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LUSIN’S CONDITION (N) AND FORAN’S

CONDITION (M) ARE EQUIVALENT FOR

BOREL FUNCTIONS THAT ARE VBG ON
A BOREL SET

Abstract

In this paper we show that Lusin’s condition (N) and Foran’s con-
dition (M) are equivalent for Borel functions that are V. BG on a Borel
set. Also new characterizations of conditions (M) and M are given.

Lusin’s condition (N) plays an important role in the theory of integration,
since the classes of primitives for many nonabsolutely convergent integrals
(Denjoy—Perron, Denjoy, a-Ridder, 5-Ridder [6], Sarkhel-De-Kar [11], [9], [10],
[12], etc.) are contained in (N)NV BG. In (2], we showed that (N)NV BG is a
real linear space for Borel functions on Borel sets. However Foran’s condition
(M), which strictly contains condition (IN), seems to be more relevant to the
theory of integral (see [1]). In this paper we show that Lusin’s condition
(N) and Foran’s condition (M) are equivalent for Borel functions that are
VBG on a Borel set (see Theorem 2, (ii)). In fact we prove stronger results
(see Theorem 2, (i), (iii)), using conditions M and (V). These results are very
useful proving theorems of Hake-Alexandroff-Looman type (see for example [1],
p- 199). In the present paper we give some new characterizations of conditions
(M) and M.

1 Preliminaries

We denote by m*(X) the outer measure of a set X and by m(A) the Lebesgue
measure of A, whenever A C R is Lebesgue measurable. For the definitions of
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VB and AC see [8]. Let C denote the class of continuous functions. For two
classes A1, As of real functions on a set P let

Al BH.AQ = {Olel +agFy: Fy € .Al, Fy e .AQ, ap, g > 0} and

AL @ Ay = {OélFl +agky i By € ./41, Fy e .AQ, a1, 0 € R} .

Definition 1. Let P C [a,b], 9 € P and F': P — R. F is said to be C; at xg
iflimsup, ~,, zep F(*) < F(20), whenever x is a left accumulation point for
P, and F(z¢) < liminfy 4, zep F(x), whenever z; is a right accumulation
point for P. F is said to be C; on P, if F'is so at each point x € P.

Definition 2. ([7]). Let P be a bounded real set and let F': P — R. Put
o O(F; P)=sup{|F(y) — F(z)| : x,y € P} the oscillation of F' on P.
o O_(F;P)=if{F(y) — F(z) :x,y € P, = < y}.
e O (F;P)=sup{F(y) — F(x):xz,y € P, x <y}.

Definition 3. ([1], p. 6). Let F': [a,b] = R, P C [a,b]. Put
o O%(F; P) = inf{S%°, O(F; ) : U, P, = P}.
o OF(F;P)=inf{3772, OL(F; P,) : U, P; = P}.
o O(F;P)=sup{d 0, O_(F; P): U2, P, = P}.

Definition 4. ([6], p. 236). A function F': P — R is said to be AC (respec-
tively AC) if for every € > 0 there is a § > 0 such that

D (F(by) = Flar)) > —e, 1)
k=1
(respectively Z(F(bk) — F(ay)) <e), (2)
k=1
whenever {[ax,bi]}, & = 1,2,...,n is a finite set of nonoverlapping closed

intervals with endpoint in P and Y_,_, (by —ax) < 8. Clearly AC = ACNAC.

Proposition 1. Let F : P - R, F € AC and let € > 0. Fore/2 let § > 0
be given by the fact that F € AC on P. Let {(a;,b;)}: be a sequence of
nonoverlapping open intervals such that Y .o, (b; —a;) < 6. Then

io_(F;Pﬂ(ai,bi)) > —€.

=1
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PROOF. We may suppose without loss of generality that for each ¢
(ai,bi)) NP #0 and O_(F;PnN(a;b;)) <0. (3)

Since Fe AC the oscillations in (3) are always finite. Then, for each ¢, there
exist a;,b; € PN (a;,b;), a; < by such that

1974

> O_(F;P(ai, b)) > g S (Fb;) - Flay) > —5e

i=1 i=1

Therefore > . O_ (F; Pn(ay, bl)) > —e. O

Definition 5. A function F': P — R is said to be VBG (respectively ACG,
ACG, ACG) on P if there exists a sequence of sets { P,,} with P = U,, P,,, such
that F is VB (respectively AC, AC, AC) on each P,. If in addition the sets
P, are assumed to be closed, we obtain the classes [V BG], [ACG], [ACG] and
[ACG]. Note that condition ACG used here differs from that of [8] (because
in our definition the continuity is not assumed).

Definition 6. ([8], p. 224). A function F' : P — R is said to satisfy Lusin’s
condition (N) on P if m*(F(Z)) = 0 whenever Z is a null subset of P.

Definition 7. Let F' : [a,b] - R, P C [a,b]. F is said to be M on P if
F e AC on @, whenever Q =Q C Pand F € VBNC on Q. A function F is
said to satisfy Foran’s condition (M) on P if F is simultaneously M and M
(i.e., F'is AC on @ whenever @ is a closed subset of P and F € VBNC on

Q, see [3]).

Definition 8. ([1], p. 78). Let F : [a,b] = R, P C [a,b]. F is said to be (N)
on P if OF(F; Z) —O whenever Z C P and m(Z) = 0. F is said to be (V)
on P if F1s (N) on P;ie., OX(F;Z) =0.

Remark 1. In [1] (p. 84), there is given an equivalent definition for M (i.e.,
condition 4) of Theorem 3). By Corollary 2.21.1 (iii) of [1], we have (N) C M
on a set P.
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2 Conditions (N), (N), (M), M and VB on Closed Sets

Lemma 1. Let P be a closed subset of [a,b]. Then we have
(i) VBA(N)CVBNM C (VBNM)B(VBNM)C VBN (N) on P;
(ii) VBN(N) C VBA(M) C (VBN(M))@ (VBN (M) C VBN (N) on P.

PROOF. (i) By Remark 1 the first two inclusions are evident. We prove the
last inclusion. Let Fi, Fy : P — R such that Fy, Fo € VBN M. It is sufficient
to show that FF = F} + F5 is VBN (N) on P. Let A; and As be the sets of
points of discontinuity for I respectively Fy. Then A, Ay are countable and

A1UAy = {d17d2,d3,...,dn,...}

contains all discontinuity points of F'. Given ¢ > 0, for each d,, we can find
some intervals I, = (pn,dy) and J,, = (dy, g,) such that

O(F;PN1,) +O(F;PNJ,) < 2%

Let @ = P\US2 (I, UJy,). Then Q is a compact set and Fy, F, € VBNC on
Q. But F,F, € M on P;so Fy,Fy € AC on Q. Hence F' € AC on Q.

Let Z ¢ P, m(Z) = 0. For ¢/2 > 0, let 6. > 0 be given by the fact
that F' € AC on Q. By Proposition 1 there exists {(a;,b;)}:, a sequence of
nonoverlapping open intervals, such that ZNQ C U2, (a;, b;), Yooy (bi—a;) <
bc and Y2, O_(F;ZN QN (a;,b;)) > —e. Hence

OX(F:Z) > —¢ — (i(O(F; ZN1L)+O(F; Zn Jn)) > 2.

n=1

Since O (F; Z) < 0 and € is arbitrary, it follows that O>*(F; Z) = 0. Hence
Fe(N)onP.

(i) The first two inclusions are evident, since (N) C (M) (see the Banach-
Zarecki Theorem). We prove the last inclusion. Let Fy, Fo, Ay, Ag, I, Jn
and @ be defined as in the proof of (i). Suppose that Fy, F, € VBN (M) on P.
From the definition of (M) it follows that F € AC C (N) on Q. Let Z C P,
m(Z) = 0. Then

m*(F(2)) <m*(F(ZnQ) + Y _m"(F(ZN 1)+ Y m*(F(ZNJy)) <e.

n=1

Since € is arbitrary, we obtain that m*(F'(Z)) = 0. Hence F' € (N) on P. O
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Lemma 2. Let P be a closed subset of [a,b]. Then we have:
(i) VBN (N)=VBNM is an upper real linear space on P.
(ii) VBN (N)=VBN (M) is a real linear space on P.
(iii)) VBN (M) =VBNMNM=VBn(N)N(N)=VBn(N) on P.

PROOF. (i) This follows by Lemma 1, (i).

(ii) This follows by Lemma 1, (ii).

(iif) We have VBN (N) C VBN (N)N(N)=VBNMNM = VBN (M) =
VBN (N). (The equalities follow by (i), (ii) and the fact that we always have
(M)=MnM.) O

Lemma 3. Let F : [a,b] > R, E}, C [a,b], k=1,2,..., and E = U2, E}.

(i) F is (N) (respectively (N)) on E if and only if F is (N) (respectively
(N)) on each Ej.

(ii) If in addition each Ey is a closed set, then F is (M) (respectively M) on
E if and only if F € (M) (respectively M) on each Ej.

PROOF. (i) For () the proof is evident. For (IV) the necessity is also obvious,
and the sufficiency follows by definitions and Lemma 2.20.1 of [1].

(ii) The “=” part is evident. We show the converse. Let @) be a closed
subset of E such that FF € VBNC on Q. Clearly F € VBNC on each closed
set Q@ N Ey. Since F is (M) (respectively M) on each Ey, it follows that F is
AC (respectively AC) on each Q N Ej. Therefore F € VBNCNACG = AC
(respectively F € VBNCNACG = AC) on Q (see Corollary 2.21.1, (iv), (iii)
of [1]). Therefore F' is (M) (respectively M) on E. O

Theorem 1. Let P be a closed subset of [a,b]. Then we have:
(i) [VBG]N(N) = [VBG]N M is an upper real linear space on P.
(i) [VBG)N (N)=[VBG]N (M) is a real linear space on P.

(iii) [VBG|N (M) =[VBGINMNM = [VBG]N(N)N(N) = [VBG]N(N)
on P.

PRrROOF. (i) Since (N) C M, we have [VBG] N (N) C [VBG|NM on P. Let
F € [VBG]N M. Then there exists a sequence of closed sets {P,}, such that
P=U,P,and Fe VBNM = VBN (N) on each P, (see Lemma 2, (i)).
By Lemma 3, (i) it follows that F' € (V) on P; so [VBG|NM C [VBG]N ().
We show that [VBG] N (N) is an upper linear space. Let Fy,Fy : P — R,
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Fy1,Fy € [VBG] N (N). Then there exists {Q,}n, a sequence of closed sets,
such that P = US2,Q,, and Fy,F>, € VBN (N) on each @,,. By Lemma 2,
(i), FA + F» € VBN (N) on each @,. Now by Lemma 3, (i) it follows that
i+ e [VBG] N (ﬂ) on P.

(ii) The proof is similar to that of (i), using Lemma 2, (ii) and Lemma 3,
(i)

(iii) By (i), (ii) and because we always have (M) = M N M, it follows that
[VBG)N(N) C[VBGIN(N)N(N)=[VBGINMNM =

= [VBG] N (M) = [VBG]N (N). O

3 Conditions (N), (N), (M), M and VB on Borel Sets

Lemma 4. Let F : P — R be an increasing function, P C [a,b]. Then

F e (N) if and only if F € (N) on P.

PROOF. “=" Suppose that F' € (N) on P, and let Z C P such that m(Z) =0
Then OF(F;Z) = 0; i.e., for every € > 0, there is a sequence {Z;}; of sets
such that Z = U2, Z; and 0 < Y ;2 O4(F; Z;) < e. Since F is increasing, it
follows that O, (F; Z;) = O(F; Z;). Therefore

m(F(2) <3 m (F(Z) < ) O(F: Zi) < e.

Since € is arbitrary, we obtain that m*(F(Z)) = 0. Hence F' € (N) on P.

“<” (N) C (N) is always true (see Theorem 2.20.1 of [1]). O

Lemma 5 (Fundamental Lemma). Let P C [a,b] be a Borel set and let G :
P—-R, GeVB.

(i) If G ¢ (N) on P, then there exists a compact set K C P with m(K) =0
such that G| is strictly increasing and G(K) is a compact set of positive
measure.

(i) If G ¢ (N) on P, then there exists a compact set K C P with m(K) =0
such that G\ is strictly monotone and G(K) is a compact set of positive
measure.

PROOF. (i) By Lemma 4.1 of [8] (p. 221), there exists F' : [a,b] — R such
that '€ VB and Fjp = G. Let £ = {x € [a,b] : F (x) does not exist, finite
or infinite}. By Theorem 7.2 of [8] (p. 230), we have m(F(E)) = 0. Since



LusiN’s CONDITION (N) AND FORAN’S CONDITION (M) 483

F ¢ (N) on P, it follows that there exists a set Z C P with m(Z) = 0 and
OF(F; Z) > 0. Hence
F¢(N) on Z. (4)

Let A=ZNE. Then
m(F(A)) =0. (5)

Let Ay = {z € Z: |F'(z)| < 1}. Then
Fe(N) on A (6)

(see Theorem 10.5, p. 235 or Theorem 4.6, p. 271 of [8]). Let B = {z € Z :
F'(z)) >1}, By ={z € Z:F(z)>1}and B. = {z € Z: F (z) < —1}.
Using the proof of Theorem 10.1 of [8] (pp. 234-235), it follows that the set
B_ can be written as the union of a finite or countable family of sets {B),},,
such that F is strictly decreasing on each B,. Clearly O, (F;B,) = 0; so
O (F;B_) = 0. Hence

Fe(N) onB_. (7)

The set By can also be written as the union of a finite or countable family of
sets { By, }n, such that F' — I is increasing on each of them (here I(xz) = x for
each = € [a,b]). By (5), (6), (7) and Lemma 3, (i), it follows that

Fe(N) on AUA;UB_. (8)

Since Z = AU A; U B_ U (Up,By), by (4), (8), Lemma 3 and Lemma 4, it
follows that there exists at least a positive integer n such that F' ¢ (N) on B,,.
Fix such a positive integer n. Since F' € VB on [a,b], F —I is bounded on B,,.

By Lcmma 4.1 of [8] (p. 221), it follows that there exists F — I : [a,b] - R

such that F — 1 Iip, = F — I and FoTIis increasing on [a,b]. Let By be a
Gs-set of measure zero that contains B,,. Let

B=PnByn{zclab: (F—1I)(z)=(F-1I)(x)}.

Since Fo1 , F —I € VB C Borel functions on P, it follows that B is a Borel
set of measure zero, m*(F(B)) > 0 (because B C B,) and F = (F —I) + I
is strictly increasing on B. From [4] (pp. 391, 387, 365), we obtain that
F (é) is a Lebesgue measurable set (because the image of a Borel set under a
Borel function is an analytic set, and an analytic set is Lebesgue measurable).
Therefore F(B) contains a compact set @ of positive measure.

Let E = BN F~(Q). Then Fig is a strictly increasing function and
F(E) = Q. So F|g admits an inverse on E, namely (F|g)~' : Q — E, that
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is strictly increasing. Let Q1 C @ be a compact set of positive measure such
that Q1 does not contain the countable set of discontinuity points of (Fj 5) L
Let K = (Fig) '(Q1). Then K is a compact set (because any continuous
function maps a compact set into a compact set). Clearly K C B. Tt follows
that m(K) =0, Fig = G|k is strictly increasing and G(K) = Q1.

(ii) Since F' ¢ (N) on P, there exists Z C P such that m(Z) = 0 and
m*(F(Z)) > 0. Hence F' ¢ (N) on Z. Let A, A1, B, By and B_ be defined
as in the proof of (i). Since Z =AU A; UBL UB_ and F € (N) on AU A4;,
by Lemma 3, (i) it follows that F' ¢ (N) either on By or on B_. We may
suppose without loss of generality that F' ¢ (N) on B;. Then there exists
at least one positive integer n such that F' ¢ (N) on B,. Fix such a positive
integer n and continue as in the proof of (i). O

Lemma 6. Let P be a Borel subset of [a,b]. Then we have:
(i) VBN(N)CVBNM C(VBNM)B(VBNM)CVBN(N) on P.
(ii) VBN(N) C VBN (M) C (VBN (M) & (VBN (M) C VBA(N) on P.

PROOF. (i) The first two inclusions are evident. We show the last one. Let
F,F:P—>R F,F,bc VBNM. Clearly F = F, + F, € VB on P. Suppose
to the contrary that F' ¢ (N) on P. By Lemma 5, (i) it follows that P contains
a compact set K of measure zero such that Fjx is strictly increasing and F'(K)
is a compact set of positive measure. By Lemma 2, (i) we obtain that F € (N)
on K. Since F is increasing on K, by Lemma 4, it follows that F' € (V) on
K. Therefore m(F(K)) = 0, a contradiction.

(11) Let F1,F : P — R, Fi,F, e VBN (M) Clearly F=mN+F, VB
on P. Suppose to the contrary that F' ¢ (N) on P. Then P contains a
compact set K of measure zero such that Fx is strictly monotone and F(K)
is a compact set of positive measure (see Lemma 5, (ii)). By Lemma 2, (ii) we
obtain that F' € (V) on K. Therefore m(F(K)) = 0, a contradiction. O

Lemma 7. Let P be a Borel subset of [a,b]. Then we have:
(i) VBN (N)=VBNM is a real upper linear space on P.
(i) VBN (N)=VBnN (M) is a real algebra on P.
(iii)) VBN (M)=VBNMNM=VBn(N)N(N)=VBnN(N) on P.

PROOF. (i) This follows by Lemma 6, (i).
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(ii) That VBN (N) = VBN (M) is a real linear space on P follows by
Lemma 6, (ii). Let Fy, F, € VBN (N). Clearly F} and F» are bounded on P.
Let aq,as € R such that

Gi(z):=Fi(z)+ a1 >1 and Ga(z):= Fa(x) +az>1 on P.

Then F - F5 = G -Gy — a1 Fy — asFy — aqan . Since In is a Lipschitz function
on [1,400), it follows that InoG; and InoGs are VBN (N) on P. But

ln(G1 . Gg) = ln(Gl) + IH(GQ) eVBnN (N)
(because VBN (N) is a real linear space). Then
G1 -Gy =exp(In(Gy - G2)) e VBN (N) on P

since the exponential function is Lipschitz on each compact interval).
i h ial f ion is Lipschi h i 17
(iii) This follows by (i), (ii) and the fact that always (M) =M NM. O

Remark 2. If Fy, F; : [a,b] — R are VB N (N), then it is possible that
Fy - Fy ¢ (N). Indeed, let F; be the Cantor function on [0,1] and Fp(z) = —1
for x € [0,1]. Then Fy - F» = —F; ¢ (N) (see Lemma 4).

Theorem 2. We denote by Bor the collection of all real Borel measurable
functions. Let P be a Borel subset of [a,b]. Then we have:

(i) VBG N (N)NBor =VBGNMnNBor is a real upper linear space on P.
(i) VBG N (N)NBor =VBGN(M)N Bor is a real algebra on P.
(iii) VBGN(N)NBor = VBGNMNMNBor =VBGN(N)N(N)NBor =
VBGN (N)NBor on P.

PRrROOF. (i) Clearly VBG N (N) C VBGN M on any set E C [a,b] (E not
necessarily a Borel set). Let F: P - R, F € VBG N M. Then there exists
a sequence {P,}, of sets such that P = U, P, and F is VB on each P,. By
Lemma 4.1 of [8] (p. 221), there exists a function F, : [a,b] = R, F,, € VB
on [a,b], such that (F,)|p, = F. Let Q, = {z € P: F(x) = F,(x)}. Since F'
and F,, are Borel functions, it follows that @, is a Borel set, that obviously
contains the set P,. Thus F € VBNM = VBN (N) on Q,, (see Lemma 7, (i)).
Since P = U, @, by Lemma 3, (i) we obtain that F' € (V) on P. Hence

VBGNMNBor CVBGN(N)NBor on P.

Let F1,Fy : P - R, F,F, € VBG N (N) N Bor on P. Then there exists a
sequence {E,}, of sets such that P = U, F,, and Fy,F5 € VB on each E,.



486 VASILE ENE

Arguing as above, we may suppose without loss of generality that each F,, is
a Borel set. By Lemma 7, (i), VBN () is a real upper linear space on each
E,. Hence Fy + F» € VBN (IN) on each E,. By Lemma 3, (i) it follows that
Fe(N)on P;so Fy+ F, ¢ VBGN(N)NBor on P.

(ii) The proof is as that of (i), using Lemma 7, (ii) and Lemma 3, (i).

(iii) Clearly, we always have

VBGN(N)CVBGN(N)N(N)CVBGNMNM=VBGnN(M).
By (ii), we obtain that VBG N (M) N Bor = VBG N (N) N Bor. O
Remark 3. That VBG N (N) N Bor is a real linear space on a Borel set was

shown first (in a different manner) in [2].

4 Characterizations of M and (M)

Theorem 3. Let P C [a,b] and F : P — R.
(i) The following assertions are equivalent.
1) Fe M onP.
2) If F € VB on a Borel set Q C P, then F € (N) on Q.

3) If F € VB on a closed set Q C P, then F € (N) on Q.
4) If F € VBNC; on a closed set Q C P, then F € AC on @ (see also

[1]. p- 84).
5) If F is decreasing and bounded on a Borel set Q C P, then F € (N)
on Q.

6) If F is decreasing on a closed set Q C P, then F € (N) on Q.

7) If F is strictly decreasing and continuous on a closed set QQ C P, then
F e AC on Q.

(i) If P is a Borel set and F is a Borel function, then F € M on P if and
only if F € (N) on any Borel subset @ of P on which F is VBG.

PROOF. (i) 1) = 2) Let @ C P be a Borel set such that F' € VB on Q). By
1) it follows that F €« VBN M =VBN (IN) on Q (see Lemma 7, (i)). Hence
Fe(N)onQ.

2) = 3) This is obvious.

3) = 4) Let Q be a closed subset of P such that F € VBNC; on Q. By
3), FeVBNC;N(N)=AC on Q (see Corollary 2.21.1, (iii) of [1]).
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4) = 1) Let @ be a closed subset of P such that ' € VBNC on Q. Then
FeVBNC;on Q, and by 4), F is AC on Q. Therefore F € M.

1) = 5) Let Q be a Borel subset of P such that F is decreasing and
bounded on Q. Clearly F is VB on Q, and by 1), Fe VBNM =VBN(N)
on @ (see Lemma 7, (i)). Thus F' € (IN) on Q). By Lemma 4, F € (N) on Q.

5) = 6) A real valued function that is decreasing on a bounded closed set
is bounded on that set. Now the assertion is obvious.

6) = 7) Let Q be a closed subset of P such that F is continuous and
decreasing on Q). By 6), F € (N) on Q. Clearly F € VBNCN(N) = AC (see
the Banach-Zarecki Theorem).

7) = 1) By Corollary 2.21.1, (iii) of [1], we have that VBNCN(N) C AC
on a closed set. Suppose that 7) is true and 1) isn’t. Since F' ¢ M on P, there
exists a closed set Q@ C P such that F € VBNC but f ¢ AC on Q. It follows
that F' ¢ (N) on . By Lemma 5, (i), there exists a compact set K C @ of
measure zero such that m(F(K)) > 0 and F is strictly decreasing on K. By
7), F'is AC on K. Since AC' C (N), we obtain a contradiction.

(ii) “=" Let Q C P be a Borel set such that F|g is V BG. By hypotheses,
FeVBGNM =VBGN(N) (see Theorem 2, (i)). Therefore F' € (N) on Q.

“«=" Let @ be a closed subset of P such that Fjg € VBNC. By hypotheses,
FeVBNCN(N)C AC on Q (see Corollary 2.21.1 (iii) of [1]). O

Theorem 4. Let P C [a,b] and F : P — R.

(i) The following assertions are equivalent.

1) Fe(M)onP.
2) If F € VB on a Borel set Q C P, then F € (N) on Q.
3) If F € VB on a closed set Q C P, then F € (N) on Q.

4) If F' is monotone and bounded on a Borel set Q C P, then F € (N)
on Q.
5) If F is monotone on a closed subset QQ of P, then F' € (N) on Q.

6) If F is strictly monotone and continuous on a closed set Q C P, then
Fe AC on Q.

(ii) If P is a Borel set and F' is a Borel function, then F € (M) if and only
if F € (N) on any Borel set Q@ C P on which F is VBG.

PROOF. (i) 1) = 2) Let @ C P be a Borel set such that F € VB on Q. By
1), FEVBN(M)=VBnN(N)on Q (see Lemma 7, (ii)).
2) = 3) This is obvious.
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3) = 1) Let Q be a closed subset of P such that Fp is VBNC. By 3),
Fig €e VBNCN(N) = AC (see the Banach-Zarecki Theorem). Therefore
Fe(M)onP.

1) = 4) Let @ be a Borel subset of P such that F' is monotone and bounded
on @. Then Fe VBon Q. By 1), Fe VBN (M) =VBN(N) on Q (see
Lemma 7, (ii)).

4) = 5) This is obvious.

5) = 6) Let @ be a closed subset of P such that F' is strictly monotone
and continuous on . By 5), F' € (N) on Q. Clearly F € VBNCN(N) = AC
on @ (see the Banach-Zarecki Theorem).

6) = 1) Suppose that 6) is true and 1) isn’t. Since F ¢ (M) on P, it
follows that there exists a closed set @ C P such that F' € VBNC on @, but
F ¢ AC on Q. Since VBNCN(N) = AC on a closed set (see the Banach-
Zarecki Theorem), we obtain that F' ¢ (N) on . By Lemma 5, (ii), there
exists a compact set K C @ of measure zero such that m(F(K)) > 0 and F is
strictly monotone on K. By 6), F € AC on K, a contradiction.

(ii)“=" Let @ C P be a Borel set such that Fjo € VBG. By hypothesis,
FeVBGN(M)=VBGN(N) (see Theorem 2, (ii)). Hence F' € (N) on Q.

“«<=" This follows by the Banach-Zarecki Theorem. O

Corollary 1. Let P C [a,b] be a Borel set. Then we have:
(i) (VBGN M N Bor)® (M N Bor) = (MnBor) on P.
(1) (VBG N (M)NBor)® ((M)NBor) = (M)NBor on P.

PrOOF. Let F1,F5,F: P —- R, F = Fy + F5.

(i) Suppose that F; € VBGNMNBor and F» € M NBor on P. Let Q be a
Borel subset of P such that Fjq is V B. Clearly Iy = F'—Fy is VBGNMNBor
on Q. By Theorem 2, (i), it follows that F' € (V) on @, and by Theorem 3,
1), 2) we obtain that F € M on P.

(ii) Suppose that F; € VBG N (M) N Bor and F; € (M) N Bor on P.
Let @ C P be a Borel set such that Fig is VB. Clearly Fp = F — Fy is
VBG N (M) N Bor on Q. By Theorem 2, (ii), it follows that F' € (N) on Q,
and by Theorem 4, 1), 2), we obtain that F € (M) on P. O

Remark 4. In Corollary 1, (ii), Foran’s condition (M) cannot be replaced
by Lusin’s condition (N), although VBG N (N) N Bor = VBG N (M) N Bor
(see Theorem 2, (ii)). This follows from an example of Mazurkiewicz ([5] or
[1], p. 226). He constructed a continuous function f(x) on [0,1], such that
f € (N), but for b # 0 the function f(x) + bx ¢ (N).
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