ON AN EXAMPLE OF A FUNCTION WITH A DERIVATIVE WHICH DOES NOT HAVE A THIRD ORDER SYMMETRIC RIEMANN DERIVATIVE ANYWHERE

Abstract

In this paper we construct a differentiable function $F: \mathbb{R} \rightarrow \mathbb{R}$ that does not have a third order symmetric Riemann derivative at any point. In fact, $$
\underline{S R D^{3}} F(x)=\liminf _{h \rightarrow 0} \frac{F(x+3 h)-3 F(x+h)+3 F(x-h)-F(x-3 h)}{(2 h)^{3}}=-\infty
$$ and $$
\overline{S R D}^{3} F(x)=\underset{h \rightarrow 0}{\limsup } \frac{F(x+3 h)-3 F(x+h)+3 F(x-h)-F(x-3 h)}{(2 h)^{3}}=+\infty
$$ for every $x \in \mathbb{R}$.

1 Introduction

The three well-known classical theorems concerning convexity of a function, of a derivative and of a second derivative using second, third and fourth order Riemann derivates (see [4], [5], [6], [7]), require limsup, lim inf and liminf respectively, in their statements. Also, the non-classical but natural generalization (non-Riemann for orders greater or equal to five) using divided differences also uses liminf (see [3]). The present work, besides other consequences, states that we can not replace lim inf by lim sup for the third Riemann derivate.

[^0]
2 Construction of a Periodic Function and its Properties

Let $a \in \mathbb{R}^{+}$. Define $f_{a}: \mathbb{R} \rightarrow \mathbb{R}$ as follows:
i) $\quad f_{a}$ is periodic of period 13a;
ii)

$$
f_{a}(x)= \begin{cases}-x^{3}, & \text { if } x \in[0, a) ; \\ -x^{3}+4(x-a)^{3}, & \text { if } x \in[a, 2 a) \\ -x^{3}+4(x-a)^{3}-6(x-2 a)^{3}, & \text { if } x \in[2 a, 3 a) \\ (x-4 a)^{3}, & \text { if } x \in[3 a, 4 a) \\ 0, & \text { if } x \in[4 a, 6.5 a]\end{cases}
$$

iii) $\quad f_{a}(6.5 a+x)=-f_{a}(6.5 a-x)$ if $x \in[0,6.5 a]$.

Let $b \in \mathbb{R}^{+}$and define $G=G_{a, b}=\frac{b}{a^{2}} f_{a}$. It is easy to see that

$$
\begin{align*}
& G(10 a)=G(12 a)=-G(a)=-G(3 a)=a b \tag{1}\\
& G(11 a)=G(-2 a)=-G(15 a)=\max _{[0,13 a]} G=-\min _{[0,13 a]} G=4 a b \tag{2}\\
& 0 \leq G(y) \leq 4 a b \quad \text { if } y \in[4 a, 13 a] \tag{3}\\
& -4 a b \leq G(y) \leq 0 \quad \text { if } y \in[0,9 a] \tag{4}\\
& -a b \leq G(y) \leq 0 \quad \text { if } y \in[-10 a,-4 a] \tag{5}\\
& 0 \leq G(y) \leq a b \quad \text { if } y \in[-9 a,-3 a] \tag{6}\\
& G^{\prime \prime} \quad \text { exist on } \mathbb{R} \text { and }\left|G^{\prime}\right| \leq 4 b, \quad\left|G^{\prime \prime}\right| \leq 12 \frac{b}{a} \quad \text { on } \mathbb{R} \tag{7}
\end{align*}
$$

3 Main Auxiliary Inequalities

Let a, b, G as in 2 . Then for every $x \in \mathbb{R}$ there are $h, k \in[a, 12 a]$ such that

$$
\begin{align*}
& G(x+3 h)-3 G(x+h)+3 G(x-h)-G(x-3 h) \geq 8 a b \tag{8}\\
& G(x+3 k)-3 G(x+k)+3 G(x-k)-G(x-3 k) \leq-8 a b \tag{9}
\end{align*}
$$

Proof. i) Let $x \in[-a, 14 a]$. We consider the following cases:
(a) α. If $x \in[-a, 3 a]$ take $h=x+2 a$. Then $x+h \in[0,8 a], x-3 h \in$ $[-12 a,-4 a], h \in[a, 5 a]$. Thus by (2),(4),(5), $G(x-h)=G(-2 a)=4 a b, G(x+$ $h) \leq 0, G(x-3 h) \leq 0$. This proves (8).
β. If $x \in[3 a, 6 a]$ take $h=15 a-x$.Then $x+h=15 a, x-h \in[-9 a,-3 a], x+$ $3 h \in[33 a, 39 a], h \in[9 a, 12 a]$. Thus by (2),(6),(3), $G(x+h)=G(15 a)=$ $-4 a b, G(x-h) \geq 0, G(x+3 h) \geq 0$. This proves (8).
γ. If $x \in[6 a, 10 a]$ take $h=x+2 a$. Then $x-h=-2 a, x+h \in[14 a, 22 a], x-$ $3 h \in[-26 a,-18 a], h \in[8 a, 12 a]$. Thus by (2), $(4), G(x-h)=4 a b, G(x+h) \leq$ $0, G(x-3 h) \leq 0$. This proves (8).
δ. If $x \in[10 a, 14 a]$ take $h=-x+15 a$. Then $x+h=15 a, x-$ $h \in[5 a, 13 a], x+3 h \in[17 a, 25 a], h \in[a, 5 a]$. Thus by $(2),(3), G(x+h)=$ $-4 a b, G(x-h) \geq 0, G(x+3 h) \geq 0$. This proves (8).
(b) α. If $x \in[-a, 3 a]$ take $k=-x+11 a$. Then $x+k=11 a, x-k \in$ $[-13 a,-5 a], x+3 k \in[27 a, 35 a], k \in[8 a, 12 a]$. Thus by (2),(4), $G(x+k)=$ $4 a b, G(x-k) \leq 0, G(x+3 k) \leq 0$. This proves (9).
β. If $x \in[3 a, 6 a]$ take $k=x-2 a$. Then $x-k=2 a, x+k \in[4 a, 10 a]$, $x-3 k \in[-6 a, 0], k \in[a, 4 a]$. Thus by (2),(6),(3), $\mathrm{G}(\mathrm{x}-\mathrm{k})=-4 \mathrm{ab}, \mathrm{G}(\mathrm{x}+\mathrm{k})$ $\geq 0, \mathrm{G}(\mathrm{x}-3 \mathrm{k}) \geq 0$. This proves (9).
γ. If $x \in[6 a, 10 a]$ take $k=-x+11 a$. Then $x+k=11 a, x-k \in[a, 9 a]$, $x+3 k \in[13 a, 21 a], k \in[a, 5 a]$. Thus by (2),(4), $G(x+k)=4 a b, G(x-k) \leq$ $0, G(x+3 k) \leq 0$. This proves (9).
δ. If $x \in[10 a, 14 a]$ take $k=x-2 a$. Then $x-k=2 a, x+k \in[18 a, 26 a]$, $x-3 k \in[-22 a,-14 a], k \in[8 a, 12 a]$. Thus by (2), (3), $G(x-k)=-4 a b, G(x+$ $k) \geq 0, \quad G(x-3 k) \geq 0$. This proves (9).
ii) Let $x \in \mathbb{R}$. There exists a $n_{0} \in \mathbb{Z}$ such that $n_{0} \leq \frac{x}{13 a}<n_{0}+1$. Then $x \in\left[13 a n_{0}, 13 a\left(n_{0}+1\right)\right)$. So $x-13 a n_{0} \in[0,13 a)$. Putting $x_{0}=x-13 a n_{0}, x_{0} \in$ $[-a, 14 a]$ and so (8) and (9) are true for $x=x_{0}$ by i). Since G has period $13 a$, (8) and (9) are also true for all x.

4 A Mean Value Theorem for Divided Differences

Let $\mathrm{n} \in \mathbb{N}$ and let f be continuous on $[c, d]$ such that $f_{(n)}$ exists on $[c, d]$. Let $x_{1}<x_{2}<\cdots<x_{n+1} ; x_{i} \in[c, d], i=1,2, \ldots, n+1$.

Then there is a $c \in\left(x_{1}, x_{n+1}\right)$ such that

$$
n!V_{n}\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)=f_{(n)}(c) .
$$

(A proof may be found in [1] pp. 193 th.III).

5 Bounds for the Numerator of Riemann Third Order Ratio

Let G as in 2 and $x, h \in \mathbb{R}$. Then

$$
|G(x+3 h)-3 G(x+h)+3 G(x-h)-G(x-3 h)| \leq 144 h^{2} \frac{b}{a}
$$

Proof. Let $h \neq 0$, then

$$
\begin{gathered}
|G(x+3 h)-3 G(x+h)+3 G(x-h)-G(x-3 h)|= \\
|G(x+3 h)+3 G(x-h)-4 G(x)-(G(x-3 h)+3 G(x+h)-4 G(x))|= \\
\left|12 h^{2} V_{2}(x+3 h, x, x-h ; G)-12 h^{2} V_{2}(x-3 h, x, x+h ; G)\right| \leq \\
6 h^{2}\left(\left|2!V_{2}(x+3 h, x, x-h ; G)\right|+\left|2!V_{2}(x-3 h, x, x+h ; G)\right|\right)
\end{gathered}
$$

Now (7) and 4 complete the proof.

6 Main Result

There exists a function $F: \mathbb{R} \rightarrow \mathbb{R}$ such that F^{\prime} exist on \mathbb{R} and $\overline{S R D}^{3} F=\infty, \underline{S R D^{3}} F=-\infty$ on \mathbb{R}.

Proof. Let $b \in(0,1)$. Define

$$
g(y)=\frac{1}{12^{3}}-\frac{18 y}{b-y}-\frac{4 y b}{1-y b}, y \in[0, b)
$$

Then g is continuous on $[0, b)$ and $g(0)>0$. Thus there is an $a \in(0, b)$ such that $g(a)>0$. Let $G=G_{a, b}$ as in 2. Define $F_{n}=G_{a^{n}, b^{n}} \quad(n \in \mathbb{N})$,

$$
F=\sum_{n=1}^{\infty} F_{n}
$$

Then by (2),(7)

$$
\left|F_{n}\right| \leq 4(a b)^{n},\left|F_{n}^{\prime}\right| \leq 4 b^{n}(n \in \mathbb{N})
$$

Thus

$$
\sum_{n=1}^{\infty} F_{n} \quad, \quad \sum_{n=1}^{\infty} F_{n}^{\prime}
$$

converge uniformly, thus F^{\prime} exists on \mathbb{R} and

$$
F^{\prime}=\sum_{n=1}^{\infty} F_{n}^{\prime} .
$$

Let $x \in \mathbb{R}$.Then by 3 , for each $n \in \mathbb{N}$ there are $h_{n}=h_{n}(x), k_{n}=k_{n}(x) \in$ [$\left.a^{n}, 12 a^{n}\right]$ such that

$$
\begin{aligned}
& \frac{F_{n}\left(x+3 h_{n}\right)-3 F_{n}\left(x+h_{n}\right)+3 F_{n}\left(x-h_{n}\right)-F_{n}\left(x-3 h_{n}\right)}{\left(2 h_{n}\right)^{3}} \geq \frac{1}{12^{3}}\left(\frac{b}{a^{2}}\right)^{n} \\
& \frac{F_{n}\left(x+3 k_{n}\right)-3 F_{n}\left(x+k_{n}\right)+3 F_{n}\left(x-k_{n}\right)-F_{n}\left(x-3 k_{n}\right)}{\left(2 k_{n}\right)^{3}} \leq-\frac{1}{12^{3}}\left(\frac{b}{a^{2}}\right)^{n}
\end{aligned}
$$

Now fix an n.
Using the above estimates, 5 and (2) we get

$$
\begin{gathered}
\frac{F\left(x+3 k_{n}\right)-3 F\left(x+k_{n}\right)+3 F\left(x-k_{n}\right)-F\left(x-3 k_{n}\right)}{\left(2 k_{n}\right)^{3}}= \\
\sum_{m=1}^{n-1} \frac{F_{m}\left(x+3 k_{n}\right)-3 F_{m}\left(x+k_{n}\right)+3 F_{m}\left(x-k_{n}\right)-F_{m}\left(x-3 k_{n}\right)}{\left(2 k_{n}\right)^{3}}+ \\
\frac{F_{n}\left(x+3 k_{n}\right)-3 F_{n}\left(x+k_{n}\right)+3 F_{n}\left(x-k_{n}\right)-F_{n}\left(x-3 k_{n}\right)}{\left(2 k_{n}\right)^{3}}+ \\
\sum_{m=n+1}^{\infty} \frac{F_{m}\left(x+3 k_{n}\right)-3 F_{m}\left(x+k_{n}\right)+3 F_{m}\left(x-k_{n}\right)-F_{m}\left(x-3 k_{n}\right)}{\left(2 k_{n}\right)^{3}} \leq \\
\sum_{m=n+1}^{\infty} \frac{F_{m}\left(x+3 k_{n}\right)-3 F_{m}\left(x+k_{n}\right)+3 F_{m}\left(x-k_{n}\right)-F_{m}\left(x-3 k_{n}\right)}{\left(2 k_{n}\right)^{3}} \leq \\
\sum_{m=1}^{n-1} \frac{144 k_{n}^{2}\left(\frac{b}{a}\right)^{m}}{\left(2 k_{n}\right)^{3}}-\frac{1}{12^{3}}\left(\frac{b}{a^{2}}\right)^{n}+ \\
\frac{18}{a^{n}} \sum_{m=1}^{n-1}\left(\frac{b}{a}\right)^{m}-\frac{1}{(12)^{3}}\left(\frac{b}{a^{2}}\right)^{n}+\frac{4}{a^{3 n}} \sum_{m=n+1}^{\infty}(a b)^{m}= \\
\frac{18}{a^{n}} \frac{\left(\frac{b}{a}\right)^{n}-\frac{b}{a}}{\frac{b}{a}-1}-\frac{1}{12^{3}}\left(\frac{b}{a^{2}}\right)^{n}+\frac{4}{a^{3 n}} \frac{(a b)^{n+1}}{1-a b} \leq
\end{gathered}
$$

$$
\begin{gathered}
\frac{18}{a^{n}} \frac{\left(\frac{b}{a}\right)^{n}}{\frac{b}{a}-1}-\frac{1}{12^{3}}\left(\frac{b}{a^{2}}\right)^{n}+\frac{4}{a^{3 n}} \frac{(a b)^{n+1}}{1-a b}= \\
\frac{18 a}{b-a}\left(\frac{b}{a^{2}}\right)^{n}-\frac{1}{12^{3}}\left(\frac{b}{a^{2}}\right)^{n}+\frac{4 a b}{1-a b}\left(\frac{b}{a^{2}}\right)^{n}=-\left(\frac{b}{a^{2}}\right)^{n} g(a) .
\end{gathered}
$$

Similarly,

$$
\frac{F\left(x+3 h_{n}\right)-3 F\left(x+h_{n}\right)+3 F\left(x-h_{n}\right)-F\left(x-3 h_{n}\right)}{\left(2 h_{n}\right)^{3}} \geq\left(\frac{b}{a^{2}}\right)^{n} g(a)
$$

Now since n was arbitrary fixed point of \mathbb{N} and since $\lim _{n \rightarrow \infty} k_{n}=0, \lim _{n \rightarrow \infty} h_{n}=0$ and $\frac{b}{a^{2}}>1, g(a)>0$ we get

$$
\lim _{n \rightarrow \infty} \frac{F\left(x+3 h_{n}\right)-3 F\left(x+h_{n}\right)+3 F\left(x-h_{n}\right)-F\left(x-3 h_{n}\right)}{\left(2 h_{n}\right)^{3}}=+\infty
$$

and

$$
\lim _{n \rightarrow \infty} \frac{F\left(x+3 k_{n}\right)-3 F\left(x+k_{n}\right)+3 F\left(x-k_{n}\right)-F\left(x-3 k_{n}\right)}{\left(2 k_{n}\right)^{3}}=-\infty
$$

These show that

$$
\limsup _{h \searrow 0} \frac{F(x+3 h)-3 F(x+h)+3 F(x-h)-F(x-3 h)}{(2 h)^{3}}=+\infty
$$

and

$$
\liminf _{k \searrow 0} \frac{F(x+3 k)-3 F(x+k)+3 F(x-k)-F(x-3 k)}{(2 k)^{3}}=-\infty
$$

These easily imply

$$
\overline{S R D}^{3} F(x)=\infty, \underline{S R D}^{3} F(x)=-\infty
$$

respectively, which complete the proof.

7 Some First Category Subsets of $C[0,1]$

On $\mathrm{C}[0,1]$ with $d(f, g)=\max _{x \in[0,1]}|f(x)-g(x)|$
i) There is a $F \in C[0,1]$ such that $\overline{S R D}^{3} F=\infty$ and $\underline{S R D^{3} F=-\infty \text { on the }}$ open interval $(0,1)$.
ii) Let H_{1} be the set of all functions f in $C[0,1]$ such that there is a x in $(0,1)$ with $\overline{S R D}^{3} f(x)<\infty$ and H_{2} be the set of all functions f in $C[0,1]$ such that there is a x in $(0,1)$ with $\underline{S R D^{3}} f(x)>-\infty$. Then H_{1}, H_{2} are of first category in $C[0,1]$.
iii) Let Θ be the set of all functions f in $C[0,1]$ such that $\overline{S R D}^{3} f=\infty$ and $\underline{S R D^{3}} f=-\infty$ on $(0,1)$. Then $H=C[0,1]-\Theta$ is of first category in $C[0,1]$.

Proof. i) Follows easily from 6.
ii) For H_{1}, we will prove that the complement of H_{1} is dense in $C[0,1]$ and that the set H_{1} is of type F_{σ}. Take $\epsilon>0$ and let $U(p, \epsilon)$ be the set of all functions f in $C[0,1]$ such that $d(f, p)<\epsilon$ where p is a polynomial. To show $U(p, \epsilon) \cap\left(C[0,1]-H_{1}\right) \neq \emptyset$. Each function of the form $p+\eta F(\eta>0)$ where F is the function of 7 i) belongs to $C[0,1]-H_{1}$. Indeed, if the polynomial p satisfies $\left|p^{(3)}\right|<L$ on $[0,1]$ then, by 4

$$
\left|\frac{p(x+3 h)-3 p(x+h)+3 p(x-h)-p(x-3 h)}{(2 h)^{3}}\right| \leq L
$$

and for each x in $(0,1)$ and $h \neq 0$

$$
\begin{gathered}
\frac{1}{(2 h)^{3}}\{(p+\eta F)(x+3 h)-3(p+\eta F)(x+h)+ \\
3(p+\eta F)(x-h)-(p+\eta F)(x-3 h)\}= \\
\frac{p(x+3 h)-3 p(x+h)+3 p(x-h)-p(x-3 h)}{(2 h)^{3}}+ \\
\eta \frac{F(x+3 h)-3 F(x+h)+3 F(x-h)-F(x-3 h)}{(2 h)^{3}} \geq \\
-L+\eta \frac{F(x+3 h)-3 F(x+h)+3 F(x-h)-F(x-3 h)}{(2 h)^{3}} .
\end{gathered}
$$

Thus $\overline{S R D}^{3}(p+\eta F)(x)=\infty$. This easily implies that $\overline{S R D}^{3}(p+\eta F)=\infty$ on $(0,1)$, thus $p+\eta F \in C[0,1]-H_{1}$.

Set $\eta=\frac{\epsilon}{2\|F\|}$. Then $p+\eta F \in U(p, \epsilon)$. Thus $U(p, \epsilon) \cap\left(C[0,1]-H_{1}\right) \neq \emptyset$. Let F_{n} be the set of all functions f in $C[0,1]$ with the property that there is a x in $\left[\frac{1}{n}, 1-\frac{1}{n}\right]$ such that if $0<|h|<\frac{1}{3 n}$ then

$$
\frac{f(x+3 h)-3 f(x+h)+3 f(x-h)-f(x-3 h)}{(2 h)^{3}} \leq n
$$

$n=2,3, \ldots$ Since

$$
H_{1}=\bigcup_{n=2}^{\infty} F_{n}
$$

and $C[0,1]$ is a complete space, by Baire's theorem it is sufficient to show that F_{n} is closed in $C[0,1]$.

Let n be fixed. We prove that F_{n} is closed. Let $\left\{f_{k}\right\}$ be any sequence in F_{n} such that $f_{k} \rightarrow f$ in $C[0,1]$ as $k \rightarrow \infty$. Then the sequence of functions $\left\{f_{k}\right\}$ converges to f uniformly on $[0,1]$. Since $f_{k} \in F_{n}$, there is for each k a point $x_{k} \in\left[\frac{1}{n}, 1-\frac{1}{n}\right]$ such that if $0<|h|<\frac{1}{3 n}$ then

$$
\frac{f_{k}\left(x_{k}+3 h\right)-3 f_{k}\left(x_{k}+h\right)+3 f_{k}\left(x_{k}-h\right)-f_{k}\left(x_{k}-3 h\right)}{(2 h)^{3}} \leq n .
$$

Since $\left\{x_{k}\right\} \subset\left[\frac{1}{n}, 1-\frac{1}{n}\right]$ there is a subsequence $\left\{x_{k_{l}}\right\}$ of $\left\{x_{k}\right\}$ such that $\left\{x_{k_{l}}\right\}$ converges to a point $x_{0} \in\left[\frac{1}{n}, 1-\frac{1}{n}\right]$. Clearly the subsequence $\left\{f_{k_{l}}\right\}$ of $\left\{f_{k}\right\}$ converges uniformly to f on $[0,1]$. Also if $0<|h|<\frac{1}{3 n}$ then

$$
\frac{f_{k_{l}}\left(x_{k_{l}}+3 h\right)-3 f_{k_{l}}\left(x_{k_{l}}+h\right)+3 f_{k_{l}}\left(x_{k_{l}}-h\right)-f_{k_{l}}\left(x_{k_{l}}-3 h\right)}{(2 h)^{3}} \leq n
$$

$l=1,2, \ldots$ Since $\left\{f_{k_{l}}\right\}$ converges to f uniformly and $x_{k_{l}} \rightarrow x_{0}$ as $l \rightarrow \infty$, letting $l \rightarrow \infty$

$$
\frac{f\left(x_{0}+3 h\right)-3 f\left(x_{0}+h\right)+3 f\left(x_{0}-h\right)-f\left(x_{0}-3 h\right)}{(2 h)^{3}} \leq n
$$

This shows that $f \in F_{n}$ and so F_{n} is closed. Therefore H_{1} is of the first category in $C[0,1]$. Similarly H_{2} is also of the first category in $C[0,1]$.
iii) It follows easily, since $H=H_{1} \cup H_{2}$ and 7 ii).

8 A Specific Set of First Category

Let H_{s} be the set of all functions f in $C[0,1]$ for which a third order symmetric Riemann derivative exist in at least one point x of $(0,1)$. Then H_{s} is a set of first category in $C[0,1]$.

Proof. Since H is of first category by 7 iii) in $C[0,1]$ and $H_{s} \subseteq H$, the set H_{s} is of first category in $C[0,1]$.

Remark. There exists a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ such that $\overline{S R D}^{1} F=$ ∞, and $\underline{S R D^{1}} F=-\infty$ on \mathbb{R}.
This is the work of [2].
Acknowledgment. The author wishes to thank the referee for a number of suggestions for removing obscurities from the first draft and for simplifying the proof of 3 part ii) as well as the proof that F_{n} is closed in the proof of 7 .

References

[1] Ernest Corominas, Contribution a la théorie de la derivation d'ordre superieur, Bull. Soc. Math. France, t. 81 (1953) Fasc III, 177-222.
[2] L. Filipczak, Exemple d'une fonction continue privée de dérivée symétrique partout, Colloquium Math., vol xx, (1969) Fasc 2,149-153.
[3] John C. Georgiou, On a class of divided differences-convexity theorems, Unpublished paper, (1977).
[4] Jan Mařik, Generalized derivatives and one-dimensional integrals, Unpublished notes M.S.U., (1973).
[5] S. Saks, On generalized derivatives, J. London Math. Soc.,(7) (1932), 247-251.
[6] S. Verblunsky, The generalized third derivative and its application to trigonometric series, Proc. London Math. Soc.,(2) (1930),387-406.
[7] S. Verblunsky, The generalized fourth derivative, J. London Math. Soc., (6) (1931), 82-84.

[^0]: Mathematical Reviews subject classification: Primary: 26A27, 26A51; Secondary: 40A30
 Key words: non-differentiability, convexity, divided differences, Riemann symmetric derivatives

 Received by the editors December 12, 2009
 Communicated by: Brian S. Thomson

