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Abstract

In this note we discuss some interconnections between the space
BVp[a,b] (1 <p < o0) of functions of bounded p-variation (in Wiener’s
sense) and the space Lipa[a,b] (0 < a < 1) of Holder continuous
functions. In particular, we show that f € BV,[a,b] if and only if
f = gor, with g € Lipy/,la,b] and 7 being monotone, and that
f € BV,a,b] N Cla,b] if and only if f = g o7, with g € Lipy,p(a,b]
and 7 being a homeomorphism.

1 Introduction

In this note we will discuss some interconnections between functions of bounded
p-variation for p € [1,00) (in Wiener’s sense), on the one hand, and Hélder
continuous functions with Holder exponent « € (0, 1], on the other. Roughly
speaking, classical functions of bounded variation (i.e., p = 1) under these
interconnections correspond to Lipschitz continuous functions (i.e., @ = 1).
Passing from Lipschitz to Holder continuity, however, is often highly nontriv-
ial and by no means “automatic”. For instance, a function f € Lip|a,b] is
always differentiable a.e. on [a,b], but this is not true for f € Lip,[a,b] in
case a < 1. Similarly, every Lipschitz continuous function has bounded vari-
ation, but this fails for Holder continuous functions of order a@ < 1. Finally,
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178 N. MERENTES AND J. L. SANCHEZ

every function in Lip[a, b] has the Luzin (N)-property of preserving Lebesgue
nullsets, while this is not true for functions from Lip,[a, b].

The main purpose of this note is to find out which results for functions f €
BVa,b] (respectively, f € Lipla,b]) carry over to f € BV,[a,b] (respectively,
f € Lipala,b]), and which do not. Examples of the “asymmetry” between the
cases p =1 and p > 1 are given in Theorem 1 and Theorem 4 below.

2 Main Results

Before we begin our discussion, we briefly recall some definitions and notation.
Throughout this note, by Pla,b] we denote the family of all partitions P =
{to,t1,...,tm} (m € N) of the interval [a,b], and p > 1 is a real number.
Given a function f : [a,b] — R we put

Var,(f, P; [a,b]) := Z [f(t5) = ft—)P (P ={to.t1,- - tm})

and
(1) Var,(f;[a,b]) := sup {Var,(f, P;[a,b]) : P € Pla, b},

where the supremum in (1) is taken over all partitions of [a, ], and call (1) the
(total) p-variation of f over [a,b]. It is not hard to show that the linear space
BV,[a,b] of all functions with finite p-variation over [a, b], equipped with the
norm

(2) 1£llv, = |f(a)| + Vary(f;[a, b]) /7,
is a Banach space. For f € BV,[a,b] and a < z < b we further put
(3) Vip(x) := Vary(fila,z]) (e <z <b).

Thus, the map x — Vy () is increasing with Vy p(a) = 0 and Vj,(b) =
Var,(f;[a,b]). A detailed study of the properties of functions f € BV,[a, b
may be found in [5]. Apart from the space BV,[a,b], in what follows we will
also consider the Banach space Lip,[a,b] (0 < a < 1) of all Holder continuous
(or Lipschitz continuous, for a = 1) functions f : [a,b] — R endowed with the
norm

[fllzipe == |f (@) + lipa(f),

where
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In case p = 1 or & = 1 we will drop the subscript 1, so we write Var(f, P;[a, b]),
Var(f;[a,b]), BV][a,b], Vi(x), lip(f), and Lip[a,b] instead of Vari(f, P;a,b]),
Var1(f;[a,b]), BVila,b], Vi1(z), lip1(f), and Lip; [a, b], respectively. A straight-
forward calculation shows that

(4) Lipa[a,b] € BVyq[a, b] (0<a<l);

in particular, Lipla,b] € BV]a,b]. The following example shows that the
inclusion (4) is actually strict for any « € (0, 1].

Example 1. For v > 0, let g, : [0,1] — R be the “zigzag function” defined
by

0 for x =0,
n -1 k+1
) @)= > forr—a,
k=1
linear otherwise,

where a, = 1 — 27". Geometrically, the graph of g, starts at the origin
and increases linearly by 1 on the interval [0,1/2] so that g,(1/2) = 1. Then
we let g, decrease linearly by 277 on [1/2,3/4], increase linearly by 377 on
[3/4,7/8], decrease linearly by 4= on [7/8,15/16], and so on. It follows from
the construction and continuity of this zigzag function that

O (_1)k+1 )
(6) g,(1) = Z %, Var,(g4;[0,1]) = Z k%'
k=1 P

In particular, g, € BV,([0,1]) if and only if py > 1. On the other hand,
the function g, does not belong to any Holder space Lip,([0,1]). In fact, a
simple geometric reasoning shows that

lipa(g,) > sup {2"*n™" :n =1,2,3,...}

for 0 < a <1 and 7 > 0, and the exponential growth of 2" always dominates
the power type growth of n”.

Of course, the zigzag function (5) may also be used to show that the
inclusion BV, [a,b] C BV,[a,b] is strict for 1 < p < q.

We point out that the inclusion Lip[a,b] € BV]a,b] is in a certain sense
sharp, inasmuch as one may construct, for fixed a € (0,1), a function which
belongs to Lip,[0,1] but not to BV[0,1], see [2, Exercise 14.28], or even a
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function which belongs to Lip[0, 1] for every o € (0, 1) but not to BV[0, 1], see
[2, Exercise 14.29]. Such examples, however, are somewhat more complicated
than our Example 1. Since the Russian reference [2] is not easily accessible,
for the reader’s ease we briefly recall these examples.

Example 2. The first function constructed in [2, Exercise 14.28] looks very
much like a “mirror reversed version” of our zigzag function (5). Define a
constant v and a sequence (t,), in [0, 1] by

I 1
=5

oo

k=1
Then we define f : [0,1] = R by
0 for x =0,
f(z):= (=1) for x = t,,

linear  otherwise.

By choosing partitions containing t1,ts, ..., t, and using the divergence of
the harmonic series, it is easy to see that f ¢ BV[0,1]. On the other hand,
distinguishing several cases for x and y, one may prove that |f(z) — f(y)| <
4|z — y|*, and so f € Lip,[0,1].

In [2, Exercise 14.29] the authors replace v and (¢,), in this example by

Zklog (k+1)’ 7;;’“0% (k+1)’

and define f : [0,1] — R precisely as before. Again, one may show, by
considering partitions containing ¢, to, . . ., t,, that f & BV|[0,1]. On the other
hand, a somewhat cumbersome calculation shows that f belongs to Lip,[0, 1]
for any o < 1.

Our first theorem is concerned with the “interaction” between the variation
function Vy, given in (3) and its parent function f. A detailed discussion of
such interactions may be found in the survey paper [7]; for example, it is
well-known that V7, is (absolutely) continuous if f is (absolutely) continuous,
and vice versa. Here we prove a special result related to Holder continuity (in
particular, Lipschitz continuity) of the function (3).

Theorem 1. For f € BV,[a,b] and V;, as in (3), the following statements
are true. (a) The function [ is Hélder continuous of order a = 1/p if and
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only if the function Vy, is Lipschitz continuous; moreover, in this case we
have lipy ,(f) = lip(Vy,)/P. (b) The function f is Hélder continuous of
order a/p € (0,1) if the function Vy , is Hélder continuous order a; moreover,
in this case we have lipq /p(f) < lipa (Vi p)'/P.

PROOF. Suppose that f € Lip; pla,b], L > lipy,,(f), and a <z <y < b, and
let P ={to,t1,...,tm} € Plx,y] be any partition of the interval [z,y]. Then

Z |f(t5) — ftj—1)IP < LPZ(%‘ —tj1)=LP(y — =)

and so
Vf,p(y) - Vf,p(x) = Varp(f? [xa y]) < Lp(y - m)»

which shows that Vy, € Lipla,b] with lip(V},) < lipy/,(f)P. Conversely,
suppose that Vy, € Lipla,b] and a < z <y <b. Then

(1) 1f(x) = f)IP < Vary(f; [z,y]) = Vip(y) — Vip(x) <lip(Vip)lz -yl

which shows that f € Lip; /,[a, b] with lipy ,(f) < lip(V},,)'/? and proves (a).
To prove (b) observe that (7) in case Vy,, € Lipa[a, b] reads

|f(@) = f)P < Varp(f; [, 9]) = Vip(y) = Vip(x) < lipa(Vip)le —y|*
which shows that f € Lip, /p[a, b] with lip,/,(f) < lipa (Vi) '/ O

The proof of (a) shows that |V, || Lip = Hf||’]:l.pl/p (in particular, || Vi Lip =
IlfllLip) for all functions f € Lip;pla,b] satisfying f(a) = 0. Observe that
there is an asymmetry in statement (b) of Theorem 1: we did not claim that
[ € Lipy, (hence f € BV, ,[a,b]) implies Vy , € Lip,. In fact, to the best of
our knowledge this is an open problem even in case p = 1, i.e., for functions
f € BVJa,b] N Lipyla,b] for 0 < a < 1. Of course, if one merely requires
f € Lipy[a,b], Example 2 shows that the answer is negative, because in this
case the function z — Vy(x) jumps from 0 to co as soon as = gets positive.

Our next theorem gives a simple sufficient condition under which a “change
of variables” preserves bounded p-variation.

Theorem 2. Let g : [c,d] = R a bounded map and 7 : [a,b] — [c,d] strictly
increasing and onto. Then f := got € BV,[a,b] if and only if g € BV,[c,d].

PROOF. First of all, note that 7 is continuous, by the intermediate value
theorem, and so a homeomorphism. Moreover, our assumptions on 7 imply

that
T({to, t1, .-, tm}) = {7(to), 7(t1),. .., 7(tm)}
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is a bijection between Pla,b] and Plc,d]. Therefore, for every function g €
BVc,d] we have Var,(f, P;[a,b]) = Var,(g, 7(P);[c,d]), hence

Vary(f;[a,b]) < Varp(g; [c, d]).

1

Applying this reasoning to the function 7= we conclude that also

Varp(.% [C7 d]) = Varp(f o 7-_1; [07 d]) S Va‘rp(.ﬂ [aa b])

This shows that g and f = g o 7 have the same total p-variation on their
domain of definition, and so the assertion follows. O

Our proof shows even more: by definition of the norm (2), the map
g — [ = gor is an isomelry between the spaces (BV,[a,b], | - [Bv,) and
(BVple,d], || - v, ), since f(a) = g(7(a)) = g(c) and f(b) = g((b)) = g(d).
The following two examples show that we cannot drop the continuity or mono-
tonicity assumption on 7 in Theorem 2.

Example 3. Define 7 : [0,4] — [0,4] by 7(0) := 0 and 7(¢) := 3 + t/4 for
0 <t < 4. Then 7 is strictly increasing with 7(0) = 0 and 7(4) = 4, but
discontinuous at ¢ = 0. The function g : [0,4] — R defined by

0 for 0<x<1,
g(x):=< tanf(r—1) for 1<z<2,
0 for 2<x <4,

does not belong to BV,[0,4] for any p, since it is unbounded near z = 2. On
the other hand, the function f(¢) = (go7)(t) = 0 trivially belongs to BV, [0, 4]
for all p.

Example 4. For p > 1, define 7 : [0,1] — [0, 1] by

p
for 0<t<1,

0 for t=0.

Then 7 is continuous, but of course far from being monotone. The function
g : [0,1] — R defined by g(z) := x'/? belongs to Lip1/,[0,1], hence also to
BV,[0,1], by (4). On the other hand, the function f = g o 7 does not belong
to BV},[0,1], which can be seen as follows. For n € N, consider the partition

P, =101} U{s1,...,snt U{t1,...,tn},
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where
1 1

= tii= ) =1,2,... .
K 4jm’ 7 (45 + D U=12.m)

Since f(sj) = 0 and f(t;) = t;, the partition P, gives the contribution

2

1/p n 1
(8) Vary(f, Pn; [0,1]) > <7r> Z (4k + 1)1/p’
k=1

and the sum in (8) is unbounded as n — oo, because p > 1.

Theorem 2 shows that, roughly speaking, monotone surjective maps are
the only suitable changes of variables which preserve bounded p-variation (in
particular, bounded variation).

In the historical paper [8] in which Camille Jordan introduced the class
BVa, b] he also proved that the function f — V} is increasing for f € BV|[a, b],
and so every function of bounded variation may be represented as difference
of two increasing functions. Now we discuss another type of decomposition
of a function f € BVp[a,b] (in particular, f € BVa,b]) into a Holder (in
particular, Lipschitz) continuous function and a monotone change of variables.
The following result may be found in [4] without proof.

Theorem 3. A function f belongs to BVp[a,b] if and only if it may be rep-
resented as composition f = go T, where T : [a,b] = [c,d] is increasing and
g € Lipy sp[c, d] with Hélder constant lip; /,,(g) = 1.

PROOF. Suppose that f = goT, where g and 7 have the mentioned properties.
Given any partition P = {tg,t1,...,tm} € Pla,b], we get

Var, (f, Pi[a, b)) = Y lg(7(t;)) = g(r(t;-1))"

< Y Ir(ty) = T(t-))
j=1
= [7(b) — 7(a)l,

hence f € BV,a,b]. Conversely, let f € BV,[a,b], and put 7(z) = V} p(z), see
(4). Then 7 maps [a,b] into [c,d], where ¢ = 0 and d = Var,(f;[a,b]). If we
define the function g on the range 7([a,b]) C [¢, d] by putting g(7(x)) := f(x),

then the decomposition f = g o 7 holds trivially by construction and

l9(r(s)) = g(r ()] = |F(s) = F(O) < Vary(f;]s, )" < |r(s) — ()"
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for a < s <t < b. Consequently, g is in fact Holder continuous with Holder
exponent a = 1/p and Hélder constant 1, but only on 7([a, b]).

It remains to extend g as a Holder continuous function with the same
Hélder exponent to the whole interval [¢, d]. Here we may use a general result
by McShane [10] which reads as follows. If M C R and g : M — R is Hélder
continuous with Holder exponent « € (0,1], then the map g : R — R defined
by

(9) g(x) :=sup {f(z) — lipa(f)lz — 2|* : 2 € M}

is Holder continuous on R with lip, (g) = lip,(g) and satisfies g(x) = g(x) for
x € M. Applying this to g as above on M = 7([a, b]) we obtain the desired
map. O

We illustrate Theorem 3 by means of the following simple

Example 5. Let [a,b] = [0,2] and f = x{1} be the characteristic function of
the singleton {1}. The variation function 7 : [0,2] — [0,2] from (1) in this
case has the form

0 for 0<z<1,
T(x)=1+sgn(x—1)=< 1 for z=1,
2 for 1l<ax<2.

Observe that 7([0,2]) = {0,1,2}, ¢g(0) = ¢g(2) = 0, and g(1) = 1, hence
lipa(g) = 1 in this example. Applying the McShane extension (9) to g we end
up with the function

g(z) = max{—|z|“ 1 — |z - 1% —|z —2|}=1—-|z -1 (0<z<2)

which is easily seen to be Hélder continuous with Hélder exponent « on the
whole interval [0, 2].

The following result may be considered as a refinement of Theorem 2: it
shows that a continuous functions of bounded p variation may be “made”
Holder continuous with Holder exponent 1/p, and even differentiable with
bounded derivative, after a suitable homeomorphic change of variables. In
case p = 1 this result has been proved in [3].

Theorem 4. For a function g : [a,b] — R, the following are equivalent.

(a) The function g is continuous and has bounded p-variation.

(b) There exists a homeomorphism 7 : [a,b] — [a,b] such that f = goT:
[a,b] = R is Holder continuous on [a,b] with Holder exponent 1/p.
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PRrOOF. Without loss of generality we take [a,b] = [0,1]. Suppose first that
g € C[0,1] N BV,[0,1] and put V; (1) =: w, see (1). To prove (b) we define
o:[0,1] = [0,1 4 w] by

(10) o(z) =z +V, () (0<z<1).

Clearly, o is strictly increasing and surjective and satisfies
(11)
9(z) = gW)I" < Vop(@) = V()| < Vop(2) +2—Vyp(y) —yl = |o(z) —o(y)]

for all z,y € [0,1]. So the map 7 : [0,1] — [0, 1] defined by
(12) )= t+wt) (0<t<1)

is strictly increasing with 7(0) = 0 and 7(1) = 1, hence an homeomorphism.
Moreover, from (11) it follows that the map f = g o 7 satisfies

[f(8) = @) < lg(7(9)) =g(r()] < lo(r(s)) = (T ()P < (1+w)"/Pls—t]'/7

for all s,¢ € [0,1]. This shows that f € Lip, [0, 1] with lip /,(f) < (1+w)'/P,
and so we have proved (b).

The fact that (b) implies (a) follows from Theorem 2. Indeed, go 7 €
Lipy jpla,b] € BV,a,b] implies g = go 7 o7~ € BV,[a,b], since every homeo-
morphism of an interval onto itself is strictly monotone. O

Observe the subtle difference between Theorems 2 and 4: While a generic
function g € BV,[a,b] in general remains in BV[a,b] (hence discontinuous)
after a homeomorphic change of variables, a function g € BV,[a,b] N Cla, b]
becomes even Hdélder continuous of order 1/p. So adding continuity bridges
the gap (which is essential, as Example 1 shows) between Lip;,,[a,b] and
BV,[a, b].

We illustrate Theorem 4 by means of two examples. The function f in the
first example belongs to BV,[0, 1], but does not belong to Lip,[0,1] for any

€ (0,1].

Example 6. For v > 0, let g, : [0,1] — R be defined as in Example 1.
Theorem 4 gives a constructive recipe how to transform the function g, into a
function f = g, o1 € Lip,([0,1]) with arbitrary o < . Putting a, =1—-27"
as in Example 1, we have

., 1=2""Y e P0,ay], Varp(gy, Pa;[0,as)]) Z et

3
P, = -

1\3\»—\
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Therefore, in case py > 1 the function (10) has the form

x—i—Z— for 0<xz<1,

1+ Varp(g4;[0,1]) for z =1,

where n(z) denotes the largest natural number n such that = > a,, ie.,
27" > 1 —x. Since w is given by the value of the second series in (6), we may
use (12), at least theoretically, to calculate the homeomorphism 7 piecewise
in this example.

Example 7. Let g : [0,1] — [0,1] be the Cantor function associated to the
classical perfect Cantor nullset C C [0,1]. It is well known [6] that g is a
continuous increasing surjective map from [0, 1] onto itself. Moreover, g cannot
be absolutely continuous, by the Vitali-Banach-Zaretskij theorem [9], since
the image g(C') of the nullset C' has positive measure, and so g does not have
the Luzin property. However, one may show [1] that g is Holder continuous
with best possible Holder exponent o = log2/log 3 which precisely coincides
with the Hausdorff dimension of the Cantor set C. By (4), we conclude that
g € BV,[0,1] for p =log 3/log?2.

However, we can do better. Indeed, since the Cantor function is monotone,
it belongs to BV[0, 1], so we may choose p = 1 in Theorem 4 and find a home-
omorphism 7 : [0,1] — [0, 1] such that f = go7 is even Lipschitz continuous on
[0,1]. Moreover, the proof of Theorem 4 shows how to do this. Since V; =g,
we see that o(z) = z + ¢g(z) and therefore

(13) ft)y=g(o7'(2t) (0<t<1).

To make this more explicit, we consider this function at the endpoints of
the deleted intervals in the construction of the Cantor set C'. Clearly.

g(1-37") =g(2-37") =1-27", ¢(7-37") =g(8-37")=3-27",
g(19-3™)=¢g(20-37 ") =5-2"",...
and, more generally,
g(1-2:3")=¢g(1-1-3")=1-1-2"" (n=1,2,3,...).

A straightforward, but somewhat cumbersome calculation gives then the
values of the function f in (13) at the points a,, :==2—(2-37"+1-27") € [0, 1],
and we only have to extend f linearly to a Lipschitz continuous function on
the whole interval [0, 1].
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Although the explicit computation of the function f = g o 7 in Example 7
is rather messy, this example has a certain theoretical interest. In [3, Theorem
1] it was shown that, in case of a function g € Cl[a,b] N BV [a, b] one may even
find a homeomorphism 7 : [a,b] — [a,b] such that f = go7 : [a,b] = R
is differentiable with bounded derivative on [a,b]. The proof is based on the
fact that in this case we may assume that ¢ is Lipschitz continuous, and
so differentiable a.e. on [a,b]. By Zahorski’s theorem [11,12] one may then
find a homeomorphism 7 : [0,1] — [0, 1] which is differentiable with bounded
derivative 7/ on [0, 1] and satisfies 7/(t) = 0 precisely for ¢t € 771(G), where G
is an appropriate G5 nullset which contains all points of non-differentiability
of g. This homeomorphism has then the desired properties. Unfortunately, a
Holder continuous function need not be differentiable a.e., and so this proof
does not work for g € BV,,[a,b] in case p > 1.

The question arises whether or not one may choose, in case p = 1, the
homeomorphism 7 in such a way that f = g o 7 is even differentiable with
continuous derivative. Example 7 shows that the answer is negative. In fact,
suppose that f = go 7 € C'[0,1] for some homeomorphism 7 : [0,1] —
[0,1]. The derivative f’ of f is equal to 0 at each point of [0,1] \ 77(C).
But 771(C) cannot be a nullset, since f, being Lipschitz continuous, has the
Luzin property, and so g(C) = (f o 771)(C) would be a nullset as well, a
contradiction. Therefore the derivative of f = g o 7 cannot be 0 a.e. on
[0,1]. So Theorem 1 in [3] is in a certain sense optimal in case p = 1. To
show that our Theorem 4 is optimal in case p > 1, one should find a function
g € BV,[a,b] N C[a,b] such that no homeomorphism 7 : [a,b] — [a,b] makes
f = g o7 differentiable; this seems to be an open problem.
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