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Abstract

In this paper we consider the following questions: Under what addi-
tional assumptions is the diagonal f4g of almost continuous functions
vanishing on the set of discontinuity points an almost continuous func-
tion, too. Moreover, one can show that the facts considered (diagonals
and ac-homotopies) can be applied to the characterization of continuity
or the investigations of the algebraic operations on almost continuous
functions.

Almost continuous functions, introduced by Stalling, ([8]) (in order to gen-
eralize the Brouwer fixed point theorem) have been intensively studied by
many authors. There are various areas of interest in this study. Among them
are the problems connected with the operations on almost continuous func-
tions. It has been well known for several years that if f is an almost continuous
function and g is a continuous function, then the diagonal function f4g is an
almost continuous function ([6], [4]). In [6] the author proved the following
theorem: Suppose that Y0 and Z0 are convex subsets of normed spaces Y and
Z, respectively, f1 : I → Y0, f2 : I → Z0 are almost continuous functions and
D is the set of points at which f1 is discontinuous. If the restriction of f1|D is

continuous and each point of D is a point of continuity of f2, then the diagonal
f14f2 is an almost continuous function.

In our paper we investigate the following question: Under what additional
assumptions is the diagonal of almost continuous functions also an almost
continuous function, even if the sets of discontinuity points are not disjoint.

We use the standard notions and notation. The open ball with center at x
and radius r > 0 will be denoted by B(x, r). The symbols A, FrA and Int(A)
stand for the closure, the boundary and the interior of A, respectively.
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By R (I) we denote the set of all real numbers (the segment [0, 1]) with
the natural topology τo. By Cf (Df ) we shall denote the set of all continuity
(discontinuity) points of f . The symbol Γ(f) stands for the graph of f . The
restriction of f to the set A is denoted by f|A. For a function f : X → Rn, we
put Z(f) = {x ∈ X : f(x) = (0, 0, . . . , 0)}.

A function f : X → Y where X, Y are topological spaces is almost contin-
uous if, for each open set U ⊂ X × Y containing Γ(f), U contains the graph
of some continuous functions g : X → Y . The set of all almost continuous
functions mapping X into Y (as well as the space 1 with the metric of uniform
convergence %) will be denoted by A(X,Y ).

In this paper we consider functions belonging to the set

Ao(X,Rn) = {f ∈ A(X,Rn) : Df ⊂ Z(f)}

and

Do(X,Rn) = {f ∈ D(X,Rn) : Df ⊂ Z(f)}

where n ∈ 1, 2) and D(X,Rn) is a family of Darboux functions2 mapping X
into R.

For functions f : X → Y and g : X → Z, we define their diagonal function
f4g : X → Y × Z by (f4g)(x) = (f(x), g(x)).

Let f ∈ A(X,Y ) (f ∈ Ao(X,Y )). Then we define ∆A(f) (∆Ao
(f)) by

∆A(f) = {g ∈ A(X,Y ) : f4g ∈ A(X,Y × Y )}
(∆Ao

(f) = {g ∈ Ao(X,Y ) : f4g ∈ Ao(X,Y × Y )}).

Let (X, τ), (X, τ ′) be topological spaces. We say that the topology τ ′ is
s-finer than τ if τ ′ is finer than τ and {U ∈ τ : U is τ -closed} = {U ∈ τ :
U is τ ′-closed}. In a similar way as in [7] we can define ac-homotopies: The
almost continuous functions f, g : (X, τ)→ (X, τ∗) are called ac-homotopic if
there exists a topology τ ′ s-finer than the topology τ , such that f, g : (X, τ ′)→
(Y, τ∗) are continuous and there exists a homotopy ξ : (X, τ ′) × I → (Y, τ∗)
between f and g such that ξ : (X, τ) × I → (Y, τ∗) is an almost continuous
function. (The fact that f and g are ac-homotopic and ξ is an ac-homotopy
between f and g is written down as f acξ g.)

The notions and symbols we use, connected with porosity, come from pa-
pers [9] and [10]. Let X be a metric space. Let M ⊂ X, x ∈ X and

1Of course, in this case we consider only bounded functions.
2A function f : X → Y is a Darboux function if the image of any connected set is a

connected set, too.
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R > 0. Then we denote by γ(x,R,M) the supremum of the set of all
r > 0 for which there exists z ∈ X such that B(z, r) ⊂ B(x,R) \ M . If

p(M,x) = 2 · lim supR→0+
γ(x,R,M)

R > 0, then we say that M is porous at x.

Before giving the main results, we make the following observation.

Remark. If f : R→ R is a function such that Df ⊂ Z(f), then Df is nowhere
dense set.

The example given below3 shows that there exist two functions f, g ∈
Ao(R,R) such that Df = {0} = Dg and f(0) = 0 = g(0) but f4g is not an
almost continuous function.

Example. Let f(x) = 0 for x ∈ (−∞, 0]∪ [1,+∞)∪ { 1
2n+1 : n = 0, 1, 2, . . . };

f( 1
2n ) = 1 (n = 1, 2, . . . ) and let f be linear in each interval [ 1

n+1 ,
1
n ] (n =

1, 2, . . .). Then Df = {0} and, consequently (f is a Darboux, Baire one
function), f ∈ Ao(R,R) ([2]). In each interval [ 1

2n+2 ,
1

2n+1 ] ([ 1
2n+3 ,

1
2n+2 ]) (for

n = 0, 1, 2, . . .) we can choose a point pn (qn) such that f(pn) = 3
4 (f(qn) = 3

4 )
(n = 0, 1, 2, . . . ).

Now, we define a function g : R → R in the following way: g(x) = 0 for
x ∈ (−∞, 0] ∪ [1,+∞) ∪ { 1

2n : n = 1, 2, . . . }; g( 1
2n+1 ) = 1 (n = 1, 2, . . . );

g(pn) = g(qn) = 3
4 for n = 0, 1, 2, . . . ; let g be a linear function in each interval

[pn,
1

2n+1 ], [ 1
2n+2 , pn], [qn,

1
2n+2 ], [ 1

2n+3 , qn] for n = 0, 1, 2, . . . .

It is easy to see that f, g ∈ Ao; f4g(0) = (0, 0) and f4g(x) /∈ (− 1
2 ,

1
2 ) ×

(− 1
2 ,

1
2 ) for x ∈ (0, 12 ] and so, f4g([0, 12 ]) is not a connected set, which means

that f4g /∈ D(R,R2) and, consequently (cf. [6], Theorem 1.1.11), f4g /∈
A(R,R2).

The problem raised at the beginning can be formulated in the following
way: Given a fixed function f ∈ Ao(R,R), under what assumptions on g ∈
Ao(R,R) do we have g ∈ ∆Ao

(f)? The answer is contained in the next theorem
which we precede by the following lemma.

Lemma 1. Ao(R,Rn) = Do(R,Rn).

Proof. The inclusion Ao(R,Rn) ⊂ Do(R,Rn) follows from
Theorem 1.1.11 of paper [6].

Now, we shall prove the opposite inclusion. So, let f ∈ Do(R,Rn). Note
that Df is closed and nowhere dense set and f is continuous on every compo-
nent of R \ Df . Since f is Darboux function, f is almost continuous on the
closure of every component of R \Df (see [6], Theorem 1.5.2) and according
to ([6], Lemma 1.3.2), f is almost continuous.

3This example is very simple. However, the functions constructed within the framework
of it will be useful in the explanation of certain questions in the remainder of the paper.
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Theorem 1. Let f ∈ Ao(R,R). Then g ∈ ∆Ao(f) if and only if f acξ g and

(Df ∪Dg)× I ⊂ Z(ξ), for an ac-homotopy ξ.

Proof. Necessity. Put D = Df ∪Dg. It is not hard to verify that

D = Df4g and D ⊂ Z(f4g). (1)

Set D′ = R \D and let {(pn, qn)}n be the sequence of all components of the
set D′. (It is possible that pn = −∞ or qn = +∞ for some n.) Fix x ∈ D′.
Then there exists a positive integer nx such that x ∈ (pnx

, qnx
) (pnx

< qnx
).

Put
B(x) = {(x− δ, x+ δ) : δ ∈ (0,min(x− pnx , qnx − x))}.

Now, let x ∈ D and let k be a fixed positive integer. Consider the interval
(x, x+ 1

k ), and let Ukx = (x, x+ 1
k ) ∩D′. According to the Remark above, Ukx

is an open and dense set in [x, x+ 1
k ].

Now, we shall show that

there exists zkx ∈ Ukx such that f(zkx), g(zkx) ∈ (−1

k
,

1

k
). (2)

Indeed, suppose to the contrary that, for each y ∈ Ukx , f(y) /∈ (− 1
k ,

1
k ) or

g(y) /∈ (− 1
k ,

1
k ). Therefore f4g(Ukx ) ∩ ((− 1

k ,
1
k ) × (− 1

k ,
1
k )) = ∅ and, conse-

quently, f4g([x, x+ 1
k ]) ⊂ {(0, 0)}∪

(
R2 \ ((− 1

k ,
1
k )× (− 1

k ,
1
k ))
)

and, moreover
(according to (1)),

(0, 0) ∈ f4g([x, x+
1

k
]) and

(
R2\((−1

k
,

1

k
)×(−1

k
,

1

k
))

)
∩f4g([x, x+

1

k
]) 6= ∅.

This means that f4g is not a Darboux function and, consequently (cf. The-
orem 1.1.11 of [6]), f4g /∈ A(R,R2), which contradicts our assumption. The
proof of (2) is finished.

Of course, zkx ∈ D′. Let tzkx be a positive integer such that (zkx − 1
t
zkx

, zkx +

1
t
zkx

) is a subset of the component of Ukx , containing zkx and f((zkx − 1
t
zkx

, zkx +

1
t
zkx

)) ⊂ (− 1
k ,

1
k ) ⊃ g((zkx− 1

t
zkx

, zkx+ 1
t
zkx

)). By the arbitrariness of k and x ∈ D,

we can construct the set Ukx for any positive integer k and x ∈ D. Additionally,
we may assume that

if k1 < k2, then zk1x > zk2x for anyx ∈ D.

Put

U+
s (x) = {x} ∪

∞⋃
k=s

(zkx −
1

tzkx + s
, zkx +

1

tzkx + s
) for s = 1, 2, . . . and x ∈ D.
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In a similar way we can define the sets U−s (x). Let

B(x) = {Us(x) = U−s (x) ∪ U+
s (x) : s = 1, 2, . . . } for x ∈ D.

Let τ be a topology generated by the local system {B(x)}x∈R. It is easy to
see that τ is finer than τo. Now, we shall show that

τ is s-finer than τo.

To prove this fact, it is sufficient to show that {V ∈ τo : V is τ -closed} =
{∅,R}. Suppose to the contrary that there exists a τ -closed set Vo ∈ τo such
that ∅ 6= Vo 6= R. Let (u, v) (u < v) be a component of Vo (in the topology
τo). Suppose, for instance, that u > −∞. From the construction of B(u) (in
the case when u ∈ D′, as well as in the case when u ∈ D) we may deduce
that u ∈ clτ ((u, v)) where clτ denotes the closure in the space (R, τ). Then
u ∈ clτ (Vo) and, consequently (Vo is a τ -closed set), u ∈ Vo, which is impossible
because (u, v) is a component of Vo (in the topology τo).

Let us observe that

f, g : (R, τ)→ R are continuous functions.

Now, let ξ : (R, τ) × I → R be a natural homotopy between f and g, which
means that

ξ(x, r) = (1− r)f(x) + rg(x) for x ∈ R, r ∈ I.

From (1) we conclude that

(Df ∪Dg)× I ⊂ Z(ξ). (3)

The proof of necessity will be completed by showing that

ξ : R× I→ R is an almost continuous; function (4)

(in the natural topology of R × I). Let {am}+∞−∞ ⊂ Int(D′) be a sequence of
real numbers such that

−∞← · · · < a−2 < a−1 < ao < a1 < a2 < · · · → +∞.

Let V be an arbitrary open set containing Γ(ξ). Fix a positive integer m and
put Im = [am, am+1]. First, we assume that Im ∩ D 6= ∅. It is not hard to
verify that

∀x∈D∩Im∃δx>0 ([x− δx, x+ δx]× I)× [−δx, δx] ⊂ V (5)

and [x− δx, x+ δx] ⊂ Int Im.
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In the rest of the paper, δx always denotes fixed positive numbers for x ∈
D ∩ Im, such that relations (5) take place.

Now, for x ∈ D ∩ Im, let kx denote positive integers such that Ukx ⊂
(x− δx, x+ δx) and f(Ukx) ⊂ (− δx2 ,

δx
2 ) ⊃ g(Ukx); Ukx = Ukx(x) ∈ B(x). This

means that
∀x∈D∩Imξ(Ukx × I) ⊂ (−δx,+δx). (6)

We let x′ = inf Ukx ∈ Int(Im), x” = supUkx ∈ Int(Im) for x ∈ D ∩ Im. Now,
we consider the family {D′ ∩ Im} ∪ {(x′, x”); x ∈ D ∩ Im}. Let x1, x2, . . . , xq
be a finite sequence of numbers belonging to D ∩ Im such that

Im = (D′ ∩ Im) ∪
q⋃

n=1

(x′n, x
”
n). (7)

Without loss of generality we may assume that

x′1 ≤ x′2 ≤ . . . . (8)

Put δo = min(δx1
, δx2

, . . . , δxq
). First, we consider x1 and components (x′1, s1)

and (z1, x
”
1) of the set Ukx1

. Let x1∗ ∈ (x′1, s1). From (6) we infer that ξ({x1∗}×
I) ⊂ (−δx1 , δx1). Let x∗1 ∈ (z1, x

”
1). Then ξ({x∗1} × I) ⊂ (−δx1 , δx1). If

x”1 belongs to the component of D′ which contains am+1, then we end our
considerations. If not, we shall consider x2. If x”2 ≤ x”1, then we are passing
to the next step dealing with the considerations of x3. So, we suppose that
x”2 > x”1. Then, according to (7), (8), x′2 < x”1 or x”2 belongs to the component
of D′ which contains x”1.

Let (d′2, d
”
2) be a component of D′ such that x”1 ∈ [d′2, d

”
2]. Since x”1 does

not belong to the component of D′ which contains am+1, we may infer that
d”2 < am+1. Denote by x2∗ a point from the interval

(
max(x∗1, x

′
2), d”2

)
such

that f(x2∗) ∈ (− δo2 ,
δo
2 ) and g(x2∗) ∈ (− δo2 ,

δo
2 ). Then ξ({x2∗}× I) ⊂ (−δo, δo) ⊂

(−δx2
, δx2

).
Now, we consider the component (b2, x

”
2) of Ukx2

. Let x∗2 ∈ (z2, x
”
2). Then

ξ({x∗2} × I) ⊂ (−δx2 , δx2). Now, if x∗2 belongs to the component of D′ which
contains am+1, then we end our considerations. In the opposite case, we shall
consider x3. There is no loss of generality in assuming that we obtain the
sequence

x∗o = am < x1∗ < x∗1 < x2∗ < x∗2 < · · · < xq∗ < x∗q < am+1 = xq+1
∗ .

It is easy to see that

∀i=1,2,..,q[x
i
∗, x
∗
i ] ⊂ (xi − δxi

, xi + δxi
) and ξ({xi∗, x∗i } × I) ⊂ (−δxi

, δxi
). (9)
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Let ξi = ξ|{xi
∗,x

∗
i }×I : {xi∗, x∗i }× I→ [−δxi , δxi ] for i = 1, 2, . . . , q. Then ξi is a

continuous function (i = 1, 2, . . . , q) and so there exists a continuous extension
ξ∗i : [xi∗, x

∗
i ]× I→ [−δxi

, δxi
] of ξi (i = 1, 2, . . . , q). Let ζm : Im × I→ R be a

function defined by the formula

ζm(z) =

{
ξ(z) for z ∈

⋃q
i=0[x∗i , x

i+1
∗ ]× I

ξ∗i (z) for z ∈ [xi∗, x
∗
i ]× I (i = 1, 2, . . . , q).

If Im ∩D = ∅, then we put ζm = ξ|Im×I. Let ξ̂ = ∇mζm be a combination of

compatible functions ζm (cf. [3]). Of course, ξ̂ is a continuous function and,

according to (5) and (9), Γ(ξ̂) ⊂ V .

Sufficiency. If g is a continuous function, then (Theorem 1.4.6 of [6]) the proof
of sufficiency is trivial. Assume that Dg 6= ∅. Since (Df ∪Dg)× I ⊂ Z(ξ), we
infer that

Df4g ⊂ Z(f4g). (10)

By g(x) = ξ(x, 1) and (Theorem 1.1.11 of [6]), the image ξ(L) is a connected set
for each arc L ⊂ R×I. Therefore g is a Darboux function such that Dg ⊂ Z(g)
and so, according to Lemma 1, g ∈ Ao(R,R). So, it is sufficient to show that
f4g is an almost continuous function and, at the same time, according to
Lemma 1, it is sufficient to show that f4g is a Darboux function.

We suppose to the contrary that f4g does not possess the Darboux prop-
erty. This means that there exists an interval [a, b] ⊂ R (a < b) such that
f4g([a, b]) = A ∪ B where A and B are nonempty, disjoint separated sets.
Put A′ = [a, b] ∩ (f4g)−1(A) and B′ = [a, b] ∩ (f4g)−1(B). Then A′, B′

are not separated sets. Suppose, for instance, that there exists a0 ∈ A′ ∩ B′.
Let {bn}∞n=1 ⊂ B′ ∩ (−∞, b) be a sequence such that bn ↘ a0. Then bn 6= a0
and a0 ∈ Df ∪ Dg. Consequently, by applying (10), f4g(a0) = (0, 0) ∈ A.
According to the separateness of A and B, there exists ε > 0 such that

Kε ∩B = ∅ where Kε = (−ε, ε)× (−ε, ε). (11)

It is easy to check ((10)) that bn /∈ Df ∪ Dg (n = 1, 2, . . . ). Fix no. Let
(p, q) be a component of D′ = R \ (Df ∪Dg) such that bno ∈ (p, q). Clearly,
p ∈ [a0, bno

] ⊂ [a, b) and p ∈ (Df∪Dg) = Df4g and, consequently, by applying
(10), f4g(p) = (0, 0). By our assumptions, there exists a topology τ s-finer
than the topology τo, such that f, g : (R, τo)→ R are continuous. Let U be a
τ -neighborhood of p such that

U ⊂ (−∞, b) and f(U), g(U) ⊂ (−ε, ε). (12)
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We shall show that
U ∩ (p, q) 6= ∅. (13)

Suppose to the contrary that U ∩ (p, q) = ∅. Then p ∈ U ∩ (−∞, q) ⊂ (−∞, p],
which means that (−∞, p] = (−∞, p) ∪ (U ∩ (−∞, q)) is a τ -open set and,
consequently, (p,+∞) is a τ closed set, which is impossible. From (13) we
infer that there exists y ∈ U ∩ (p, q) and, according to (11) and (12),

f4g(y) ∈ A.

Since f4g|(p,q) is a continuous function, f4g([bno
, y]) is a connected set con-

tained in f4g([a, b]) such that f4g([bno
, y])∩A 6= ∅ and f4g([bno

, y])∩B 6= ∅,
which contradicts the separateness of A and B.

Before going on, we introduce a bit more notation which we shall use. For
an arbitrary function f ∈ Ao(X,Y ),

acH(f) = {g ∈ Ao(X,Y ) : f
ac

ξ
g, for some homotopy ξ}.

It is not hard to verify that if f, g, h ∈ Ao(R,R), then f ∈ acH(f) and if
g ∈ acH(f), then f ∈ acH(g). But, in the general case, the ac-homotopies
are not transitive relations. In fact, let f , g be functions from the example
given at the beginning and let h be an arbitrary continuous function. Since
(([4]),([6])) f4h, g4h ∈ A(R,R2), Theorem 1 shows that f acξ1 h and hacξ2 g by
the symmetry of ac-homotopies. Of course, f and g are not ac-homotopic.

The following theorems show that the facts considered (diagonals and ac-
homotopies) can be applied to the characterization of continuity or investiga-
tions of operations on almost continuous functions.

Theorem 2. Let f : R → I be an arbitrary function. Then the following
conditions are equivalent:

(i) f is a continuous function;

(ii) f ∈ Ao(R, I) and ∆A(f) is not a porous set at f in the space A(R, I);

(iii) f ∈ Ao(R, I) and, in the subspace Afo (R, I) = {η ∈ Ao(R, I); Z(η) ⊂
Z(f)} of Ao(R, I), acH(f) ∩ Afo (R, I) is not a porous set at f .

Proof. First we shall show that (i)⇒ (ii) and (i)⇒ (iii). Let f : R→ I be
an arbitrary continuous function. According to Theorem 1.4.4 from [6], f4g ∈
A(R, I2) for an arbitrary g ∈ A(R, I) and, consequently, ∆A(f) = A(R, I),
which ends the proof of the first implication. Moreover, let t ∈ Afo (R, I).
Then Df4t ⊂ Z(t) = Z(f4t) and so (according to the above considerations),
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t ∈ ∆Ao(f). Theorem 1 now leads to the relation f acξ t and so, acH(f) ∩
Afo (R, I) = Afo (R, I).

Now, we shall show that (ii)⇒ (i) and (iii)⇒ (i). Suppose to the contrary
that there exists x0 ∈ Df . Then let ε > 0 be a number such that ε

2 is a (for
instance, right–hand side) cluster number of f at x0. Since x0 is a right–hand
side Darboux point of f ([1], [5]) for a fixed α ∈ ( ε4 ,

ε
2 ), there exists a sequence

{xn} such that xn ↘ x0 and f(xn) = α. Since xn ∈ Cf (n = 1, 2, . . . ), for
every n, there exist x′n, x

”
n such that x”n+1 < x′n < xn < x”n and

f([x′n, x
”
n]) ⊂ (

ε

4
,
ε

2
). (14)

Moreover, let pn ∈ (x′n, xn), qn ∈ (xn, x
”
n) for n = 1, 2, . . . . Now, we define a

function h : R→ I in the following way:
h(x) = 0 for x = xn (n = 1, 2, . . . );
h(x) = f(x) for x ≤ x0, x = pn, x = qn (n = 1, 2, . . . ) and x ≥ q1;
h(x) = ε

2 for x = x′n or x = x”n (n = 1, 2, . . . );
h(x) is linear in the segments [x′n, pn], [pn, xn], [xn, qn] (n = 1, 2, . . . ) and
[qn, x

”
n] (n = 2, 3, . . . );

h(x) = max(f(x), ε2 ) for x ∈ [x”n+1, x
′
n] (n = 1, 2, . . . ).

According to (14), Theorem 1.7.11 and Lemma 1.2.4 from [6], h is an almost
continuous function such that Dh ⊂ (Df ∩ (−∞, x0])∪ (Df ∩ [q1,+∞)) ⊂ Df

and Z(h) ⊃ (Z(f) ∩ (−∞, x0]) ∪ (Z(f) ∩ [q1,+∞)), which means that h ∈
Afo (R, I). Note that %(h, f) ≤ ε

2 . Now, we consider B(h, ε8 ) (in the case of our
considerations, the symbol B(h, ε8 ) denotes the open ball in the space A(R, I)
as well as in the space Afo (R, I)). It is obvious that B(h, ε8 ) ⊂ B(f, ε). The
proof will be completed by showing that

B(h,
ε

8
) ∩∆A(f) = ∅ (15)

in the space A(R, I) and

B(h,
ε

8
) ∩ acH(f) = ∅ (16)

in the space Afo (R, I).
Proof of (15). Let g ∈ B(h, ε8 ). Then

f4g([x0, x1]) ⊂ {(0, 0)} ∪
(
R2 \ ([0,

ε

5
]× [0,

ε

5
])
)
, (0, 0) ∈ f4g([x0, x1])

and f4g([x0, x1]) ∩
(
R2 \ ([0, ε5 ]× [0, ε5 ])

)
6= ∅, which (according to theorem

1.1.11 of [6]) means that f4g is not an almost continuous function.
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Proof of (16). Suppose to the contrary that there exists g ∈ B(h, ε8 ) ∩
acH(f). Then g(x) > ε

8 for each x ∈ (x0, x1) \
⋃∞
n=1(pn, qn). Let τ be a

topology s-finer than τo such that f, g : (R, τ)→ I are continuous and let V be
a τ -neighborhood of x0 such that f(V ) ⊂ [0, ε9 ) ⊃ g(V ). Since g(V ) ⊂ [0, ε9 ),

V ∩ (x0, x1] ⊂
∞⋃
n=1

(pn, qn).

On the other hand, f(V ) ⊂ [0, ε9 ) implies that

V ∩ (x0, x1] ∩
∞⋃
n=1

(pn, qn) = ∅.

This means that V ∩ (x0, x1] = ∅ and, consequently, (x0,+∞) is a τ -closed
set, which is impossible.

Theorem 3. Let f, g ∈ Ao(R,R). If f4g ∈ Ao(R,R2), then f + g, f · g,
min(f, g), and max(f, g) ∈ Ao(R,R).

Proof. We give the proof only in the case f + g. Assume that f4g ∈
Ao(R,R2). Let h : R2 → R be defined by h(x, y) = x + y. Then h is
continuous, so f + g = h ◦ (f4g) is an almost continuous function (see [8]
or [6]). Since Df+g ⊂ Df ∪ Dg = Df4g, (f + g)(x) = 0 for each x ∈ Df+g.
Thus f + g ∈ Ao(R,R).
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