to obtain condition (8). Suppose E denotes the set of endpoints of all intervals belonging to $B_{n,i-1}$ along with the endpoints of just those members b_j of $B_{n,i}$ constructed as described in (7) which each contain at least one point of $H\left(\frac{i}{2^n}, \frac{i+1}{2^n}\right)$ and which together cover $H\left(\frac{i}{2^n}, \frac{i+1}{2^n}\right)$. Suppose c and d are consecutive points of E such that no point of $H\left(\frac{i}{2^n}, \frac{i+1}{2^n}\right)$ lies between c and d. Because of (7) and (9), we may as well suppose that if c = 0, then $c \in C(g)$. Even though |g(d) - g(c)| might not be a small value, a finite number of triangles of diameter $< \frac{1}{n}$ belonging to $T_{n,i}$ can be constructed as follows forming sawteeth from c to d so that the total variation of G on the slanted sides of each of the triangles will be less than $\frac{1}{n}$. First choose a partition $P = \{x_0 = c, x_1, x_2, \dots, x_k = d\}$ of [c, d] in C(g) with norm less than $\frac{1}{n}$. Next, since g is Darboux, for $m = 1, 2, \dots, k$, there exists a finite (possibly very irregular) partition P_m of $[x_{m-1}, x_m]$ such that $g|P_m$ is monotone and $|g(y) - g(x)| < \frac{1}{n}$ for each pair of consecutive points x and yin P_m . $P \cup \bigcup_{m=1}^k P_m$ partitions [c, d] into subintervals whose interiors are to belong to $B_{n,i}$ and are bases of a sawtooth collection of triangles of diameter $< \frac{1}{n}$ that are to belong to $T_{n,i}$. Then the extension G of g can be defined to be piecewise linear and of total variation $< \frac{1}{n}$ on the slanted sides of each triangle in this collection. We now show that $G: I^2 \to I$ is in PC and hence in Conn. We only have to check peripheral continuity on $I \times \{0\}$ because according to (10), G is continuous on $I^2 \setminus (I \times \{0\})$. Let $\epsilon > 0$.

Case 1: $x \in I \setminus C(g)$. Then by (7) and (9), G is peripherally continuous at (x, 0).

Case 2: $x \in C(g)$ and x is an endpoint of an interval belonging to some $B_{m,i}$. If x = 0 or 1, then by (9), G is peripherally continuous at (x, 0). Therefore suppose $x \neq 0, 1$. Then x is an endpoint of adjacent intervals b_j and b_k in $B_{n,p}$ for each $B_{n,p} \in \{B_{m,i}, B_{m,i+1}, \cdots, B_{m+1,0}, B_{m+1,1}, \cdots\}$. There exists an $n \geq m$ such that $\frac{2}{n} < \epsilon, t_j \cup t_k$ has diameter $< \frac{2}{n}$, and the variation of G on $\operatorname{bd}(t_j \cup t_k)$ is $< \frac{2}{n}$. Since by (10), G restricted to $I^2 \setminus \{\operatorname{cl}(t_j) : t_j \in T_{n,p}\}$ is continuous at (x, 0), there exists an open semicircular disk D in I^2 having (x, 0) at the center of its diameter and not containing the other vertices of t_j and t_k such that the diameter of the open neighborhood $W = t_j \cup t_k \cup D$ of (x, 0) in I^2 is $< \frac{2}{n}$ and diam $(\{G(x, 0)\} \cup G(bd(W))) < \frac{2}{n} < \epsilon$. This shows G is peripherally continuous at (x, 0).

Case 3: $x \in C(g)$ and x is not an endpoint of any b_j in any $B_{n,i}$. For each n and i, there exists $b_j \in B_{n,i}$ such that $(x,0) \in b_j$. Let $\{a_j\}$ be a sequence whose jth term a_j is an endpoint of b_j in C(g). Then $a_j \to x$ and $G(a_j, 0) \to G(x, 0)$. Since the variation of G on $bd(t_j)$ is $< \frac{1}{n}$, G is peripherally continuous at (x, 0).

To show $I \setminus C(g)$ is g-negligible, suppose $f : I \to I$ with f = g on C(g) and $f|(I \setminus C(g)) \subset \overline{g}$. Since g|C(g) is dense in g and since f = g on C(g), $\overline{f} = \overline{g}$. We show that

$$F(x,t) = \begin{cases} G(x,t) & \text{on } I^2 \setminus ((I \setminus C(g)) \times \{0\}) \\ f(x) & \text{on } (I \setminus C(g)) \times \{0\} \end{cases}$$

is a peripherally continuous extension of f. F is peripherally continuous at each point of $I^2 \setminus ((I \setminus C(g)) \times \{0\})$ because F = G on this set, which contains bd(W) in case 2 and contains $bd(t_j)$ in case 3. Let $x \in I \setminus C(g)$, $\epsilon > 0$ and $\delta > 0$. There exist an n and i such that $\frac{1}{n} < \delta$ and

$$\left[\frac{i}{2^n}, \frac{i+1}{2^n}\right] \subset (F(x,0) - \epsilon, F(x,0) + \epsilon) \cap \Pi_2(\overline{g} \cap \ell_x).$$

Then for some $j, x \in b_j \in B_{n,i}$ and $F(\mathrm{bd}(t_j)) = G(\mathrm{bd}(t_j)) \subset \left[\frac{i}{2^n}, \frac{i+1}{2^n}\right] \subset (F(x,0) - \epsilon, F(x,0) + \epsilon)$. Therefore F is peripherally continuous at each point of $(I \setminus C(g)) \times \{0\}$, too, and so $I \setminus C(g)$ is g-negligible.

A function $f : I \to \mathbb{R}$ belongs to B_1^* , the class Baire^{*1}, if each perfect set in I contains a portion on which the restriction of f is continuous. In the space DB_1 of Darboux Baire class 1 functions $f : I \to \mathbb{R}$ with the metric $d(f,g) = \min\{1, \sup |f(x) - g(x)|\}$ of uniform convergence, let \mathcal{G} be the subspace of quasicontinuous functions, and let \mathcal{G}_0 be the subspace of quasicontinuous functions having closures that are bilaterally dense in themselves. In [5], Darji, Evans, and O'Malley show that \mathcal{G} is closed and nowhere dense in DB₁ and that DB₁^{*} is of the first category in \mathcal{G} . \mathcal{G}_0 is closed in DB₁ and a proof similar to theirs would show that the subspace of DB₁^{*} consisting of functions whose closures are bilaterally dense in themselves is of first category in \mathcal{G}_0 .

2 Preimages

For $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(\mathbb{R})$, the family of all subsets of \mathbb{R} , let $C_{\mathcal{A},\mathcal{B}} = \{f \in \mathbb{R}^{\mathbb{R}} : for every \ A \in \mathcal{A}, f(A) \in \mathcal{B}\}$ and $C_{\mathcal{A},\mathcal{B}}^{-1} = \{f \in \mathbb{R}^{\mathbb{R}} : for every \ B \in \mathcal{B}, f^{-1}(B) \in \mathcal{A}\}$. A family \mathcal{F} of real functions is *characterizable by images of sets* if $\mathcal{F} = C_{\mathcal{A},\mathcal{B}}$ and by preimages of sets if $\mathcal{F} = C_{\mathcal{A},\mathcal{B}}^{-1}$ for some $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(\mathbb{R})$. The class QC of all quasicontinuous functions is characterizable by preimages [13] but not by images [3]. We examine the classes QC $\cap B_1$, QC \cap DIVP, and QC $\cap D$.

Theorem 2. $QC \cap B_1$ is characterizable by preimages of sets.

PROOF. Let

 $\mathcal{A} = \{ A \subset \mathbb{R} : A \text{ is an } F_{\sigma} \text{ set and for every interval } (a, b) \text{ meeting } A, \\ (a, b) \cap A \text{ contains a somewhere dense } G_{\delta} \text{ subset of } \mathbb{R} \}$

and let \mathcal{B} be the family of all open intervals (c, d) in \mathbb{R} . If $f \in B_1$, then $A = f^{-1}(c, d)$ is an F_{σ} set and if $f \in QC$, then each nonempty set $(a, b) \cap f^{-1}(c, d)$ contains a somewhere dense G_{δ} subset (of continuities of f). Therefore $QC \cap B_1 \subset C_{\mathcal{A},\mathcal{B}}^{-1}$. Now suppose $f \in C_{\mathcal{A},\mathcal{B}}^{-1}$. Then for every (a, b) and (c, d), if $(a, b) \cap f^{-1}(c, d)$ is nonempty, then it contains a somewhere dense G_{δ} subset G of \mathbb{R} . Since $f^{-1}(c, d)$ is an F_{σ} set for each $(c, d) \in \mathcal{B}$, $f \in B_1$ and therefore C(f) is a dense G_{δ} set. By the Baire Category Theorem, $C(f) \cap G$ is a somewhere dense G_{δ} subset of \mathbb{R} . It follows that $f \in QC$. In [4], Ciesielski and Natkaniec show that the class DIVP cannot be characterized by preimages. Their exact same proof verifies the next result because the functions f_0 and f_1 they construct there in DIVP are also in QC.

Theorem 3. $QC \cap DIVP$ cannot be characterized by preimages of sets.

Theorem 4. $QC \cap D$ cannot be characterized by preimages.

PROOF. Assume, otherwise, that there exist $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(\mathbb{R})$ such that $\mathrm{QC} \cap \mathrm{D} = C_{\mathcal{A},\mathcal{B}}^{-1}$. We may suppose that $\mathcal{A} = \{f^{-1}(B) : f \in \mathrm{QC} \cap \mathrm{D} \text{ and } B \in \mathcal{B}\}$ and $\mathcal{B} \not\subset \{\emptyset, \mathbb{R}\}$. Let $B \in \mathcal{B} \setminus \{\emptyset, \mathbb{R}\}$. Let $\{d_n : n = 0, 1, 2, \ldots\}$ be a dense sequence in B and $\{e_n : n = 0, 1, 2, \ldots\}$ be a dense sequence in $\mathbb{R} \setminus B$. C denotes the Cantor ternary set, and J_n denotes the union of closures of all the components of $I \setminus C$ with length $\frac{1}{3^{n+1}}$. C is the union of disjoint c-dense subsets C_1 and C_2 . Let C_0 be the set of the endpoints of all the intervals J_n . Put

$$f_0(x) = \begin{cases} e_n & \text{if } x \in J_{2n} \\ e_0 & \text{if } x \in (C_1 \setminus C_0) \cup (\mathbb{R} \setminus (0, 1)) \\ d_n & \text{if } x \in J_{2n+1} \\ & \text{takes on every value of } \mathbb{R} \text{ c-many times on every nonempty} \\ & \text{relative subinterval } (a, b) \cap (C_2 \setminus C_0). \end{cases}$$

Let $C_3 = \{x \in C_2 \setminus C_0 : f_0(x) \in B\}$. Then $f_0 \in QC \cap D$ and $f_0^{-1}(B) = C_3 \cup \bigcup_{n=0}^{\infty} J_{2n+1} \in \mathcal{A}$. Notice C_3 is *c*-dense in C_2 . Now define

$$f_1(x) = \begin{cases} e_n & \text{if } x \in J_{2n+1} \\ d_0 & \text{if } x \in (C_2 \setminus (C_3 \cup C_0)) \cup (\mathbb{R} \setminus (0,1)) \\ d_n & \text{if } x \in J_{2n} \\ & \text{takes on every value of } \mathbb{R} \text{ on every nonempty relative sub-interval } (a,b) \cap ((C_1 \setminus C_0) \cup C_3) \text{ with } f_1((a,b) \cap (C_1 \setminus C_0)) = B \\ & \text{and } f_1((a,b) \cap C_3) = \mathbb{R} \setminus B. \end{cases}$$

Then $f_1 \in QC \cap D$ and $f_1^{-1}(B) = (\mathbb{R} \setminus (C_3 \cup C_0)) \cup_{n=0}^{\infty} J_{2n} \in \mathcal{A}, \mathbb{R} = f_0^{-1}(B) \cup f_1^{-1}(B)$ and $f_0^{-1}(B) \cap f_1^{-1}(B) = \emptyset$. $\{\emptyset, \mathbb{R}\} \subset \mathcal{A}$ because the constant functions are in $QC \cap D$. Define $h \in \mathbb{R}^{\mathbb{R}}$ by h(x) = i if $x \in f_i^{-1}(B)$ and i = 0, 1. Therefore $h \in C_{\mathcal{A},\mathcal{B}}^{-1} \setminus D$, a contradiction.

3 $Ext \setminus (CT \cup QC)$

Smital and Stanova showed that there exists an almost continuous function $f: I \to \mathbb{R}$ which is in neither CT nor QC [14]. In [7], Gibson asked if there

exists an extendable function $f: I \to \mathbb{R}$ which is in neither CT nor QC. We see the answer is yes by applying the next theorem to either of the following examples.

Example 1. Let $f: I \to I$ be Croft's function, which has the properties that f is Darboux, Baire class 1, and f = 0 a.e. but not identically 0. (See p.12 in [2].) Let $E \neq \emptyset$ be that set of measure zero. Then $f^{-1}(0) = I \setminus E$ and $I \setminus E$ is dense in I.

Example 2. More generally, suppose $\emptyset \neq E \subset I$ with E an F_{σ} set bilaterally c-dense in itself and $I \setminus E$ dense in I. For example, E could be a certain union of countably many Cantor sets. By Theorem 2.4 on p. 13 in [2], there exists a Darboux Baire class 1 function $f: I \to I$ such that $f^{-1}(0) = I \setminus E$.

Theorem 5. If $f : I \to I$ is a Darboux Baire class 1 function and E is a set obeying $\emptyset \neq E \subset I$, $f^{-1}(0) = I \setminus E$ and $I \setminus E$ is dense in I, then $f \in Ext \setminus (CT \cup QC)$.

PROOF. According to Brown, Humke, and Laczkovich [1], a Baire class 1 function f is Darboux if and only if f is extendable. The graph of a Baire class 1 function f is nowhere dense in $I \times I$ and hence $f \notin CT$. Since $E \neq \emptyset$, there exists $a \in E$. Since $f^{-1}(0) = I \setminus E$, f(a) > 0. Therefore f is not quasicontinuous at a because f(a) > 0, $f(I \setminus E) = 0$, and $I \setminus E$ is dense in I.

References

- J. B. Brown, P. Humke and M. Laczkovich, *Measurable Darboux func*tions, Proc. Amer. Math. Soc., **102** (1988), 603–610.
- [2] A. M. Bruckner, Differentiation of real functions, Lecture Notes in Math., vol. 659, Springer-Verlag, Berlin, 1978.
- [3] K. Ciesielski, D. Dikranjan, S. Watson, Functions characterized by images of sets, Colloq. Math., to appear.
- [4] K. Ciesielski and T. Natkaniec, Darboux like functions that are characterizable by images, preimages and associated sets, Real Analysis Exch., 23, this issue.
- [5] U. B. Darji, M. J. Evans and R. J. O'Malley, Some interesting small subclasses of the Darboux Baire 1 functions, Real Analysis Exch. 19 (1993– 94), 328–331.

- [6] R. G. Gibson, Darboux functions with a perfect road, Real Analysis Exch. 15 (1989–90), 582–591.
- [7] R. G. Gibson, Concerning a characterization of continuity, Real Analysis Exch. 22 (1996–97), 437–442.
- [8] R. G. Gibson and T. Natkaniec, *Darboux like functions*, Real Analysis Exch. 22 (1996–97), 492–533.
- [9] R. G. Gibson and I. Reclaw, Concerning functions with a perfect road, Real Analysis Exch. 19 (1993–94), 564–570.
- [10] M. R. Hagan, Equivalence of connectivity maps and peripherally continuous transformations, Proc. Amer. Math. Soc. 17 (1966), 175–177.
- [11] F. B. Jones and E. S. Thomas, Jr., Connected G_{δ} graphs, Duke Math. J. **33** (1966), 341–345.
- [12] K. R. Kellum and B. D. Garrett, Almost continuous real functions, Proc. Amer. Math. Soc. 33 (1972), 181–184.
- [13] A. Neubrunnova, On certain generalizations of the notion of continuity, Mat. Casopis Sloven. Akad. Vied 23 (1973), 374–380.
- [14] J. Smital and E. Stanova, On almost continuous functions, Acta Math. Univ. Comen. 37 (1980), 147–155.
- [15] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249–263.
- [16] G. T. Whyburn, Connectivity of peripherally continuous functions, Proc. Nat. Acad. Sci. USA 55 (1966), 1040–1041.