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HAKE–ALEXANDROFF–LOOMAN TYPE
THEOREMS

Abstract

In this paper we shall study three kinds of descriptive type inte-
grals, that all generalize the wide Denjoy integral. In fact the classes of
primitives for these integrals, restricted to the continuous functions, are
ACG. We shall also study five kinds of Perron type integrals, that are
all in a close relationship with the descriptive type integrals. In the last
three sections we show some relationships between the descriptive type
integrals and the Perron type integrals.

1 Introduction

To define descriptive type integrals on compact intervals the following two
facts are essential.

1) To have a sufficiently general monotonicity theorem.

2) To find some linear spaces, sufficiently general, such that the monotonicity
theorem can be applied.

In this paper we shall study three kinds of descriptive type integrals that
all generalize the wide Denjoy integral. In fact the classes of primitives for
these integrals, restricted to the continuous functions, are ACG.

The integrals mentioned above are based on the following facts.

(I) [ACG] on a compact set is a linear space.

(II) [V BG] ∩ (N) on a compact set is a linear space ([23], [3], [4]).

(III) V BG∩ (N) for Borel functions on a Borel set is a linear space ([3], [4]).
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In [11], C. M. Lee introduced the very abstract LDG integral, using (I)
and his monotonicity Theorem A, a). The integrals based on (II) and (III)
use Theorem A, b).

To define Perron type integrals on compact intervals the following two facts
are essential.

1
′
) To have a sufficiently general monotonicity theorem.

2
′
) To find some upper semilinear spaces, sufficiently general, such that the

monotonicity theorem can be applied.

In this paper we shall study five kinds of Perron type integrals, that are
all in a close relationship with the descriptive type integrals. These integrals
are based on the following facts.

(I)
′

[ACG], [LG] and [(AC ∩ L)G] on a compact set are upper semilinear
spaces.

(II)
′

[V BG] ∩ (N) on a compact set is an upper semilinear space ([4]).

(III)
′
V BG ∩ (N) for Borel functions on a Borel set is an upper semilinear
space ([4]).

In [11], C. M. Lee introduced the very abstract LPG integral, using [ACG]
and Theorem A, a). The Perron type integrals based on (II)

′
and (III)

′
use

Theorem A, c).

The Hake-Alexandroff-Looman Theorem asserts that the restricted Denjoy
integral is equivalent to the classical Perron integral (see [19], pp. 247–252).
In what follows, by a Hake-Alexandroff-Looman type theorem we mean a
theorem that establishes the equivalence between a descriptive type integral
and a Perron type integral.

In the last three sections we show some relationships between the descrip-
tive type integrals and the Perron type integrals. We obtain in Corollary 6
that C. M. Lee’s LPG integral is a strict generalization of his LDG integral
(although he claimed in [11] that they were equivalent). In general the de-
scriptive integrals (II) are strictly contained in the Perron type integrals (II)

′
,

but we identify situations in which the two integrals are equivalent. We show
that the descriptive integrals (III) and the Perron type integrals (III)

′
are

always equivalent. Surprisingly, some descriptive integrals (II) are contained
in some Perron type integrals (I)

′
. It seems that the LPG integral cannot

be characterized nicely descriptively. However we identify two situations (see
Definition 15) for which the LPG integral admits descriptive characterizations.
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2 Preliminaries

We denote bym∗(X) the outer measure of the setX and bym(A) the Lebesgue
measure of A, whenever A ⊂ R is Lebesgue measurable. d(A, x) denotes the
density of the set A at the point x ([1], p. 18). For the definitions of V B,
AC and T2, see [19]. Let C denote the class of all continuous functions, D the
class of all Darboux functions, B1 the functions in Baire class one, and Bor
the collection of all Borel measurable functions. For two classes A1, A2 of real
functions on a set P let

A1 �A2 = {α1F1 + α2F2 : F1 ∈ A1, F2 ∈ A2, α1, α2 ≥ 0} .

Definition 1. Let F : [a, b] → R, and let P be a closed subset of [a, b],
c = inf(P ), d = sup(P ). Let {(ck, dk)}k be the intervals contiguous to P and
define FP : [c, d]→ R by

FP (x) =

F (x) if x ∈ P

linear on each [ck, dk] .

Definition 2. Let F : P → R and [a, b] ⊆ P . Define Fa,b : R→ R by

Fa,b(x) =


F (a) if x < a

F (x) if x ∈ [a, b]

F (b) if x > b .

Definition 3. ([2]). A function F : R→ R is said to be D− if [F (β), F (α)] ⊆
F ([α, β]), whenever α < β and F (β) < F (α). Clearly F is D (Darboux) if F
and −F are both D−.

Definition 4 (C. M. Lee). ([11]). A function F : R → R is said to be uCM
if F is increasing on [c, d] whenever F is increasing on (c, d). F is said to be
CM if F and −F are both uCM .

Definition 5 (Garg). ([6]). Let E ⊆ R and F : E → R. The function F is
said to be lower internal if

lim inf
y→x
y<x

F (y) ≤ F (x) ≤ lim sup
y→x
y>x

F (y) (∀) x ∈ E.

F is said to be internal if F and −F are both lower internal.
F : [a, b]→ R is said to be lower internal if Fa,b is lower internal.

Definition 6. Let P ⊆ [a, b], x0 ∈ P and F : P → R.
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• F is said to be Ci at x0 if lim supx↗x0
x∈P

F (x) ≤ F (x0), whenever x0 is a

left accumulation point for P , and F (x0) ≤ lim infx↘x0
x∈P

F (x), whenever

x0 is a right accumulation point for P .

• F is said to be C∗i at x0 if limx↗x0
x∈P

F (x) exists and is finite, with

limx↗x0
x∈P

F (x) ≤ F (x0) whenever x0 is a left accumulation point for F ,

and if limx↘x0
x∈P

F (x) exists and is finite, with F (x0) ≤ limx↘x0
x∈P

F (x)

whenever x0 is a right accumulation point for F .

• F is said to be Ci (respectively C∗i ) on P , if F is so at each point x ∈ P .

Definition 7. Let E ⊂ R be an open set and F : E → R.

• F is said to be Ci,ap at x0 ∈ E if there exists a measurable set Ex0
⊂ E

with d(Ex0
, x0) = 1 such that

lim sup
x→x0

x<x0,x∈Ex0

F (x) ≤ F (x0) ≤ lim inf
x→x0

x>x0,x∈Ex0

F (x) .

• F is said to be C∗i,ap at x0 ∈ E if there exists a measurable set Ex0 ⊂ E
with d(Ex0 , x0) = 1 such that the two limits

lim
x→x0

x<x0,x∈Ex0

F (x) and lim
x→x0

x>x0,x∈Ex0

F (x)

exist, are finite and

lim
x→x0

x<x0,x∈Ex0

F (x) ≤ F (x0) ≤ lim
x→x0

x>x0,x∈Ex0

F (x) .

• The function F is said to be Ci,ap (respectively C∗i,ap) on a subset A of
E, if it is so at each point of A.

• Let Ci,ap[a, b] = {F : [a, b]→ R : Fa,b is Ci,ap on R} and C∗i,ap[a, b] = {F :
[a, b]→ R : Fa,b is C∗i,ap on R}.

Proposition 1. Let Inc = {F : R→ R : F is increasing}.

(i) Let E ⊂ R be an open set and let Fn, F : E → R, n = 1, 2, . . .. If each
Fn ∈ Ci,ap on E and Fn → F [unif ] on E, then F ∈ Ci,ap on E.

(ii) (i) remains true if Ci,ap is replaced by Ci.

(iii) C ⊂ C � Inc ⊂ C∗i ⊂ Ci ⊂ D−B1 ⊂ D− ⊂ lower internal ⊂ uCM on
[a, b].
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(iv) Cap ⊂ Cap � Inc ⊂ C∗i,ap ⊂ Ci,ap ⊂ lower internal ⊂ uCM on [a, b].

(v) C = Ci ∩ (−Ci) and Cap = Ci,ap ∩ (−Ci,ap) on [a, b].

(vi) Ci,ap ∩ B1 ⊂ D−B1 = lower internal ∩ B1 ⊂ uCM ∩ B1 on [a, b].

Proof. (i) Let ε > 0 and choose N large enough such that

|Fn(x)− F (x)| < ε

3
(∀) x ∈ E , whenever n ≥ N .

Let x0 ∈ E. Since FN ∈ Ci,ap at x0, there exist a measurable set Ex0 with
d(Ex0

, x0) = 1 and a δ > 0 such that

FN (u)− ε

3
< FN (x0) < FN (v) +

ε

3
,

whenever u ∈ (x0 − δ, x0] ∩ Ex0 and v ∈ [x0, x0 + δ) ∩ Ex0 . Then

F (x0) < FN (x0) +
ε

3
< FN (v) +

2ε

3
< F (v) + ε

and

F (x0) > FN (x0)− ε

3
> FN (u)− 2ε

3
> F (u)− ε .

Therefore F ∈ Ci,ap at x0.
(ii) See [2], p. 32.
(iii) and (iv) These follow from definitions and Theorem 2.4.2, (vi) of [2].
(v) This follows by the definitions.
(vi) The first inclusion and the equality follow by (iv) and Theorem 2.5.1,

(i), (iv) of [2]. For the last inclusion see Theorem 2.4.2, (viii) of [2].

Definition 8. A function F : P → R is said to be L on P if there exists a
real constant α such that F (y)− F (x) ≥ α(y − x), whenever x, y ∈ P , x < y.
Clearly F is Lipschitz (abbreviated (L)) on P if and only if F and −F are
both L on P .

Definition 9. ([14], p. 236). A function F : P → R is said to be AC (respec-
tively AC) if for every ε > 0 there is a δ > 0 such that

n∑
k=1

(
F (bk)− F (ak)

)
> −ε

(
respectively

n∑
k=1

(
F (bk)− F (ak)

)
< ε

)
,

whenever {[ak, bk]}, k = 1, 2, . . . , n is a finite set of nonoverlapping closed
intervals with endpoints in P and

∑n
k=1(bk−ak) < δ. Clearly AC = AC∩AC.
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Definition 10. A function F : P → R is said to be V BG (respectively ACG,
ACG, ACG, LG, LG, (AC∩L)G) on P if there exists a sequence of sets {Pn}
with P = ∪nPn, such that F is V B (respectively AC, AC, AC, L, L, AC ∩L)
on each Pn. If in addition the sets Pn are supposed to be closed we obtain
the classes [V BG], [ACG], [ACG], [ACG], [LG], [(AC ∩ L)G]. Note that
condition ACG used here differs from that of [19] (because in our definition
the continuity is not assumed).

Definition 11. Let F : [a, b]→ R and P ⊆ [a, b].

• F is said to satisfy Lusin’s condition (N) on P if m∗(F (Z)) = 0 whenever
Z is a null subset of P ([19], p. 224).

• F is said to satisfy Saks’ condition N+∞ on P if the set F ({x ∈ P :
(F|P )

′
(x) = +∞}) is of measure zero. F is said to be N−∞ on P if −F

is N+∞ on P , i.e., the set F ({x ∈ P : (F|P )
′
(x) = −∞}) is of measure

zero.

Definition 12. Let F : [a, b] → R, P ⊂ [a, b]. F is said to be M on P if
F ∈ AC on Q, whenever Q = Q ⊂ P and F ∈ V B ∩ C on Q.

A function F is said to satisfy Foran’s condition (M) on P if F is simul-
taneously M and M (i.e., F is AC on Q whenever Q is a closed subset of P
and F ∈ V B ∩ C on Q, see [5]).

Definition 13. ([2], p. 6). Let F : [a, b]→ R, P ⊆ [a, b]. Put

• O∞(F ;P ) = inf{
∑∞
i=1O(F ;Pi) : ∪∞i=1Pi = P};

• O∞+ (F ;P ) = inf{
∑∞
i=1O+(F ;Pi) : ∪∞i=1Pi = P};

• O∞− (F ;P ) = sup{
∑∞
i=1O−(F ;Pi) : ∪∞i=1Pi = P};

Definition 14. ([2], p. 78). Let F : [a, b] → R, P ⊆ [a, b]. F is said to be
(N) on P if O∞+ (F ;Z) = 0, whenever Z ⊂ P and m(Z) = 0. F is said to be

(N) on P if −F is (N) on P ; i.e., O∞− (F ;Z) = 0.

Theorem A. Let F : [a, b]→ R.

a) (C. M. Lee) If F ∈ uCM ∩ [ACG] on [a, b], then F is increasing on [a, b]
if and only if F

′
(x) ≥ 0 a.e. where F is derivable on [a, b].

b) (C. M. Lee) If F ∈ DB1 ∩ (N) on [a, b] and F
′
(x) ≥ 0 a.e. where F is

derivable, then F is increasing and continuous on [a, b].

c) If F ∈ D−B1T2 ∩ (N) on [a, b], and F
′
(x) ≥ 0 a.e. where F is derivable on

[a, b], then F is increasing on [a, b]. In particular, the assertion remains
true if T2 is replaced by V BG.
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d) (N)∩V BG∩Bor = M ∩V BG∩Bor is a real upper linear space on a Borel
measurable subset of [a, b].

e) [V BG] ∩ (N) = [V BG] ∩M is a real upper linear space on a closed subset
of [a, b].

f) V BG∩ (N)∩Bor = V BG∩ (M)∩Bor is a linear space on a Borel subset
of [a, b].

g) [V BG] ∩ (N) = [V BG] ∩ (M) is a linear space on a closed subset of [a, b].

h) V B ∩ (N) = V B ∩ (M) is a real space on [a, b].

i) V B ∩ (N) = V B ∩M is an upper semilinear space on [a, b].

Proof. a) See Theorem 1 of [11], p. 70.)
b) See Theorem 1 of [12], p. 61, or Corollary 4.3.4 of [2].)
c) By Corollary 4.3.1 of [2], if F ∈ D−B1T2∩N−∞ on [a, b], and F

′
(x) ≥ 0

a.e. where F is derivable on [a, b], then F is increasing on [a, b]. But (N) ⊂
N−∞ (see Lemma 2.21.1 of [2]).

For the second part, V BG ⊂ T2 follows from [19], p. 279.
d) See Theorem 2 of [4].
e) See Theorem 1 of [4].
f) See Theorem 2, (ii) of [4].
g) Theorem 1, (ii) of [4].
h) and i) follow by Lemma 2 of [4].

Remark 1. 1) A generalization of Theorem A, a) can be found in [2] (see
Corollary 4.3.5).

2) Theorem A, b) was proved by C. M. Lee using Bruckner’s Theorem 2.2 of
[1] and the Banach-Ellis Theorem (see Theorem 2 of [2], p. 187, or Theorem
B of [12], p. 62).

We state the following generalization of Theorem A, b) (see Corollary 4.3.3
of [2]): Let F : [a, b] → R, F ∈ D−B1 ∩ (N) on [a, b]. If F

′
(x) ≥ 0 a.e.

where F is derivable, then F is increasing on [a, b].

3) Theorem A, c) is an extension of Theorem A, b) and Corollary 4.3.3 men-
tioned above.

4) Theorem A, e) is a special case of Theorem A, d).

5) That [V BG] ∩ (N) is a linear space on a closed subset of [a, b] was first
proved by Sarkhel and Kar in [23] (see also [3]).

6) That V B∩ (N) is a real space on [a, b] was first proved by Sarkhel and Kar
in [23].
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3 Classes of the First and the Second Type.
The condition ((∗)). Examples

Definition 15. Let A ⊂ {F : R→ R}.

• The class A is said to satisfy the condition (∗) if Fa,b ∈ A for [a, b] ⊂ R
whenever F ∈ A.

• A is said to be of the first type if F|[c,d] is continuous on [c, d] whenever
F ∈ A and F is increasing on [c, d].

• A is said to be of the second type if F ∈ A whenever F = F1 + F2,
F1, F2 : R→ R, F1 ∈ A and F2 is increasing.

Theorem 1 (Examples).

(i) Any class A ⊂ {F : R→ R : F is internal} is of the first type.

(ii) The following classes satisfy the property (∗).

• {F : R→ R : F ∈ D−};
• {F : R→ R : F ∈ D};
• {F : R→ R : F ∈ uCM};
• {F : R→ R : F ∈ CM};
• {F : R→ R : F ∈ lower internal};
• {F : R→ R : F ∈ internal};

(iii) The following classes satisfy the property (∗), are linear spaces and of
the first type.

• C = {F : R→ R : F is continuous on R};
• Cap = {F : R→ R : F is approximately continuous on R};

(iv) The following classes satisfy the property (∗), are upper semilinear spaces
and of the second type.

• Inc = {F : R→ R : F is increasing};
• C � Inc and Cap � Inc ;

• C∗i = {F : R→ R : F is C∗i on R};
• Ci = {F : R→ R : F is Ci on R};
• C∗i,ap = {F : R→ R : F is C∗i,ap on R};
• Ci,ap = {F : R→ R : F is Ci,ap on R};
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Proof. (i) Let [c, d] ⊂ R such that F is increasing on [c, d], and let x0 ∈ [c, d).
Since F is increasing, we have that F (x0) ≤ limy→x0

y>x0

F (y) . But we also have

(because F is internal) that F (x0) ≥ limy→x0
y>x0

F (y) . Hence F is continuous to

the right at x0. Similarly it follows that F is continuous to the left at x0, if
x0 ∈ (c, d]. Therefore F|[c,d] is continuous on [c, d].

The other assertions are evident.

4 The Saltus of a Function

Lemma 1. Let F : [a, b] → R be a V B function and A ⊂ (a, b) be the set of
all interior discontinuity points of F . Let H : [a, b]→ R,

H(x) =

0 if x = a

V (F ; [a, x]) if x ∈ (a, b]

and let h(x) = H(x)− F (x) for every x ∈ [a, b]. Then we have

(i) A is at most countable and the following limits exist.

F (x+) = lim
y→x
y>x

F (y) , x ∈ A ∪ {a} and F (x−) = lim
y→x
y<x

F (y) , x ∈ A ∪ {b} .

(ii) H, h are increasing on [a, b], and H, h are continuous on (a, b) \A.

Proof. (i) See Corollary 2 of [13], p. 219.
(ii) See Theorem 6 and Theorem 1 of [13], pp. 218, 223.

Definition 16 (The Saltus of an Increasing Function). ([13], p. 206).
Let F : [a, b]→ R be an increasing function, and let A = {a1, a2, . . .} ⊂ (a, b)
be a countable set that contains all interior discontinuity points of F (see
Theorem 1 of [13], p. 205). Let sF : [a, b] → R, sF (a) = 0 and for every
x ∈ (a, b],

sF (x) = f(a+)− f(a) +
∑

t∈(a,x)∩A

(
f(t+)− f(t−)

)
+ f(x)− f(x−) .

Clearly F (t+) and F (t−) exist and sF (b) ≤ F (b) − F (a) (see Theorem 1 of
[13], p. 205). Clearly sF is an increasing function, and it is called the saltus
of the function F .

Lemma 2. (Theorem 2 of [13], p. 206). Let F and sF be as in Definition 16.
Then F − sF is increasing and continuous on [a, b].
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Definition 17 (The Saltus of a VB function). Let F,H, h : [a, b] → R and
A = {a1, a2, . . .} ⊂ (a, b) be as in Lemma 1. Let sF : [a, b] → R, sF (a) = 0
and for every x ∈ (a, b],

sF (x) = sH(x)− sh(x) =

= F (a+)− F (a) +
∑

t∈(a,x)∩A

(
F (t+)− F (t−)

)
+ F (x)− F (x−)

(see [13], p. 219). sF is called the saltus of the function F .
Let SF : [a, b]→ R, SF (a) = 0, and for every x ∈ (a, b],

SF (x) = |F (a+)− F (a)|+

+
∑

t∈(a,x)∩A

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
+ |F (x)− F (x−)| .

(That the above series is convergent follows from the footnote on p. 235 of
[13].)

For A infinite, let k be a positive integer. We may suppose without loss of
generality that a < a1 < a2 < . . . < ak < b. Let SF,k : [a, b] → R be defined
as follows.

SF,k(a) = 0 ;

SF,k(x) =
∑
t∈A∩(a,x)

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
+ |F (x)− F (x−)|

if x ∈ (a, a1) ;

SF,k(x) =
∑
t∈A∩(a,a1)

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
=: α1

if x = a1 ;

SF,k(x) = α1+
∑
t∈A∩(a1,x)

(
|F (t+)−F (t)|+|F (t)−F (t−)|

)
+|F (x)−F (x−)|

if x ∈ (a1, a2) ;

SF,k(x) = α1 +
∑
t∈A∩(a1,a2)

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
=: α2

if x = a2 ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SF,k(x) = αk−1 +
∑
t∈A∩(ak−1,ak)

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
=: αk

if x = ak ;

SF,k(x) = αk+
∑
t∈A∩(ak,x)

(
|F (t+)−F (t)|+|F (t)−F (t−)|

)
+|F (x)−F (x−)|

if x ∈ (ak, b) ;

SF,k(x) = αk +
∑
t∈A∩(ak,b)

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
=: αk+1

if x = b .
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Lemma 3. ([13], p. 220). Let F : [a, b]→ R be a V B function. Then F − sF
is continuous on [a, b].

Lemma 4. For F , sF , SF and SF,k defined above we have.

(i) sF ∈ (N) on [a, b] and s
′

F (x) = 0 a.e. on [a, b].

(ii) If F ∈ (M) on [a, b], then F − sF ∈ AC on [a, b]. Particularly, the
assertion remains true for F ∈ (N).

(iii) If F ∈M on [a, b], then F−sF ∈ AC on [a, b]. Particularly, the assertion
remains true for F ∈ (N).

(iv) SF , SF,k are increasing and (N) on [a, b]. Moreover, S
′

F = S
′

F,k = 0 a.e.
on [a, b].

(v) SF,k(b) =
∑∞
i=k+1

(
|F (ai+)−F (ai)|+|F (ai)−F (ai−)|

)
↘ 0, for k →∞.

(vi) sF + SF is increasing and sF − SF is decreasing on [a, b]; sF + SF,k is
increasing and sF −SF,k is decreasing on each component of the open set
(a, b)\{a1, a2, . . . , ak}; hence sF +SF,k ∈ [ACG] and sF −SF,k ∈ [ACG]
on [a, b].

(vii) If F ∈ (N) on [a, b], then F + SF,k ∈ [ACG] and F − SF,k ∈ [ACG] on
[a, b].

Proof. (i) To show that sF ∈ (N), we shall use Sarkhel and Kar’s technique
of [23] (see Corollary 3.6.1). From Definition 16 it follows that sF = sH − sh.
We show that sH ∈ (N) on [a, b]. But

sH([a, b]) ⊆ [0, sH(b)] \
(

(0, sH(a+)) ∪ (sH(b−), sH(b))∪

∪
(
∪∞k=1

(
(sH(ak−), sH(ak)) ∪ (sH(ak), sH(ak+)

)))
and sH(a+) = H(a+)−H(a). Also, for each k = 1, 2, . . .,

sH(ak+)− sH(ak) = H(ak+)−H(ak) ,

sH(ak)− sH(ak−) = H(ak)−H(ak−)

and sH(b)− sH(b−) = H(b)−H(b−). Since

sH(b) = H(a+)−H(a) +

∞∑
k=1

(
H(ak+)−H(ak−)

)
+H(b)−H(b−) ,

it follows that m(sH([a, b])) = 0. Hence sH ∈ (N) on [a, b]. Of course sh ∈ (N)
on [a, b]. Since sH , sh ∈ V B on [a, b], by Theorem A, h), it follows that
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sF ∈ (N) on [a, b]. Clearly, sH is derivable a.e. on [a, b]. By Krzyzewski’s
Lemma (see for example [2], p. 70), we obtain that s

′

H = 0 a.e. on [a, b].

Therefore s
′

F = s
′

H − s
′

h = 0 a.e. on [a, b].
(ii) From (i), Theorem A, h) and Lemma 3, we obtain that F − sF ∈

V B ∩ C ∩ (N) = AC on [a, b] (see the Banach-Zarecki Theorem).
(iii) Again from (i), Theorem A, i) and Lemma 3, it follows that F − sF ∈

V B ∩ C ∩M ⊂ AC (see the definition of M).
(iv) Let a ≤ x1 < x2 ≤ b. Then

SF (x2)− SF (x1) = |F (x1+)− F (x1)|+

+
∑

t∈(x1,x2)∩A

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
+ |F (x2)− F (x2−)| ,

so SF is increasing on [a, b]. Let [x1, x2] be contained in one of the following
closed intervals: [a, a1] , [a1, a2], . . . , [ak−1, ak] , [ak, b]. Then

SF,k(x2)− SF,k(x1) ≥
∑

t∈(x1,x2)∩A

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
,

so SF,k is increasing on each [a, a1] , [a1, a2], . . . , [ak−1, ak] , [ak, b]. Therefore
SF,k is increasing on [a, b].

We have

SF (b)= |F (a+)−F (a)|+
∑
t∈(a,b)

(
|F (t+)−F (t)|+|F (t)−F (t−)|

)
+|F (b)−F (b−)| ;

SF (y)− SF (x) = |F (x+)− F (x)| +

+
∑

t∈(x,y)∩A

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
+ |F (y)− F (y−)| ;

SF (ai+)− SF (ai) = |F (ai+)− F (ai)| ;

SF (a+)− SF (a) = |F (a+)− F (a)| ;

SF (ai)− SF (ai−) = |F (ai)− F (ai−)| ;

SF (b)− SF (b−) = |F (b)− F (b−)| ;

SF (b) = [0, SF (b)] \
(

(0, SF (a+)) ∪ (SF (b−), SF (b)) ∪

∪
(
∪∞i=1(SF (ai−), SF (ai)) ∪ (SF (ai), SF (ai+))

))
.

Therefore m∗(SF ([a, b])) = 0; so SF ∈ (N) on [a, b]. By Krzyzewski’s Lemma
(see for example [2], p. 70), S

′

F (x) = 0 a.e. on [a, b]. Similarly it follows that
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SF,k ∈ (N) and S
′

F,k(x) = 0 a.e. on each [a, a1] , [a1, a2], . . . , [ak−1, ak] , [ak, b].

Hence SF,k ∈ (N) on [a, b] and S
′

F,k(x) = 0 a.e. on [a, b].
(v) This is obvious.
(vi) Let a ≤ x < y ≤ b. Then

sF (y)− sF (x) = F (x+)− F (x) +
∑

t∈(x,y)∩A

(
F (t+)− F (t)

)
+ F (y)− F (y−)

and
SF (y)− SF (x) = |F (x+)− F (x)|+

+
∑

t∈(x,y)∩A

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
+ |F (y)− F (y−)| .

Therefore
(sF + SF )(y)− (sF + SF )(x) ≥ 0

and
(sF − SF )(y)− (sF − SF )(x) ≤ 0 ,

hence sF + SF is increasing on [a, b] and sF − SF is decreasing on [a, b].
Let [x1, x2] ⊂ (a, a1) ∪ (a1, a2) ∪ . . . ∪ (ak−1, ak) ∪ (ak, b) . Then

sF (x2)−sF (x1)=F (x1+)−F (x1)+
∑

t∈(x1,x2)∩A

(
F (t+)−F (t−)

)
+F (x2)−F (x2−)

and
SF,k(x2)− SF,k(x1) = |F (x1+)− F (x1)| +

+
∑

t∈(x1,x2)∩A

(
|F (t+)− F (t)|+ |F (t)− F (t−)|

)
+ |F (x2)− F (x1)| .

Therefore(
sF+SF,k

)
(x2)−

(
sF+SF,k

)
(x1) =

(
sF (x2)−sF (x1)

)
+
(
SF,k(x2)−SF,k(x1)

)
≥ 0

and(
sF−SF,k

)
(x2)−

(
sF−SF,k

)
(x1) =

(
sF (x2)−sF (x1)

)
−
(
SF,k(x2)−SF,k(x1)

)
≤ 0 .

It follows that sF + SF,k is increasing and sF − SF,k is decreasing on each
component interval of the open set (a, a1)∪ (a1, a2)∪ . . .∪ (ak−1, ak)∪ (ak, b).

(vii) From (ii) and (vi) it follows that

F + SF,k = (F − sF ) + sF + SF,k ∈ [ACG] on [a, b]

and
F − SF,k = (F − sF ) + sF − SF,k ∈ [ACG] on [a, b] .
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Remark 2. That s
′

H = 0 a.e. in Lemma 4, (i), and that S
′

F = S
′

F,k = 0 a.e.
in Lemma 4, (vi), can also be proved as follows. (See the proof of Corollary
3.6.1 of [23].) Take for example sH . Clearly sH is derivable a.e. on [a, b] and
sH(x) ≥ 0 a.e. on [a, b]. Then by Theorem 12 of [24], it follows that

(L)

∫ b

a

s
′

H(t) dt = m∗(sH([a, b])) = 0 .

By Theorem 6 of [13] (p. 188), it follows that s
′

H(x) = 0 a.e on [a, b].

Corollary 1 (A Jordan Type Theorem). Let F : [a, b]→ R, F ∈ V B ∩ (N).
Then there exist H,h : [a, b]→ R such that F = H−h and H,h are increasing
and (N) on [a, b].

Proof. Let

H =
1

2

(
F + SF + VF−sF

)
=

1

2

(
(F − sF ) + sF + SF + VF−sF

)
and

h = −1

2
(F − SF − VF−sF ) = −1

2

(
(F − sF ) + sF − SF − VF−sF

)
.

But F − sF ∈ AC (see Lemma 4, (ii)); so VF−sF ∈ AC on [a, b]. Therefore
(F − sF ) + VF−sF is AC and increasing on [a, b], and (F − sF ) − VF−sF is
AC and decreasing on [a, b]. From Lemma 4, (vi), we obtain that sF + SF is
increasing and sF − SF is decreasing on [a, b]. Therefore H,h are increasing
on [a, b], and by Lemma 4, (i), (vi) we obtain that sF , SF ∈ (N) on [a, b]. It
follows that H,h ∈ (N) on [a, b] (see Theorem A, h)).

Corollary 2. Let F : [a, b]→ R, F ∈ V B∩ (N). Then there exists a sequence
{hk}k of functions, hk : [a, b]→ R, having the following properties.

(i) hk(a) = 0 for each k;

(ii) hk is increasing on [a, b] for each k;

(iii) F + hk ∈ [ACG] and F − hk ∈ [ACG] on [a, b] for each k;

(iv) {hk(b)}k is a decreasing sequence converging to 0.

Proof. Put for example hk = SF,k.
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5 Relations between [ACG] and [LG]

Lemma 5. Let F : [a, b]→ R, F ∈ [ACG]. For ε > 0 there exists a function
H : [a, b]→ R with the following properties.

(i) H(a) = 0, H(b) ≤ ε;

(ii) H is increasing and AC on [a, b];

(iii) F +H ∈ [LG] on [a, b].

(iv) If F ∈ [ACG], then F +H ∈ [(L ∩AC)G] on [a, b].

Proof. We may suppose without loss of generality that F (a) = 0. Since
F ∈ [ACG] on [a, b], there exists a sequence {Pn}n of closed sets such that
[a, b] = ∪nPn and F ∈ AC on each Pn. We may suppose without loss of
generality that each Pn contains the points a and b. Then FPn : [a, b] → R
is AC on [a, b] (see Theorem 2.11.1, (xvii) of [2]). By Theorem 2.14.5 of [2],
there exist Fn and hn such that FPn = Fn +hn, Fn ∈ AC on [a, b], hn(a) = 0,
hn is singular and increasing on [a, b]. Clearly DFn is summable on [a, b] and

(L)

∫ x

a

DFn(t) dt = Fn(x)− Fn(a) = Fn(x)

(see [13], vol. I, p. 255). For ε/2n there exists a function un : (−∞,+∞] (see
[13], vol. II, p. 166) such that un is lower semicontinuous on [a, b]; un(x) ≥
DFn(x) on [a, b]; un is summable and

(L)

∫ b

a

un(t) dt <
ε

2n
+ (L)

∫ b

a

DFn(t) dt .

Let Hn(x) = (L)
∫ x
a

(un(t)−DFn(t)) dt . Then Hn(a) = 0, Hn(b) < ε
2n and

Fn(x) +Hn(x) = (L)

∫ x

a

DFn(t) dt+Hn(x) = (L)

∫ x

a

un(t) dt .

Clearly

FPn(x) +Hn(x) = Fn(x) +Hn(x) + hn(x)

= (L)

∫ x

a

un(t) dt+ hn(x) .

Since un is lower semicontinuous on [a, b], from [13] (vol. II, p. 153) it follows
that there exists a constant αn ∈ R such that un(x) ≥ αn for each x ∈ [a, b].
Let a ≤ x < y ≤ b. Then

(FPn +Hn)(y)−(FPn +Hn)(x) = (L)

∫ y

x

un(t) dt+hn(y)−hn(x) ≥ αn(y−x) ,
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so FPn + Hn ∈ L on [a, b]. Let H : [a, b] → R and H(x) =
∑∞
n=1Hn(x) . By

Theorem 11 of [13] (p. 142) it follows that

H(x) = (L)

∫ x

a

∞∑
n=1

(un(t)−DFn(t)) dt .

Clearly H(a) = 0, H(b) < ε and H is increasing and AC on [a, b]; so we obtain
(i) and (ii).

We have

F (x) +H(x) = F (x) +Hn(x) +

∞∑
i=1
i 6=n

Hi(x) ∈ L on Pn

(since
∑∞

i=1
i 6=n

Hi(x) is an increasing function on [a, b]). Hence we obtain (iii).

(iv) follows from (ii) and (iii).

Lemma 6. Let F : [a, b]→ R, F ∈ [V BG] ∩ (N), F (a) = 0. Then there exist
Mn,mn : [a, b]→ R, n = 1, 2, . . ., having the following properties.

(i) Mn(a) = mn(a) = 0;

(ii) Mn − F and F −mn are increasing on [a, b];

(iii) Mn ∈ [ACG] and mn ∈ [ACG] on [a, b];

(iv) The sequences {(Mn−F )(b)}n and {(F −mn)(b)}n are convergent to 0.

Proof. Since F ∈ [V BG]∩(N) on [a, b], there exists a sequence {Pi}i of closed
sets such that F ∈ V B ∩ (N) on each Pi. We may suppose without loss of
generality that each Pi contains the points a and b. Clearly FPi ∈ V B ∩ (N)
on [a, b]. Fix a positive integer i. By Corollary 2, there exists a sequence
{hi,n}n, hi,n : [a, b]→ R having the following properties.

1) hi,n(a) = 0 for each n;

2) hi,n is increasing on [a, b] for each n;

3) FPi + hi,n ∈ [ACG] and FPi − hi,n ∈ [ACG] on [a, b] for each n;

4) hi,n(b) < 1
2i+n .

Let Hn : [a, b] → R, Hn =
∑∞
i=1 hi,n. Then Hn(a) = 0, Hn is increasing on

[a, b] and

Hn(b) <

∞∑
i=1

1

2i+n
=

1

2n
. (1)
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Let Mn,mn : [a, b]→ R, Mn = F +Hn and mn = F −Hn. Then (i), (ii) and
(iv) follow by 1), 2) and (1).

(iii) We have

Mn = F + hi,n +

∞∑
j=1
j 6=i

hj,n .

But F+hi,n = FPi +hi,n ∈ [ACG] on Pi and F−hi,n = FPi−hi,n ∈ [ACG] on
Pi (see 3)). Since

∑∞
j=1
j 6=i

hj,n defines an increasing bounded function on [a, b],

it follows that Mn ∈ [ACG] and mn ∈ [ACG] on [a, b].

Lemma 7. Let F, Fn : P → R, n = 1, 2, . . ., P ⊂ [a, b]. If Fn−F is increasing,
Fn → F [unif ] on P and Fn ∈ AC on P , then F ∈ AC on P .

Proof. Since Fn → F [unif ] on P , for ε > 0, there exists a positive integer
nε such that

− ε
4
≤ Fn(x)− F (x) <

ε

4
, (∀) n ≥ nε . (2)

Let δε > 0 be given for ε/2 by the fact that Fnε ∈ AC on P . Let {[aj , bj ]},
j = 1, 2, . . . ,m be a finite set of nonoverlapping closed intervals with endpoints
in P such that

∑m
j=1(bj − aj) < δε. Since Fnε − F is increasing on P , by (2)

we have
m∑
j=1

(F (bj)− F (aj)) =

=

m∑
j=1

(F − Fnε)(bj)− (F − Fnε)(aj)) +

m∑
j=1

(Fnε(bj)− Fnε(aj)) >

> − ε
2
− ε

2
= −ε ,

hence F ∈ AC on P .

Lemma 8. Let P ⊆ [a, b] be a Borel set, and let F,Mn,mn : P → R, n =
1, 2, . . ., have the following properties.

• Mn,mn ∈ V B on P ;

• Mn → F [unif ] and mn → F [unif ] on P ;

• Mn − F and F −mn are bounded and increasing on P ;

• Mn ∈M and mn ∈M on P .

Then F ∈ (N) on P .
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Proof. Since F = (F −mn) +mn, it follows that F ∈ V B on P . Suppose on
the contrary that F /∈ (N) on P . Then by Lemma 7, (iii) of [4], F /∈ M ∩M
on P . Consider for example that F /∈ M on P . From the definition of M , it
follows that there exists a compact set Q such that F ∈ V B ∩ C on Q, but
F /∈ AC on Q. We have Mn = (Mn − F ) + F ∈ Ci on Q, because Mn − F is
increasing and F is continuous on Q. Then Mn ∈ V B ∩ Ci ∩M on Q. Hence
each Mn ∈ AC on Q (see Theorem 3, (i), 1) and 4) of [4]). By Lemma 7,
F ∈ AC on Q, a contradiction.

6 The LDG Integral of C. M. Lee

In this section we suppose that uL ⊂ {F : R → R} is an upper semi-
linear space, contained in uCM and satisfying property (∗) (see Definition
15). Clearly L = uL ∩ (−uL) is a linear space satisfying property (∗). Let
L[a, b] = {F : [a, b]→ R : Fa,b ∈ L}.

Definition 18. A function f : [a, b]→ R is said to be LDG-integrable on [a, b]
if there exists F ∈ [ACG] on [a, b] and F ∈ L([a, b]), such that F

′

ap(x) = f(x)
a.e. on [a, b]. The function F is said to be an indefinite LDG-integral of f on

[a, b] and we write LDG
∫ b
a
f(t) dt = F (b)− F (a) .

Proposition 2. The LDG integral is well defined.

Proof. Let F and G be indefinite LDG-integrals of f on [a, b]. Then F,G ∈
L[a, b], F,G ∈ [ACG] on [a, b] and F

′

ap = f = G
′

ap a.e. on [a, b]. It follows that

F −G ∈ L[a, b], F −G ∈ [ACG] on [a, b] and (F −G)
′

ap = 0 a.e. on [a, b]. By
Theorem A, a), F −G is constant on [a, b]. Hence

LDG
∫ b

a

f(t) dt = F (b)− F (a) = G(b)−G(a) .

Remark 3.

(i) If in Definition 18, L = C, then we obtain the wide Denjoy integral.

(ii) If L = Cap, then we obtain the β-Ridder integral [17] (that is also called
the AD-integral of Kubota [8]). In fact Ridder gave three equivalent
definitions for this integral: Definitions 2a and Definition 2b of [15] (p. 2),
and Definition 7 of [17] (p. 148).

(iii) The fact that the β-Ridder integral is equivalent to the AD integral is
stated explicitly by Kubota in [10] (p. 219).
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Theorem 2. Let f, g : [a, b]→ R.

(i) If fand g are LDG integrable on [a, b], then for every α, β ∈ R the
function αf + βg is LDG integrable on [a, b] and

LDG
∫ b

a

(αf + βg)(t) dt = α · LDG
∫ b

a

f(t) dt+ β · LDG
∫ b

a

g(t) dt .

(ii) If f is LDG-integrable on [a, b] and f = g a.e. on [a, b], then g is LDG
integrable and LDG

∫ b
a
f(t) dt = LDG

∫ b
a
g(t) dt .

(iii) If f is LDG-integrable on [a, b], then f is LDG-integrable on any subin-
terval [α, β] of [a, b].

(iv) If a < c < b and f is LDG integrable on both, [a, c] and [c, b], then f is
LDG integrable on [a, b] and

LDG
∫ c

a

f(t) dt+ LDG
∫ b

c

f(t) dt = LDG
∫ b

a

f(t) dt .

Proof. (i) and (ii) are obvious.
(iii) Since f is LDG integrable on [a, b], there exists F ∈ [ACG] on [a, b],
F ∈ L([a, b]), such that F

′

ap = f a.e. on [a, b]. Since L satisfies the property
(∗), we have that F|[α,β] ∈ L[α, β] whenever [α, β] ⊂ [a, b]. Clearly F ∈ [ACG]
on [α, β]. Therefore f is LDG integrable on [α, β] and

LDG
∫ β

α

f(t) dt = F (β)− F (α) .

(iv) Let F ∈ L[a, c] such that F is [ACG] on [a, c] and F
′

ap = f a.e. on

[a, c]. Let G ∈ L[c, b] such that G is [ACG] on [c, b] and G
′

ap = f a.e. on
[c, b]. Let H : R → R, H = Fa,c + Gc,b. Then H = Ha,b ∈ L. It follows that

H|[a,b] ∈ L[a, b]. Clearly H ∈ [ACG] on [a, b], H
′

ap = f a.e. on [a, b] and

LDG
∫ b

a

f(t) dt = H(b)−H(a) = F (c)− F (a) +G(b)−G(c) =

= LDG
∫ c

a

f(t) dt+ LDG
∫ b

c

f(t) dt .
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7 Sarkhel Type Integrals

In this section we suppose that uL ⊂ {F : R → R} is an upper semilinear
space, contained in lower internal and satisfying property (∗) (see Definition
15). Clearly L = uL ∩ (−uL) is a linear space satisfying property (∗). Let
L[a, b] = {F : [a, b]→ R : Fa,b ∈ L}.

Definition 19. A function f : [a, b]→ R is said to be LS integrable on [a, b]
if there exists a function F ∈ L[a, b], F ∈ [V BG] ∩ (N) on [a, b] such that
F
′

ap(x) = f(x) a.e. on [a, b]. The function F is said to be an indefinite LS
integral of f on [a, b] and we write LS

∫ b
a
f(t) dt = F (b)− F (a) .

Proposition 3. The LS integral is well defined.

Proof. Let F and G be indefinite LS integrals of f on [a, b]. Then F,G ∈
L[a, b], F,G ∈ (N)∩[V BG] on [a, b] and F

′

ap = f = G
′

ap a.e. on [a, b]. It follows
that F −G ∈ L[a, b], F −G ∈ (N)∩ [V BG] on [a, b] (because (N)∩ [V BG] is a
linear space (see Theorem A, g)) and (F −G)

′

ap = 0 a.e. on [a, b]. By Theorem

A, b), F − G is constant on [a, b]. Hence LS
∫ b
a
f(t) dt = F (b) − F (a) =

G(b)−G(a) .

Remark 4.

(i) A result similar to Theorem 2 is also true for the LS integral.

(ii) In Definition 19, the condition (N) may be replaced by the condition
(M) (see Theorem A, g)).

(iii) If in Definition 19, L = C, then we obtain the wide Denjoy integral,
because [V BG] ∩ (N) ∩ C = [ACG] ∩ C = ACG ∩ C (see Theorem 6.8 of
[19], p. 228).

(iv) If in Definition 19, L = Cap, then we obtain an integral more general than
the β-Ridder integral. This follows from an example of Sarkhel and Kar
(see Example 3.1 and Theorem 3.6 of [23]), who constructed a function
F : [a, b]→ R with the following properties.

• F ∈ Cap on [a, b].

• F ∈ [V BG] ∩ (N) on [a, b].

• F is neither ACG nor ACG on [a, b]. Hence F /∈ ACG on [a, b].

(v) The idea of using [V BG] ∩ (N) in the definition of an integral comes
from Sarkhel, who used the condition PAC in defining his TD integral
[21] and TP integral [20]. But PAC = [V BG] ∩ (N) on a compact set
(see Theorem 3.6 of [23]). Sarkhel and Kar showed that PAC is a linear
space on a compact set (see Corollary 3.1.1 of [23]).
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8 Generalized Sarkhel Type Integrals

In this section we suppose that uL ⊂ {F : R → R} is an upper semilinear
space, contained in lower internal and satisfying property (∗) (see Definition
15). Clearly L = uL ∩ (−uL) is a linear space satisfying property (∗). Let
L[a, b] = {F : [a, b]→ R : Fa,b ∈ L}.

Definition 20. A function f : [a, b]→ R is said to be LSG integrable on [a, b]
if there exists a function F ∈ L[a, b], F ∈ B1 ∩ V BG ∩ (N) on [a, b] such that
F
′

ap(x) = f(x) a.e. on [a, b]. The function F is said to be an indefinite LSG
integral of f on [a, b] and we write LSG

∫ b
a
f(t) dt = F (b)− F (a) .

Proposition 4. The LSG integral is well defined.

Proof. Let F and G be indefinite LSG integrals of f on [a, b]. Then F,G ∈
L[a, b], F,G ∈ (N) ∩ V BG ∩ B1 on [a, b] and F

′

ap = f = G
′

ap a.e. on [a, b].
It follows that F − G ∈ L[a, b], F − G ∈ (N) ∩ V BG ∩ B1 on [a, b] (because
(N)∩V BG∩B1 is a linear space, see Theorem A, f)) and (F−G)

′

ap = 0 a.e. on

[a, b]. By Theorem A, b), F −G is constant on [a, b]. Hence LSG
∫ b
a
f(t) dt =

F (b)− F (a) = G(b)−G(a) .

Remark 5.

(i) A result similar to Theorem 2 is also true for the LSG integral.

(ii) In Definition 20, the condition (N) may be replaced by Foran’s condition
(M) (see Theorem A, f)).

(iii) If in Definition 20, L = C, then we obtain the wide Denjoy integral,
because V BG ∩ (N) ∩ C = ACG ∩ C (see Theorem 6.8 of [19], p. 228).

(iv) If in Definition 20, L = Cap, then we obtain Gordon’s Definition 3 of [7].
But in proving the uniqueness of his integral, he neglected to show that
the difference of two V BG ∩ Cap ∩ (N) functions satisfies (N) on [a, b].

(v) Question. If L = Cap, then is the LSG integral a strict generalization
of the LS integral?

(vi) For a suitable choice of the class L, the LSG integral contains the inte-
grals studied by Sarkhel, De and Kar in [22], [20], [21], [23].

9 Perron–Ridder–Lee Type Integrals

Definition 21. Let uL ⊂ {F : R→ R} be an upper semilinear space, closed
under uniform convergence.
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• L = uL ∩ (−uL).

• Let uL[a, b] = {F : [a, b]→ R : Fa,b ∈ uL}.

• L[a, b] = {F : [a, b]→ R : Fa,b ∈ L}.

Let f : [a, b]→ R.

• Suppose that A is an upper semilinear space satisfying the condition (∗),
such that C ⊆ L ⊆ A ⊆ uL ⊂ uCM . Let A[a, b] = {F : [a, b] → R :
Fa,b ∈ A}. We define the following classes of majorants.

– AM0(f ; [a, b]) = {M : [a, b] → R : M(a) = 0; M ∈ A([a, b]);
M ∈ [(L ∩AC)G] on [a, b]; M

′

ap(x) ≥ f(x) a.e. on [a, b]}.
– AM1(f ; [a, b]) = {M : [a, b] → R : M(a) = 0; M ∈ A([a, b]);
M ∈ [LG] on [a, b]; M

′

ap(x) ≥ f(x) a.e. on [a, b]}.
– AM2(f ; [a, b]) = {M : [a, b] → R : M(a) = 0; M ∈ A([a, b]);
M ∈ [ACG] on [a, b]; M

′

ap(x) ≥ f(x) a.e. on [a, b]}.

• Suppose that A is an upper semilinear space satisfying the condition (∗),
such that C ⊆ L ⊂ A ⊆ uL ⊂ lower internal. Let A[a, b] = {F : [a, b]→
R : Fa,b ∈ A}. We define the following classes of majorants.

– AM3(f ; [a, b]) = {M : [a, b] → R : M(a) = 0; M ∈ A([a, b]);
M ∈ [V BG] ∩M on [a, b]; M

′

ap(x) ≥ f(x) a.e. on [a, b]}.
– AM4(f ; [a, b]) = {M : [a, b] → R : M(a) = 0; M ∈ A([a, b]);
M ∈ V BG ∩M ∩ B1 on [a, b]; M

′

ap(x) ≥ f(x) a.e. on [a, b]}.

We define the following classes of minorants.

• AMj(f ; [a, b]) = {m : [a, b] → R : −m ∈ AMj(−f ; [a, b])}, j =
0, 1, 2, 3, 4.

For each j = 0, 1, 2, 3, 4 we define the following integral.

• If AMj(f ; [a, b]) 6= ∅, then we denote by AIj(f ; [a, b]) the lower bound
of all M(b), M ∈ AMj(f ; [a, b]).

• If AMj(f ; [a, b]) 6= ∅, then we denote by AIj(f ; [a, b]) the upper bound
of all m(b), m ∈ AMj(f ; [a, b]).

• f is said to have an APj integral on [a, b] if

AMj(f ; [a, b])×AMj(f ; [a, b]) 6= ∅

and

AIj(f ; [a, b]) = AIj(f ; [a, b]) = APj
∫ b

a

f(t) dt .
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Remark 6. (i) In the definition of AM3(f ; [a, b]), the condition M may be
replaced by (N) (see Theorem A, e)).

(ii) In the definition of AM4(f ; [a, b]), the condition M may be replaced by
(N) (see Theorem A, d)).

(iii) In the definition of AM2(f ; [a, b]) the condition [ACG] may be replaced
by [V BG] ∩M ∩ [CiG] = [V BG] ∩ (N) ∩ [CiG] = [V BG] ∩ ACG ∩ [CiG]
(see Theorem A, d) and Corollary 2.21.1, (iii) of [2]).

(iv) If A = uL, then AP2 is in fact the LPG integral of C. M. Lee [11].

(v) For A = Cap, the AM2(f ; [a, b]) majorants are exactly as in the following
definitions of Ridder: Definition A of [15] (p. 3), Definition 6 of [16]
(p. 12), Definition C1 of [17] (p. 148); Definition C1 of [18] (p. 176).
Also the AM2(f ; [a, b]) minorants are exactly as in Definition B of [15]
(p. 3) and Definition D1 of [17] (p. 149). In the same conditions the AP2

integral is exactly as in Ridder’s Definition 3 of [15] (p. 5) and Definition
8 of [17] (p. 149). At p. 6 of [15] Ridder asserts that this integral is
equivalent with his β-integral (Definitions 2a and 2b of [15]; see also
Remark 3). His proof is based on the following fact. if (Mk,mk) ∈
AM2(f ; [a, b]) × AM2(f ; [a, b]), then there exists a sequence {Ej}j of
perfect sets and a countable set H (possibly empty), with [a, b] = H ∪
(∪∞j=1Ej), such that each Mk ∈ AC and each mk ∈ AC on each Ej.
This is true, but it needs proof (that is not easy).

(vi) For A = Cap the AP2(f ; [a, b]) integral is exactly as in Kubota’s Defini-
tion 8 of [9] (p. 740), and he calls this integral AP ∗ integral. Although
Kubota doesn’t mention Ridder’s papers [15], [17], [18], [16], he also
proves the equivalence between the AP ∗ integral and the AD-integral
= β-Ridder integral (see Theorem 3.6 of [9]), but he makes the same
omission as Ridder did (see (v)).

(vii) For A = C, the AM2(f ; [a, b]) majorants are exactly as in Ridder’s Def-
inition 13 of [16] (p. 15).

Theorem 3. Let f : [a, b]→ R.

(i) AM0(f ; [a, b]) ⊆ AM1(f ; [a, b]) ⊆ AM2(f ; [a, b]).

(ii) AM3(f ; [a, b]) ⊆ AM4(f ; [a, b]).

(iii) If A ⊂ lower internal, then AM2(f ; [a, b]) ⊆ AM3(f ; [a, b]).

Moreover, for each j = 0, 1, 2, 3, 4, if

(M,m) ∈ AMj(f ; [a, b])×AMj(f ; [a, b]),
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then M −m is increasing on [a, b]. Hence M(b) ≥ m(b). This implies

M(b) ≥ AIj(f ; [a, b]) ≥ AIj(f ; [a, b]) ≥ m(b) . (3)

Proof. The proof of (i) follows by the fact that we always have L ⊆ AC on
a set, and the proof of (ii) is obvious. (iii) follows because AC ⊂ V B on a
closed set (see Theorem 2.11.1, (vi) of [2]).

That M −m is increasing on [a, b] for j = 0, 1, 2 follows by Theorem A, a),
and for j = 3, 4 see Theorem A, c). The relation (3) follows by definitions.

Lemma 9. The function f : [a, b] → R is APj integrable on [a, b] for j =
0, 1, 2, 3, 4, if and only if for every ε > 0 there exists

(M,m) ∈ AMj(f ; [a, b])×AMj(f ; [a, b]) 6= ∅

such that M(b)−m(b) < ε.

Proof. The proof follows by Theorem 3.

Corollary 3. Let f : [a, b]→ R.

(i) If f is APj integrable on [a, b], j = 0, 1, then f is APj+1 integrable

on [a, b] and APj
∫ b
a
f(t) dt = APj+1

∫ b
a
f(t) dt . Moreover, if f is AP2

integrable on [a, b], then f is AP1 integrable on [a, b]. Hence the two
integrals are equivalent.

(ii) If A ⊂ lower internal and f is AP2 integrable on [a, b], then f is AP3

integrable on [a, b] and AP2

∫ b
a
f(t) dt = AP3

∫ b
a
f(t) dt .

(iii) If f is AP3 integrable on [a, b], then f is AP4 integrable on [a, b] and

AP3

∫ b
a
f(t) dt = AP4

∫ b
a
f(t) dt .

Proof. We prove for example (i). By Theorem 3, (i) we have

AI1(f ; [a, b]) ≥ AI2(f ; [a, b]) ≥ AI2(f ; [a, b]) ≥ AI1(f ; [a, b]) .

Suppose that f is AP2 integrable on [a, b]. Then AI2(f ; [a, b]) = AI2(f ; [a, b])
∈ R. For ε > 0, let M ∈ AM2(f ; [a, b]) such that M(b) < AI2(f ; [a, b]) + ε

2 .

Then M ∈ A[a, b], M ∈ [ACG] on [a, b] and M
′

ap ≥ f a.e. on [a, b]. By
Lemma 5, there exists H : [a, b] → R such that H(a) = 0, H(b) < ε/2, H is
increasing and AC on [a, b] and U := M + H ∈ [LG] on [a, b]. Since C ⊂ A
and A is an upper semilinear space, it follows that U ∈ A[a, b]. We obtain
that U ∈ AM1(f ; [a, b]) and U(b) ≤ AI2(f ; [a, b]) + ε. Hence

AI1(f ; [a, b]) ≤ AP2

∫ b

a

f(t) dt .
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Similarly we obtain that

AI1(f ; [a, b]) ≥ AP2

∫ b

a

f(t) dt .

Since we always have that AI1(f ; [a, b]) ≤ AI1(f ; [a, b]),

AP1

∫ b

a

f(t) dt = AP2

∫ b

a

f(t) dt .

Definition 22. A function f : Q → R is said to be APj integrable on a
bounded set E ⊂ Q, j = 0, 1, 2, 3, 4, a = inf(E), b = sup(E), if the function

f̃E : [a, b]→ R f̃E(x) =

f(x) if x ∈ E

0 if x ∈ [a, b] \ E

is APj integrable on [a, b]. We shall write

APj
∫
E

f(t) dt = APj
∫ b

a

f̃E(t) dt

Clearly, for E = [c, d] we have

APj
∫
[c,d]

f(t) dt = APj
∫ d

c

f(t) dt.

Theorem 4. If f is APj integrable on [a, b], j = 0, 1, 2, 3, 4, and [α, β] ⊂ [a, b],
then f is APj integrable on [α, β]. Moreover, if a < α < β, then

APj
∫ α

a

f(t) dt+APj
∫ β

α

f(t) dt = APj
∫ β

a

f(t) dt . (4)

Proof. By Theorem 3 and Lemma 9 it follows that for ε > 0 there exists

(M,m) ∈ AMj(f ; [a, b])×AMj(f ; [a, b]) 6= ∅

such that M − m is increasing on [a, b] and 0 ≤ M(b) − m(b) < ε. Let
M1,m1 : [α, β]→ R by

M1(x) = M(x)−M(α) and m1(x) = m(x)−m(α) .

Since A satisfies property (∗),

(M1,m1) ∈ AMj(f ; [α, β])×AMj(f ; [α, β])
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and M1(β) −m1(β) < ε. Therefore by Lemma 9, f is APj-integrable on the
interval [α, β]. We have

m(α) ≤ APj
∫ α

a

f(t) dt ≤M(α) ;

m1(β) = m(β)−m(α) ≤ APj
∫ β

α

f(t) dt ≤M(β)−M(α) = M1(β) ;

m(β) ≤ APj
∫ β

a

f(t) dt ≤M(β) .

Therefore ∣∣∣APj ∫ β

a

f(t) dt−
(
APj

∫ α

a

f(t) dt+APj
∫ β

α

f(t) dt
)∣∣∣ ≤

≤M(β)−m(β) < ε .

Since ε is arbitrary, we obtain (4).

Definition 23. Let f be an APj integrable function on [a, b], j = 0, 1, 2, 3, 4.
Then we define the indefinite APj integral of f on [a, b] by F : [a, b] → R,
F (a) = 0 and

F (x) = APj
∫ x

a

f(t) dt , x ∈ (a, b] .

Lemma 10. Let F,M,m : [a, b]→ R be functions such that

• M and −m are Ci on [a, b];

• M − F and F −m are continuous on [a, b].

Then F is continuous on [a, b].

Proof. −F = −m + (m − F ) ∈ Ci on [a, b] and F = (F −M) + M ∈ Ci on
[a, b]. It follows that F is continuous on [a, b] (see Proposition 1).

Theorem 5. Let f be an APj-integrable function on [a, b], j = 0, 1, 2, 3, 4,
and F (x) = APj

∫ x
a
f(t) dt . Suppose that

(M,m) ∈ AMj(f ; [a, b])×AMj(f ; [a, b]) 6= ∅ .

Then

(i) M − F and F −m are increasing on [a, b];

(ii) F ∈ L[a, b];
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(iii) F is approximately derivable a.e. on [a, b] and F
′

ap(x) = f(x) a.e. on
[a, b].

Proof. (i) Let a ≤ x1 < x2 ≤ b. Let M1 : [x1, x2] → R, M1(x) = M(x) −
M(x1). Then M1 ∈ AMj(f ; [x1, x2]) (because A satisfies the property (∗));
so

M1(x2) ≥ APj
∫ x2

x1

f(t) dt .

By Theorem 4, we have M(x2)−M(x1) ≥ F (x2)− F (x1).
(ii) For each positive integer n there exists Mn ∈ AMj(f ; [a, b]) such that

0 ≤Mn(x)− F (x) <
1

n
, (∀) x ∈ [a, b] .

It follows that {Mn}n converges uniformly to F on [a, b]. Hence F ∈ uL([a, b]).
Similarly −F ∈ uL([a, b]). Hence F ∈ L[a, b].

(iii) Let M0 ∈ AMj(f ; [a, b]). Then M0 ∈ V BG ∩ B1 on [a, b] and by (i),
M0−F is increasing on [a, b]. It follows that F = (F −M0)+M0 is V BG∩B1
on [a, b]. Hence F is approximately derivable a.e. on [a, b] (see Theorem 4.3 of
[19], p. 222).

We show that F
′

ap(x) = f(x) a.e. on [a, b]. For ε > 0 let

(M,m) ∈ AMj(f ; [a, b])×AMj(f ; [a, b]) .

such that M(b) − m(b) < ε2. Since M,m ∈ V BG ∩ B1 on [a, b], it follows
that M and m are approximately derivable a.e. on [a, b] and m

′

ap(x) ≤ f(x) ≤
M
′

ap(x) a.e. on [a, b] . So f is finite a.e. on [a, b]. Let

E = {x ∈ [a, b] : f(x), F
′

ap(x), M
′

ap(x), m
′

ap(x) are finite} .

Then E is a measurable set and m(E) = b− a. Let

Aε = {x ∈ E : |F
′

ap(x)− f(x)| > ε}

and
Bε = {x ∈ E : M

′

ap(x)−m
′

ap(x) > ε} .

Since M − F and F −m are increasing on [a, b],

M
′

ap(x) ≥ F
′

ap(x) ≥ m
′

ap(x) , (∀) x ∈ E .

Then Bε is measurable and Aε ⊂ Bε. Since M −m is increasing on [a, b],

ε · |Bε| ≤ (L)

∫
Bε

(M −m)
′
(t) dt ≤
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≤ (L)

∫ b

a

(M −m)
′
(t) dt ≤M(b)−m(b) < ε2

(see Theorem 5 of [13], vol. I, p. 212). Hence m(Bε) < ε; so m(Aε) < ε. Let

A = {x ∈ E : |F
′

ap(x)− f(x)| > 0} .

Then A = ∪∞n=1Aε/2n . Hence m(A) < ε. Since ε was arbitrary, it follows that

m(A) < 0. Hence F
′

ap(x) = f(x) a.e. on [a, b].

Theorem 6. Suppose that A is a class of the first type and let f be an AP2

integrable function on [a, b] and F (x) = AP2

∫ x
a
f(t) dt . Suppose that (M,m) ∈

AM2(f ; [a, b])×AM2(f ; [a, b]) 6= ∅ . Then

(i) M − F and F −m are increasing and continuous on [a, b];

(ii) F is [CG] on [a, b];

(iii) F ∈ [ACG] on [a, b].

Proof. (i) Let F (x) = AP2

∫ x
a
f(t) dt. By Theorem 5, (i), (ii) it follows that

M − F and F − m are increasing on [a, b] and F ∈ L[a, b]. Now the proof
follows by the fact that A is a class of the first type.

(ii) Let (M,m) ∈ AM2(f ; [a, b])×AM2(f ; [a, b]). Then there exists {Ei}i
a sequence of closed sets such that [a, b] = ∪∞i=1Ei and M,−m ∈ AC ⊂ V B
on each Ei (see for example Theorem 2.11.1, (vii) of [2]). Let

Ui(x) =

M(x) if x ∈ Ei

linear on the closure of each interval contiguous to Ei ∪ {a, b}.

and

Li(x) =

m(x) if x ∈ Ei

linear on the closure of each interval contiguous to Ei ∪ {a, b}.

Then Ui and Li are AC on [a, b] (see Theorem 2.11.1, (xvii) of [2]). Let

Fi(x) =

F (x) if x ∈ Ei

linear on the closure of each interval contiguous to Ei ∪ {a, b}.

But Ui − Fi and Fi − Li are continuous on [a, b] (see (i)). Also Ui, −Li ∈
AC ⊂ Ci (see Theorem 2.11.1, (xxi) of [2]). By Lemma 10, it follows that
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Fi is continuous on [a, b]. Hence F is continuous on each Ei. It follows that
F ∈ [CG] on [a, b].

(iii) Let U : [a, b] → R be a major function of f on [a, b] and let Ei be
defined as in the proof of (ii). Then U = F + (U − F ) is continuous and
V B on Ei. But U ∈ ACG ⊂ (N) ⊂ M (see Theorem 2.20.1, Theorem
2.32.2, (i), (iv) and Theorem 2.23.1 of [2]). Hence U ∈ AC on Ei . Let
{Mn}n ⊂ AM2(f ; [a, b]) converging uniformly to F on [a, b]. Then each Mn

is AC on Ei. By Lemma 7, F ∈ AC on Ei. Similarly it follows that −F ∈ AC
on Ei. Hence F ∈ AC on Ei. Therefore F ∈ [ACG] on [a, b].

10 Relations between the LDG and the AP j Integral

In this section we suppose that C ⊆ L ⊆ A ⊆ uL ⊂ uCM and that uL is
closed under uniform convergence.

Theorem 7. Let f : [a, b]→ R.

(i) If f is LDG integrable on [a, b], then f is APj integrable on [a, b], j =
0, 1, 2, and the integrals are equal.

(ii) If A is a class of the first type, then the LDG integral is equivalent to
the APj integral, j = 0, 1, 2.

Proof. (i) Suppose that f is LDG integrable on [a, b]. Then there exists a
function F ∈ L[a, b] such that F (a) = 0, F ∈ [ACG] on [a, b] and F

′

ap = f
a.e. on [a, b]. By Lemma 5, for ε > 0 there exists H : [a, b] → R such that
H(a) = 0, H(b) < ε/2, H is increasing and AC on [a, b], and M := F + H ∈
[(AC ∩L)G] on [a, b]. Since C ⊆ L, it follows that M ∈ L[a, b] ⊂ A[a, b]. Thus
M ∈ AM0(f ; [a, b]). We obtain that M(b) < F (b) + ε/2; so

AI0(f ; [a, b]) ≤ F (b) .

Similarly, it follows that

AI0(f ; [a, b]) ≥ F (b) .

Since we always have

AI0(f ; [a, b]) ≤ AI0(f ; [a, b]) ,

we obtain that AP0

∫ b
a
f(t) dt = F (b). By Corollary 3, (i), f is also AP1 and

AP2 integrable and the integrals are equal.
(ii) Suppose that f is AP2 integrable on [a, b]. Let

F (x) := AP2

∫ x

a

f(t) dt .
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By Theorem 5, F ∈ L[a, b] and F
′

ap = f a.e. on [a, b]. By Theorem 6, F ∈
[ACG] on [a, b]. Therefore F is an LDG indefinite integral of f on [a, b] and

AP2

∫ b

a

f(t) dt = F (b) = LDG
∫ b

a

f(t) dt .

Now see (i) and Corollary 3, (i).

Corollary 4 (A Hake-Alexandroff-Looman Type Theorem).
If A is a class of the first type, then the two integrals of C. M. Lee, i.e., the
LDG integral and the LPG integral, are equivalent.

Proof. See Theorem 7, (ii) and Remark 6, (iv).

Corollary 5 (Special Cases).

(i) For A = uL = C the following integrals are equivalent: the AP0, AP1,
AP2 integrals and the wide Denjoy integral.

(ii) For A = uL = Cap the following integrals are equivalent: the AP0, AP1,
AP2 integrals and the β-Ridder integral (see also Remark 6).

11 Relations between the LS and the AP j Integrals

In this section we suppose that C ⊆ L ⊆ A ⊆ uL ⊂ lower internal and that
uL is closed under uniform convergence.

Theorem 8 (A Hake-Alexandroff-Looman Type Theorem).
The LS integral is equivalent to the AP3 integral. Moreover, if the class A is
of the second type, then the LS integral is equivalent to the AP1 integral, and
also to the AP2 integral.

Proof. Let f : [a, b]→ R.
(I) Suppose that f is LS integrable on [a, b]. Then there exists a function
F ∈ L[a, b] such that F (a) = 0, F ∈ [V BG] ∩ (N) on [a, b] and F

′

ap = f a.e.

on [a, b]. It follows that F ∈ AM3(f ; [a, b])×AM3(f ; [a, b]). Hence f is AP3

integrable on [a, b] and

F (b) = LS
∫ b

a

f(t) dt = AP3

∫ b

a

f(t) dt .

(II) Suppose that f is AP3 integrable on [a, b]. Let F (x) = AP3

∫ x
a
f(t) dt .

By Theorem 5, it follows that F
′

ap(x) = f(x) a.e. on [a, b] and F ∈ L[a, b].

Let M,Mn ∈ AM3(f ; [a, b]) and m,mn ∈ AM3(f ; [a, b]) such that Mn →
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F [unif ] and mn → F [unif ] on [a, b]. For M and m there exists a sequence
{Pi}i of closed sets such that [a, b] = ∪∞i=1Pi, M ∈ V B and m ∈ V B on each
Pi. But the functions M −F , Mn−F , F −m, F −mn are increasing on [a, b]
(see Theorem 5, (i)). Then F ∈ V B on Pi. Hence Mn and mn are V B on
each Pi. By Lemma 8, F ∈ (N) on each Pi. Hence F ∈ [V BG]∩ (N) on [a, b].
It follows that F is an indefinite LS integral of f on [a, b] and

F (b) = AP3

∫ b

a

f(t) dt = LS
∫ b

a

f(t) dt .

By (I) and (II) it follows that the LS and AP3 integrals are equivalent.
We show the second part. By Corollary 3, (i), we have that the AP1 and

AP2 integrals are equivalent. But the AP3 integral contains the AP2 integral,
and the integrals are equal (see Corollary 3, (ii)). We also have from above that
the LS and the AP3 integrals are equivalent. It remains to show that the AP2

integral contains the LS integral. Suppose that f is LS integrable on [a, b].
Then there exists a function F ∈ L[a, b] such that F (a) = 0, F ∈ [V BG]∩ (N)
on [a, b] and F

′

ap = f a.e. on [a, b]. By Lemma 6, for ε > 0 there exist
M,m : [a, b]→ R such that

• M(a) = m(a) = 0 and M(b)−m(b) < ε;

• M ∈ [ACG] and m ∈ [ACG] on [a, b];

• M − F and F −m are increasing on [a, b].

Clearly M = (M − F ) + F ∈ A[a, b], because M − F is increasing on [a, b],
F ∈ L[a, b] ⊂ A[a, b] and A is a class of the second type. Similarly we obtain
that −m = (F −m)− F ∈ −A[a, b]. Therefore

(M,m) ∈ AM2(f ; [a, b])×AM2(f ; [a, b])

and M(b) < F (b) + ε and m(b) > F (b) − ε . It follows that I2(f ; [a, b]) ≤
F (b) ≤ I2(f ; [a, b]) . Since we always have that I2(f ; [a, b]) ≤ I2(f ; [a, b]), we

obtain that AP2

∫ b
a
f(t) dt = F (b) = LS

∫ b
a
f(t) dt .

Corollary 6.

(i) For A = uL = Ci we have that L = C and the AP1, AP2, AP3 integrals
and the wide Denjoy integral are equivalent.

(ii) For A = uL = Ci,ap we have that L = Cap, and the integrals AP1, AP2,
AP3 and LS are equivalent. But the LS integral is a strict generalization
of C. M. Lee’s LDG integral.

(iii) C. M. Lee’s LPG integral is a strict generalization of his LDG integral.
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Proof. (i) See Theorem 8.
(ii) That LS ⊃ LDG follows immediately from definitions. We show that

the inclusion is proper. By Remark 3, for L = Cap, the LDG integral is the
β-Ridder integral. By Remark 4, (iv), we obtain that LDG 6= LS.

(iii) By Theorem 7, (i), it follows that LDG ⊂ AP2. Assuming the hy-
potheses of (ii), we obtain that LPG = AP2 = LS 6= LDG.

12 Relations between the LSG and the AP4 Integrals

In this section we suppose that C ⊆ L ⊆ A ⊆ uL ⊂ lower internal and that
uL is closed under uniform convergence.

Theorem 9 (A Hake-Alexandroff-Looman Type Theorem).
The LSG integral is equivalent to the AP4 integral.

Proof. Let f : [a, b] → R. (I) Suppose that f is LSG integrable on [a, b].
Then there exists a function F ∈ L[a, b] such that F (a) = 0, F ∈ V BG ∩
B1 ∩ (N) on [a, b] and F

′

ap = f a.e. on [a, b]. Then F ∈ AM4(f ; [a, b]) ×
AM4(f ; [a, b]). Hence

(LSG)

∫ b

a

f(t) dt = F (b) = AP4

∫ b

a

f(t) dt .

(II) Suppose that f is AP4 integrable on [a, b]. Let F (x) = AP4

∫ x
a
f(t) dt .

By Theorem 5, it follows that F
′

ap(x) = f(x) a.e. on [a, b] and F ∈ L[a, b].

Let M,Mn ∈ AM4(f ; [a, b]) and m,mn ∈ AM4(f ; [a, b]) such that Mn →
F [unif ] and mn → F [unif ] on [a, b]. For M and m there exists a sequence
{Pi}i such that [a, b] = ∪∞i=1Pi, M ∈ V B and m ∈ V B on each Pi. We
may suppose that each Pi is a Borel set. Indeed, there exists a function
M̃i : [a, b] → R such that (M̃i)|Pi = M and M̃i ∈ V B on [a, b] (see [19],

p. 221). Let Qi = {x : M̃i(x) = M(x)}. Then Pi ⊂ Qi and Qi is a Borel set
(because M and M̃i are B1 on [a, b]).
But the functions M − F , Mn − F , F − m, F − mn are increasing on [a, b]
(see Theorem 5, (i)). Then F ∈ V B on Pi. Hence Mn and mn are V B on
each Pi. By Lemma 8, F ∈ (N) on each Pi. Hence F ∈ V BG ∩ (N) on [a, b].
Since M ∈ B1 on [a, b] and M −F is increasing on [a, b], it follows that F ∈ B1
on [a, b]. It follows that F is an indefinite LSG integral of f on [a, b] and

F (b) = AP4

∫ b
a
f(t) dt = (ASG)

∫ b
a
f(t) dt .

References

[1] A. M. Bruckner, Differentiation of real functions, Lect. Notes in Math.,
vol. 659, Springer-Verlag, 1978.



Hake–Alexandroff–Looman Type Theorems 523

[2] V. Ene, Real functions - current topics, Lect. Notes in Math., vol. 1603,
Springer-Verlag, 1995.

[3] V. Ene, On Borel measurable functions that are V BG and (N), Real
Analysis Exchange 22 (1996–1997), no. 2, 688–695.

[4] V. Ene, Lusin’s condition (N) and Foran’s condition (M) are equivalent
for Borel functions that are V BG on a Borel set, (submitted).

[5] J. Foran, A generalization of absolute continuity, Real Analysis Exchange
5 (1979–1980), 82–91.

[6] K. M. Garg, A new notion of derivative, Real Analysis Exchange 7 (1981-
1982), 65–84.

[7] R. Gordon, Some comments on an approximately continuous Khintchine
integral, Real Analysis Exchange 20 (1994–95), no. 2, 831–841.

[8] Y. Kubota, An integral of Denjoy type, Proc. Japan Acad. 40 (1964),
713–717.

[9] Y. Kubota, An integral of Denjoy type. II, Proc. Japan Acad. 42 (1966),
no. 7, 737–742.

[10] Y. Kubota, A characterization of the approximately continuous Denjoy
integral, Can. J. Math. 22 (1970), 219–226.

[11] C. M. Lee, An analogue of the theorem Hake-Alexandroff-Looman, Fund.
Math. C (1978), 69–74.

[12] C. M. Lee, On Baire one Darboux functions with Lusin’s condition (N),
Real Analysis Exchange 7 (1981), 61–64.

[13] I. P. Natanson, Theory of functions of a real variable, 2nd. rev. ed., Ungar,
New York, 1961.
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[16] J. Ridder, Über das allgemeine Denjoysche-Integral, Fund. Math. 21
(1933), 11–19.
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