INROADS

John C. Georgiou, Metsovo 44200, Epirus, Greece. email: johnchrygeorgiou@gmail.com

ON AN EXAMPLE OF A FUNCTION WITH A DERIVATIVE WHICH DOES NOT HAVE A THIRD ORDER SYMMETRIC RIEMANN DERIVATIVE ANYWHERE

Abstract

In this paper we construct a differentiable function $F: \mathbb{R} \to \mathbb{R}$ that does not have a third order symmetric Riemann derivative at any point. In fact,

$$\underline{SRD}^{3}F(x) = \liminf_{h \to 0} \frac{F(x+3h) - 3F(x+h) + 3F(x-h) - F(x-3h)}{(2h)^{3}} = -\infty$$

and

$$\overline{SRD}^{3}F(x) = \limsup_{h \to 0} \frac{F(x+3h) - 3F(x+h) + 3F(x-h) - F(x-3h)}{(2h)^{3}} = +\infty$$

for every $x \in \mathbb{R}$.

1 Introduction

The three well-known classical theorems concerning convexity of a function, of a derivative and of a second derivative using second, third and fourth order Riemann derivates (see [4], [5], [6], [7]), require lim sup, lim inf and lim inf respectively, in their statements. Also, the non-classical but natural generalization (non-Riemann for orders greater or equal to five) using divided differences also uses lim inf (see [3]). The present work, besides other consequences, states that we can not replace lim inf by lim sup for the third Riemann derivate.

Mathematical Reviews subject classification: Primary: 26A27, 26A51; Secondary: 40A30 Key words: non-differentiability, convexity, divided differences, Riemann symmetric derivatives

Received by the editors December 12, 2009 Communicated by: Brian S. Thomson

2 Construction of a Periodic Function and its Properties

Let $a \in \mathbb{R}^+$. Define $f_a : \mathbb{R} \to \mathbb{R}$ as follows:

i) f_a is periodic of period 13a;

ii)

$$f_a(x) = \begin{cases} -x^3, & \text{if } x \in [0, a); \\ -x^3 + 4(x - a)^3, & \text{if } x \in [a, 2a); \\ -x^3 + 4(x - a)^3 - 6(x - 2a)^3, & \text{if } x \in [2a, 3a); \\ (x - 4a)^3, & \text{if } x \in [3a, 4a); \\ 0, & \text{if } x \in [4a, 6.5a]. \end{cases}$$

iii)
$$f_a(6.5a + x) = -f_a(6.5a - x)$$
 if $x \in [0, 6.5a]$.
Let $b \in \mathbb{R}^+$ and define $G = G_{a,b} = \frac{b}{a^2} f_a$. It is easy to see that

$$G(10a) = G(12a) = -G(a) = -G(3a) = ab$$
(1)

$$G(11a) = G(-2a) = -G(15a) = \max_{[0,13a]} G = -\min_{[0,13a]} G = 4ab$$
(2)

$$0 \le G(y) \le 4ab \qquad \text{if } y \in [4a, 13a] \tag{3}$$

$$-4ab \le G(y) \le 0 \qquad \text{if } y \in [0, 9a] \tag{4}$$

$$-ab \le G(y) \le 0 \qquad \text{if } y \in [-10a, -4a] \tag{5}$$

$$0 \le G(y) \le ab \qquad \text{if } y \in [-9a, -3a] \tag{6}$$

$$G''$$
 exist on \mathbb{R} and $|G'| \le 4b$, $|G''| \le 12\frac{b}{a}$ on \mathbb{R} (7)

3 Main Auxiliary Inequalities

Let a, b, G as in 2. Then for every $x \in \mathbb{R}$ there are $h, k \in [a, 12a]$ such that

$$G(x+3h) - 3G(x+h) + 3G(x-h) - G(x-3h) \ge 8ab$$
(8)

$$G(x+3k) - 3G(x+k) + 3G(x-k) - G(x-3k) \le -8ab$$
(9)

PROOF. i) Let $x \in [-a, 14a]$. We consider the following cases:

(a) α . If $x \in [-a, 3a]$ take h = x + 2a. Then $x + h \in [0, 8a]$, $x - 3h \in [-12a, -4a]$, $h \in [a, 5a]$. Thus by (2),(4),(5), G(x - h) = G(-2a) = 4ab, $G(x + h) \leq 0$, $G(x - 3h) \leq 0$. This proves (8).

 β . If $x \in [3a, 6a]$ take h = 15a - x. Then $x + h = 15a, x - h \in [-9a, -3a], x + 3h \in [33a, 39a], h \in [9a, 12a]$. Thus by (2),(6),(3), $G(x + h) = G(15a) = -4ab, G(x - h) \ge 0, G(x + 3h) \ge 0$. This proves (8).

 γ . If $x \in [6a, 10a]$ take h = x + 2a. Then $x - h = -2a, x + h \in [14a, 22a], x - 3h \in [-26a, -18a], h \in [8a, 12a]$. Thus by (2),(4), $G(x - h) = 4ab, G(x + h) \leq 0, G(x - 3h) \leq 0$. This proves (8).

δ. If x ∈ [10a, 14a] take h = -x + 15a. Then x + h = 15a, x - h ∈ [5a, 13a], x + 3h ∈ [17a, 25a], h ∈ [a, 5a]. Thus by (2), (3), G(x + h) = -4ab, G(x - h) ≥ 0, G(x + 3h) ≥ 0. This proves (8).

(b) α . If $x \in [-a, 3a]$ take k = -x + 11a. Then $x + k = 11a, x - k \in [-13a, -5a], x + 3k \in [27a, 35a], k \in [8a, 12a]$. Thus by (2),(4), $G(x + k) = 4ab, G(x - k) \leq 0, G(x + 3k) \leq 0$. This proves (9).

β. If $x \in [3a, 6a]$ take k = x - 2a. Then $x - k = 2a, x + k \in [4a, 10a]$, $x - 3k \in [-6a, 0], k \in [a, 4a]$. Thus by (2),(6),(3),G(x - k) = -4ab, G(x + k) ≥ 0, G(x - 3k) ≥ 0. This proves (9).

 γ . If $x \in [6a, 10a]$ take k = -x + 11a. Then $x + k = 11a, x - k \in [a, 9a]$, $x + 3k \in [13a, 21a], k \in [a, 5a]$. Thus by (2),(4), $G(x + k) = 4ab, G(x - k) \leq 0, G(x + 3k) \leq 0$. This proves (9).

δ. If x ∈ [10a, 14a] take k = x - 2a. Then x - k = 2a, x + k ∈ [18a, 26a],x - 3k ∈ [-22a, -14a], k ∈ [8a, 12a]. Thus by (2),(3), G(x - k) = -4ab, G(x + k) ≥ 0, G(x - 3k) ≥ 0. This proves (9).

ii) Let $x \in \mathbb{R}$. There exists a $n_0 \in \mathbb{Z}$ such that $n_0 \leq \frac{x}{13a} < n_0 + 1$. Then $x \in [13an_0, 13a(n_0+1))$. So $x-13an_0 \in [0, 13a)$. Putting $x_0 = x-13an_0, x_0 \in [-a, 14a]$ and so (8) and (9) are true for $x = x_0$ by i). Since G has period 13a, (8) and (9) are also true for all x.

4 A Mean Value Theorem for Divided Differences

Let $n \in \mathbb{N}$ and let f be continuous on [c, d] such that $f_{(n)}$ exists on [c, d]. Let $x_1 < x_2 < \cdots < x_{n+1}; x_i \in [c, d], i = 1, 2, \dots, n+1.$

Then there is a $c \in (x_1, x_{n+1})$ such that

$$n!V_n(x_1, x_2, \dots, x_{n+1}) = f_{(n)}(c).$$

(A proof may be found in [1] pp.193 th.III).

5 Bounds for the Numerator of Riemann Third Order Ratio

Let G as in $\ 2$ and $x,h\in\mathbb{R}$. Then

$$|G(x+3h) - 3G(x+h) + 3G(x-h) - G(x-3h)| \le 144h^2 \frac{b}{a}.$$

PROOF. Let $h \neq 0$, then

$$|G(x+3h) - 3G(x+h) + 3G(x-h) - G(x-3h)| =$$

$$|G(x+3h) + 3G(x-h) - 4G(x) - (G(x-3h) + 3G(x+h) - 4G(x))| = |12h^2V_2(x+3h, x, x-h; G) - 12h^2V_2(x-3h, x, x+h; G)| \le 6h^2(|2!V_2(x+3h, x, x-h; G)| + |2!V_2(x-3h, x, x+h; G)|)$$

Now (7) and 4 complete the proof.

6 Main Result

There exists a function $F : \mathbb{R} \to \mathbb{R}$ such that F' exist on \mathbb{R} and $\overline{SRD}^3F = \infty$, $\underline{SRD}^3F = -\infty$ on \mathbb{R} .

PROOF. Let $b \in (0, 1)$. Define

$$g(y) = \frac{1}{12^3} - \frac{18y}{b-y} - \frac{4yb}{1-yb}, \ y \in [0,b)$$

Then g is continuous on [0, b) and g(0) > 0. Thus there is an $a \in (0, b)$ such that g(a) > 0. Let $G = G_{a,b}$ as in 2. Define $F_n = G_{a^n,b^n}$ $(n \in \mathbb{N})$,

$$F = \sum_{n=1}^{\infty} F_n$$

Then by (2),(7)

$$|F_n| \le 4(ab)^n, |F'_n| \le 4b^n (n \in \mathbb{N}).$$

Thus

$$\sum_{n=1}^{\infty} F_n \quad , \quad \sum_{n=1}^{\infty} F'_n$$

A Differentiable Function for which SRD^3f does not Exist 207

converge uniformly, thus F' exists on $\mathbb R$ and

$$F' = \sum_{n=1}^{\infty} F'_n.$$

Let $x \in \mathbb{R}$. Then by 3, for each $n \in \mathbb{N}$ there are $h_n = h_n(x), k_n = k_n(x) \in [a^n, 12a^n]$ such that

$$\frac{F_n(x+3h_n) - 3F_n(x+h_n) + 3F_n(x-h_n) - F_n(x-3h_n)}{(2h_n)^3} \ge \frac{1}{12^3} \left(\frac{b}{a^2}\right)^n$$
$$\frac{F_n(x+3k_n) - 3F_n(x+k_n) + 3F_n(x-k_n) - F_n(x-3k_n)}{(2k_n)^3} \le -\frac{1}{12^3} \left(\frac{b}{a^2}\right)^n$$

Now fix an n.

Using the above estimates, 5 and (2) we get

$$\frac{F(x+3k_n) - 3F(x+k_n) + 3F(x-k_n) - F(x-3k_n)}{(2k_n)^3} = \sum_{m=1}^{n-1} \frac{F_m(x+3k_n) - 3F_m(x+k_n) + 3F_m(x-k_n) - F_m(x-3k_n)}{(2k_n)^3} + \frac{F_n(x+3k_n) - 3F_n(x+k_n) + 3F_n(x-k_n) - F_n(x-3k_n)}{(2k_n)^3} + \sum_{m=n+1}^{\infty} \frac{F_m(x+3k_n) - 3F_m(x+k_n) + 3F_m(x-k_n) - F_m(x-3k_n)}{(2k_n)^3} \le \frac{(h)^m}{(2k_n)^3}$$

$$\sum_{m=n+1}^{n-1} \frac{144k_n^2 \left(\frac{b}{a}\right)^m}{(2k_n)^3} - \frac{1}{12^3} \left(\frac{b}{a^2}\right)^n + \sum_{m=n+1}^{\infty} \frac{F_m(x+3k_n) - 3F_m(x+k_n) + 3F_m(x-k_n) - F_m(x-3k_n)}{(2k_n)^3} \le \frac{18}{\pi} \sum_{k=1}^{n-1} \left(\frac{b}{a^k}\right)^m - \frac{1}{(42)^2} \left(\frac{b}{a^k}\right)^n + \frac{4}{2\pi} \sum_{k=1}^{\infty} (ab)^m = \frac{18}{\pi} \sum_{k=1}^{n-1} \left(\frac{b}{a^k}\right)^m - \frac{1}{(42)^2} \left(\frac{b}{a^k}\right)^n + \frac{4}{2\pi} \sum_{k=1}^{\infty} (ab)^m = \frac{18}{\pi} \sum_{k=1}^{n-1} \left(\frac{b}{a^k}\right)^m - \frac{1}{(42)^2} \left(\frac{b}{a^k}\right)^n + \frac{4}{2\pi} \sum_{k=1}^{\infty} (ab)^m = \frac{18}{\pi} \sum_{k=1}^{n-1} \left(\frac{b}{a^k}\right)^m - \frac{1}{(42)^2} \left(\frac{b}{a^k}\right)^n + \frac{4}{2\pi} \sum_{k=1}^{\infty} \left(\frac{b}{a^k}\right)^m = \frac{1}{\pi} \sum_{k=1}^{n-1} \left(\frac{b}{a^k}\right)^m + \frac{1}{\pi} \sum_{k=1}^{n-1}$$

$$\frac{18}{a^n} \sum_{m=1}^{\infty} \left(\frac{b}{a}\right)^m - \frac{1}{(12)^3} \left(\frac{b}{a^2}\right)^n + \frac{4}{a^{3n}} \sum_{m=n+1}^{\infty} (ab)^m = \frac{18}{a^n} \frac{\left(\frac{b}{a}\right)^n - \frac{b}{a}}{\frac{b}{a} - 1} - \frac{1}{12^3} \left(\frac{b}{a^2}\right)^n + \frac{4}{a^{3n}} \frac{(ab)^{n+1}}{1 - ab} \le \frac{16}{a^2} \sum_{m=1}^{\infty} \frac{1}{1 - ab} = \frac{16}{a^2} \sum_{m=1}^{\infty} \frac{1}{1 - ab} \sum_{m=1}^{\infty} \frac{1}{1 -$$

$$\frac{18}{a^n} \frac{\left(\frac{b}{a}\right)^n}{\frac{b}{a} - 1} - \frac{1}{12^3} \left(\frac{b}{a^2}\right)^n + \frac{4}{a^{3n}} \frac{(ab)^{n+1}}{1 - ab} = \frac{18a}{b - a} \left(\frac{b}{a^2}\right)^n - \frac{1}{12^3} \left(\frac{b}{a^2}\right)^n + \frac{4ab}{1 - ab} \left(\frac{b}{a^2}\right)^n = -\left(\frac{b}{a^2}\right)^n g(a).$$

Similarly,

$$\frac{F(x+3h_n) - 3F(x+h_n) + 3F(x-h_n) - F(x-3h_n)}{(2h_n)^3} \ge \left(\frac{b}{a^2}\right)^n g(a)$$

Now since n was arbitrary fixed point of N and since $\lim_{n \to \infty} k_n = 0$, $\lim_{n \to \infty} h_n = 0$ and $\frac{b}{a^2} > 1, g(a) > 0$ we get $\lim_{n \to \infty} \frac{F(x+3h_n) - 3F(x+h_n) + 3F(x-h_n) - F(x-3h_n)}{(2h_n)^3} = +\infty$

and

$$\lim_{n \to \infty} \frac{F(x+3k_n) - 3F(x+k_n) + 3F(x-k_n) - F(x-3k_n)}{(2k_n)^3} = -\infty$$

These show that

$$\limsup_{h \searrow 0} \frac{F(x+3h) - 3F(x+h) + 3F(x-h) - F(x-3h)}{(2h)^3} = +\infty$$

and

$$\liminf_{k \searrow 0} \frac{F(x+3k) - 3F(x+k) + 3F(x-k) - F(x-3k)}{(2k)^3} = -\infty$$

These easily imply

$$\overline{SRD}^3 F(x) = \infty, \ \underline{SRD}^3 F(x) = -\infty$$

respectively, which complete the proof.

7 Some First Category Subsets of C[0,1]

On C[0, 1] with
$$d(f, g) = \max_{x \in [0, 1]} |f(x) - g(x)|$$

208

A DIFFERENTIABLE FUNCTION FOR WHICH SRD^3f does not Exist 209

i) There is a $F \in C[0, 1]$ such that $\overline{SRD}^3 F = \infty$ and $\underline{SRD}^3 F = -\infty$ on the open interval (0, 1).

ii) Let H_1 be the set of all functions f in C[0,1] such that there is a x in (0,1) with $\overline{SRD}^3 f(x) < \infty$ and H_2 be the set of all functions f in C[0,1] such that there is a x in (0,1) with $\underline{SRD}^3 f(x) > -\infty$. Then H_1, H_2 are of first category in C[0,1].

iii) Let Θ be the set of all functions f in C[0,1] such that $\overline{SRD}^3 f = \infty$ and $\underline{SRD}^3 f = -\infty$ on (0,1). Then $H = C[0,1] - \Theta$ is of first category in C[0,1].

PROOF. i) Follows easily from 6.

ii) For H_1 , we will prove that the complement of H_1 is dense in C[0,1]and that the set H_1 is of type F_{σ} . Take $\epsilon > 0$ and let $U(p,\epsilon)$ be the set of all functions f in C[0,1] such that $d(f,p) < \epsilon$ where p is a polynomial. To show $U(p,\epsilon) \cap (C[0,1] - H_1) \neq \emptyset$. Each function of the form $p + \eta F$ ($\eta > 0$) where F is the function of 7 i) belongs to $C[0,1] - H_1$. Indeed, if the polynomial psatisfies $|p^{(3)}| < L$ on [0,1] then, by 4

$$\left|\frac{p(x+3h) - 3p(x+h) + 3p(x-h) - p(x-3h)}{(2h)^3}\right| \le L$$

and for each x in (0, 1) and $h \neq 0$

$$\begin{split} \frac{1}{(2h)^3} & \left\{ (p+\eta F)(x+3h) - 3(p+\eta F)(x+h) + \right. \\ & \left. 3(p+\eta F)(x-h) - (p+\eta F)(x-3h) \right\} = \\ & \left. \frac{p(x+3h) - 3p(x+h) + 3p(x-h) - p(x-3h)}{(2h)^3} + \right. \\ & \left. \eta \frac{F(x+3h) - 3F(x+h) + 3F(x-h) - F(x-3h)}{(2h)^3} \ge \\ & \left. -L + \eta \frac{F(x+3h) - 3F(x+h) + 3F(x-h) - F(x-3h)}{(2h)^3} \right\} \end{split}$$

Thus $\overline{SRD}^3(p+\eta F)(x) = \infty$. This easily implies that $\overline{SRD}^3(p+\eta F) = \infty$ on (0,1), thus $p+\eta F \in C[0,1]-H_1$.

Set $\eta = \frac{\epsilon}{2\|F\|}$. Then $p + \eta F \in U(p,\epsilon)$. Thus $U(p,\epsilon) \cap (C[0,1] - H_1) \neq \emptyset$. Let F_n be the set of all functions f in C[0,1] with the property that there is a x in $\left[\frac{1}{n}, 1 - \frac{1}{n}\right]$ such that if $0 < |h| < \frac{1}{3n}$ then

$$\frac{f(x+3h) - 3f(x+h) + 3f(x-h) - f(x-3h)}{(2h)^3} \le n,$$

 $n = 2, 3, \dots$ Since

$$H_1 = \bigcup_{n=2}^{\infty} F_n$$

and C[0, 1] is a complete space, by Baire's theorem it is sufficient to show that F_n is closed in C[0, 1].

Let n be fixed. We prove that F_n is closed. Let $\{f_k\}$ be any sequence in F_n such that $f_k \to f$ in C[0,1] as $k \to \infty$. Then the sequence of functions $\{f_k\}$ converges to f uniformly on [0,1]. Since $f_k \in F_n$, there is for each k a point $x_k \in [\frac{1}{n}, 1 - \frac{1}{n}]$ such that if $0 < |h| < \frac{1}{3n}$ then

$$\frac{f_k(x_k+3h) - 3f_k(x_k+h) + 3f_k(x_k-h) - f_k(x_k-3h)}{(2h)^3} \le n$$

Since $\{x_k\} \subset [\frac{1}{n}, 1 - \frac{1}{n}]$ there is a subsequence $\{x_{k_l}\}$ of $\{x_k\}$ such that $\{x_{k_l}\}$ converges to a point $x_0 \in [\frac{1}{n}, 1 - \frac{1}{n}]$. Clearly the subsequence $\{f_{k_l}\}$ of $\{f_k\}$ converges uniformly to f on [0, 1]. Also if $0 < |h| < \frac{1}{3n}$ then

$$\frac{f_{k_l}(x_{k_l}+3h) - 3f_{k_l}(x_{k_l}+h) + 3f_{k_l}(x_{k_l}-h) - f_{k_l}(x_{k_l}-3h)}{(2h)^3} \le n,$$

 $l = 1, 2, \dots$ Since $\{f_{k_l}\}$ converges to f uniformly and $x_{k_l} \to x_0$ as $l \to \infty$, letting $l \to \infty$

$$\frac{f(x_0+3h) - 3f(x_0+h) + 3f(x_0-h) - f(x_0-3h)}{(2h)^3} \le n.$$

This shows that $f \in F_n$ and so F_n is closed. Therefore H_1 is of the first category in C[0, 1]. Similarly H_2 is also of the first category in C[0, 1].

iii) It follows easily, since $H = H_1 \cup H_2$ and 7 ii).

8 A Specific Set of First Category

Let H_s be the set of all functions f in C[0, 1] for which a third order symmetric Riemann derivative exist in at least one point x of (0, 1). Then H_s is a set of first category in C[0, 1]. PROOF. Since H is of first category by 7 iii) in C[0,1] and $H_s \subseteq H$, the set H_s is of first category in C[0,1].

Remark. There exists a continuous function $F : \mathbb{R} \to \mathbb{R}$ such that $\overline{SRD}^1 F = \infty$, and $\underline{SRD}^1 F = -\infty$ on \mathbb{R} .

This is the work of [2].

Acknowledgment. The author wishes to thank the referee for a number of suggestions for removing obscurities from the first draft and for simplifying the proof of 3 part ii) as well as the proof that F_n is closed in the proof of 7.

References

- Ernest Corominas, Contribution a la théorie de la derivation d'ordre superieur, Bull. Soc. Math. France, t.81 (1953) Fasc III, 177–222.
- [2] L. Filipczak, Exemple d'une fonction continue privée de dérivée symétrique partout, Colloquium Math., vol xx, (1969) Fasc 2,149–153.
- [3] John C. Georgiou, On a class of divided differences-convexity theorems, Unpublished paper, (1977).
- [4] Jan Mařik, Generalized derivatives and one-dimensional integrals, Unpublished notes M.S.U., (1973).
- [5] S. Saks, On generalized derivatives, J. London Math. Soc., (7) (1932), 247–251.
- [6] S. Verblunsky, The generalized third derivative and its application to trigonometric series, Proc. London Math. Soc.,(2) (1930),387–406.
- [7] S. Verblunsky, The generalized fourth derivative, J. London Math. Soc.,
 (6) (1931), 82-84.

John C. Georgiou