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THE TAKAGI FUNCTION: A SURVEY

Abstract

This paper sketches the history of the Takagi function T and surveys
known properties of T, including its nowhere-differentiability, modulus
of continuity, graphical properties and level sets. Several generalizations
of the Takagi function, in as far as they are based on the “tent map”,
are also discussed. The final section reviews a number of applications of
the Takagi function to various areas of mathematics, including number
theory, combinatorics and classical real analysis.

1 Introduction.

More than a century has passed since Takagi [76] published his simple example
of a continuous but nowhere differentiable function, yet Takagi’s function – as
it is now commonly referred to despite repeated rediscovery by mathematicians
in the West – continues to inspire, fascinate and puzzle researchers as never
before. For this reason, and also because we have noticed that many aspects
of the Takagi function continue to be rediscovered with alarming frequency, we
feel the time has come for a comprehensive review of the literature. Our goal
is not only to give an overview of the history and known characteristics of the
function, but also to discuss some of the fascinating applications it has found –
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some quite recently! – in such diverse areas of mathematics as number theory,
combinatorics, and analysis. We also include a section on generalizations and
variations of the Takagi function. In view of the overwhelming amount of
literature, however, we have chosen to limit ourselves to functions based on
the “tent map”. In particular, this paper shall not make more than a passing
mention of the Weierstrass function and is not intended as a general overview of
continuous nowhere-differentiable functions. We thank Prof. Paul Humke for
encouraging us to write this survey, and for issuing periodic cheerful reminders.

1.1 Early history

Figure 1: Graph of the Takagi function

Takagi’s function is indeed simple: in modern notation, it is defined by

T (x) =

∞∑
n=0

1

2n
φ(2nx), (1.1)

where φ(x) = dist(x,Z), the distance from x to the nearest integer. The graph
of T is shown in Figure 1. Takagi himself expressed his function differently,
and this is perhaps one reason (in combination with Japan’s isolation at the
beginning of the twentieth century) why it was largely overlooked in the West.
Unlike for the more famous Weierstrass function, it is easy to show that T has
at no point a finite derivative; we include the short proof due to Billingsley [17]
in Section 2.1. However, it does possess an infinite derivative at many points,
and for this reason Knopp [40], in his 1918 review of the rapidly growing
body of “strange” functions, did not consider it truely nowhere differentiable.
Knopp outlined his own geometric method for producing functions which have
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no derivative, finite or infinite, at any point. The example most similar to the
Takagi function is

f(x) =

∞∑
n=0

anφ(bnx),

where 0 < a < 1, b is an integer and ab > 4. Knopp’s general construction also
includes the Weierstrass function and Faber’s example [26] as special cases.

A variant of Takagi’s function, using the base 10, was discovered in 1930
by Van der Waerden, who credits Dr. A. Heyting for sending in the proof of its
nondifferentiability, in response to a problem in the publication Wiskundige
Opgaven of the Dutch Mathematical Society. Three years later, Hildebrandt
[33] showed that one can more simply use the base 2, thus rediscovering Tak-
agi’s original example. An editorial note affixed to Hildebrandt’s paper so-
licited answers to the “interesting and probably not too difficult” question at
which set of points T (x) has an infinite derivative. Surprisingly, it would take
77 years for this natural question to be answered correctly, perhaps because
the answer is not all that easy to guess; see Section 2.1 below.

In 1939 the Takagi function was rediscovered by Tambs-Lyche [77], who
was also inspired by Van der Waerden’s paper and motivated by a desire
to give “an example easy to understand for beginning students of analysis”.
Tambs-Lyche defined it by a formula different from both (1.1) and Takagi’s
original definition (see Section 4), and stated without proof its equivalence to
(1.1). Tambs-Lyche was also the first to publish a graph of Takagi’s function,
hand-drawn but remarkably accurate.

Apparently unaware of Hildebrandt’s and Tambs-Lyche’s notes, de Rham
[63] rediscovered Takagi’s function once more in 1957. His main contribution,
however, was to identify T as a member of a more general class of functions
which are solutions to a certain family of functional equations; in today’s
language, de Rham observed that the Takagi function is self-affine. His paper
soon inspired Kahane [34] to determine the points of global and local extremum
of T , and to modify the definition (1.1) in order to create functions with a
prescribed modulus of continuity.

By the 1960s, the Takagi-van der Waerden function was sufficiently well
known that it could be used as the key element in solutions to other problems,
both in classical real analysis and in number theory. Lipinski [53] used it in
his elegant characterization of zero sets of continuous nowhere differentiable
functions, after Schubert [67] had started the investigation. And Trollope [78]
observed that the Takagi function was the missing piece of the puzzle in the
binary digital sum problem; his proof was simplified and extended further by
Delange [25]. These applications are described in detail in Sections 8.1 and
8.3, respectively.
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1.2 The Takagi function comes home

Interest in the Takagi-van der Waerden function spiked after 1980, with two
more or less independent streams of publications. In the West, Billingsley
[17] drew new attention to the function with his short note in the American
Mathematical Monthly, providing perhaps the most lucid proof of the func-
tion’s nowhere differentiability. His argument was modified by Cater [22] to
show that T does not even possess a finite one-sided derivative anywhere, and
Shidfar and Sabetfakhri [69] proved that T is Lipschitz of every order α < 1.
A sharper result was obtained by Mauldin and Williams [59], who investigated
a much larger class of functions defined by infinite series and showed that the
Takagi function is “convex Lipschitz” of order h log(1/h). Anderson and Pitt
[12] slightly improved on this by showing that

T (x+ h)− T (x) = O(h log(1/|h|), as h→ 0,

and this estimate is the best possible. As a result, the Hausdorff dimension of
the graph of T is one.

Meanwhile, the Takagi function had become popular in the country of its
birth, due to the influential paper by Hata and Yamaguti [31]. Besides finally
restoring credit to its original inventor, these authors did much to elevate
Takagi’s function beyond the realm of recreational mathematics, by pointing
out its connection with chaotic dynamical systems and proving a beautiful
relationship between T and Lebesgue’s singular function (also called Salem’s
function or the Riesz-Nagy function). Hata and Yamaguti also replaced the
factor 1/2n in (1.1) by an arbitrary constant cn, calling their new family of
functions the Takagi class. Kôno [44] characterized completely the differentia-
bility properties of members of the Takagi class – there are three qualitatively
different cases – and proved several other results about these functions, most of
them of a probabilistic nature. Gamkrelidze [29] later applied Kôno’s methods
to obtain a Central Limit Theorem-type result for the small-scale oscillations
of T . In the same year as Hata and Yamaguti’s paper, Baba [13] calculated
the maxima of the general Takagi-van der Waerden function (with arbitrary
base r ≥ 2), after Martynov [57] had rediscovered Kahane’s result about the
maximum of T . Tsujii [79] constructed a Takagi-like function of two variables,
and Yamaguchi et al. [82] viewed the graph of T as the invariant repeller of a
dynamical system.

1.3 Recent work

In the last two decades, the literature on the Takagi function and related top-
ics seems to have grown exponentially. Papers from this period can be loosely
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classified into three categories: papers about the Takagi function itself, papers
dealing primarily with applications, and papers discussing various generaliza-
tions and variations. Some papers fit more than one category. It is impossible
to describe each individual contribution in this introduction. We limit our-
selves here to succinct groupings of papers by topic, referring to later sections
for the details.

1. Papers about the Takagi function itself. These can be further divided
as follows. Kairies et al. [36] and Kairies [35] characterize T by its functional
equations. Other papers, such as Brown and Kozlowski [19], Abbott et al. [1]
and Watanabe [81], focus on various local continuity properties. The infinite
derivatives of T are dealt with in Krüppel [45, 47] and Allaart and Kawamura
[8]. There is also a sustained effort ongoing to understand the complicated level
set structure of T ; see Buczolich [21], Maddock [55], Lagarias and Maddock [50,
51], Allaart [5, 6], and de Amo et al. [9]. A richly illustrated expository article
by Martynov [58] gives step-by-step explanations of the main characteristics
of T , aimed at undergraduate students.

2. Papers concerned with applications. A number of authors have extended
Trollope’s result about binary digital sums in various directions. The papers
most closely related to the Takagi function are Okada et al. [61], Kobayashi
[42] and Krüppel [46]. Recently, Házy and Páles [32] and Boros [18] found
Takagi’s function to be the extremal case in the theory of approximately mid-
convex functions. Their work was elaborated on by Tabor and Tabor [74, 75]
and Makó and Páles [56], and this last paper includes many further references.
Allaart [4] reduces the crucial inequality in the above papers to a simple in-
equality for binary digital sums, thus linking the two applications. Takagi’s
function also arises naturally as the limit in certain counting problems in graph
theory; see Frankl et al. [28], Knuth [41] and Guu [30]. It even has been used
in an equivalent statement of the Riemann hypothesis; see Balasubramanian
et al. [14].

3. Papers about generalizations and variations. There are literally hun-
dreds of papers about generalizations of the Takagi function. Many replace
the tent map φ with a more general bounded “base” function; some also
introduce random phase shifts. We will not discuss such functions here,
but limit ourselves to generalizations based on the tent map. The most di-
rect extension, a subcollection of the Takagi class, is the family of functions
fα(x) =

∑∞
n=0 α

nφ(2nx) where 0 < α < 1. They were studied for α > 1/2 by
Ledrappier [52], who computed their Hausdorff dimension, and for α < 1/2
by Tabor and Tabor [74, 75] and Allaart [4]. Other extensions allow the
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“tents” at each stage of the construction to be flipped up or down individu-
ally. This way one obtains for instance the Gray Takagi function of Kobayashi
[42] or the function T 3 of Kawamura [38]. Anderson and Pitt [12], Abbott
et al. [1] and Allaart [3] investigate general properties of this larger class of
functions. Sekiguchi and Shiota [68], generalizing the work of Hata and Yam-
aguti, obtained another family of continuous functions, which were examined
more closely by Allaart and Kawamura [7]. A version of the Takagi function
with random signs is studied in Allaart [2], and Kawamura [39] considers the
composition of T with a singular function. Finally, Sumi [73] introduces a
complex version of the Takagi function in connection with random dynamics
in the complex plane.

1.4 Organization of this paper

This survey is organized as follows. Section 2 focuses on analytic aspects of the
Takagi function. We give Billingsley’s proof of the nowhere-differentiability of
T and characterize the set of points where T has an infinite derivative. In
Section 2.2, we treat the Hölder continuity of T and explain the work of
Abbott et al. [1] regarding slow points. This is followed by a more detailed
examination of the modulus of continuity of T .

Section 3 deals with the graph of T . We first discuss the global and local
extrema of T . Then we point out the partial self-similarity of the graph and
illustrate how to use this to prove a specific theorem, namely that the graph
of T has σ-finite linear measure.

In Section 4 we give a number of different expressions for T (x), show how
these can be derived from one another, and explain how they have been used
to prove various aspects of the Takagi function.

Section 5 gives functional equations for T , presents T as the unique bounded
solution of a system of infinitely many difference equations, and discusses the
connection of T with Lebesgue’s singular function.

Section 6 is devoted to the level sets of T . This area of research is currently
very active: Nearly all the results in this section were found in the last five
years or so. We outline a proof, based on the partial self-similarity ideas of
Section 3, of the fact that almost all level sets of T are finite, and give an
overview of other known facts concerning the level sets. The section ends with
a list of open problems.

Section 7 gives an overview of some of the generalizations of the Takagi
function and other related functions. This includes the general Takagi-van der
Waerden functions, the Takagi class, and the Zygmund spaces Λ∗d, λ

∗
d and Λ∗d,1,

all of which are in some sense fairly direct extensions of the Takagi function.
This section too concludes with a list of open problems.
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Section 8 deals with applications, and is divided into four parts. Subsection
8.1 presents Trollope’s formula for the sum of binary digits of the first N pos-
itive integers and discusses several related results. In Subsection 8.2 we treat
applications of the Takagi function to the problem of finding the minimum
shadow size in uniform hypergraphs and to the edge-discrete isoperimetric
problem on the n-cube. Subsection 8.3 deals with applications in classical real
analysis and consists of two parts: one on the use of T in Lipinski’s charac-
terization of zero sets of continuous nowhere differentiable functions, and one
on the role of T and its generalizations in approximate convexity problems.
Finally, Subsection 8.4 explains the connection between Takagi’s function and
the Riemann hypothesis.

We have not attempted to give equal coverage to all the players in this
arena. The things we have chosen to emphasize reflect our interests and ex-
pertise, not the importance or quality of the cited works.

While we were preparing this article, we learned that Jeffrey Lagarias [49]
was working on a survey paper of his own. The two surveys evolved for the
most part independently, and while there is inevitably a considerable degree
of overlap, the two surveys emphasize different things. For example, we treat
in detail the differentiability aspects and fine structure of the graph of T , and
discuss various generalizations and applications in considerable detail. (Hence
the length of the last two sections of this paper.) Lagarias, on the other hand,
focuses on connections of the Takagi function with several areas of analysis,
including wavelets, complex power series, and dynamical systems. In view of
this, we feel that our survey and that of Lagarias complement each other quite
well.

1.5 Frequently used notation

We collect here some notation that will be used regularly throughout this
paper. First, for definiteness, we let N denote the set of natural numbers, and
Z+ the set of nonnegative integers. Most important is the binary expansion
of a point x ∈ [0, 1), which we denote by

x =

∞∑
n=1

εn
2n

= 0.ε1ε2 . . . εn . . . , εn ∈ {0, 1}.

For dyadic rational x (i.e. x of the form x = k/2m with k ∈ Z+ and m ∈ N)
we choose the representation ending in all zeros. When necessary, to avoid
confusion, we write εn(x) instead of εn.
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Let In := In(x) be the number of ones, and On := On(x) the number of
zeros, among the first n binary digits of x, and let Dn := Dn(x) := On(x) −
In(x). Thus, we have

In =

n∑
k=1

εn, On = n− In,

and

Dn =

n∑
k=1

(1− 2εk) =

n∑
k=1

(−1)εk .

If the limit

d1(x) := lim
n→∞

1

n

n∑
k=1

εk, (1.2)

exists, we call d1(x) the density (or long-run frequency) of the digit “1” in the
binary expansion of x. In that case, the number

d0(x) := 1− d1(x)

is the density of the digit “0”.
The orthogonal projections onto the x- and y-axes will be denoted by πX

and πY , respectively.
By Hα we will denote α-dimensional Hausdorff measure, and by dimH A,

the Hausdorff dimension of a set A. For a function f , dimH(f) denotes the
Hausdorff dimension of the graph of f .

2 Analytic properties.

In this section we focus on analytic aspects of the Takagi function, including
infinite derivatives, Hölder continuity and slow points. We begin with a short
proof of the function’s nowhere-differentiability.

2.1 Derivatives, or lack thereof

Takagi himself gave a proof of the fact that T has nowhere a finite derivative
[76], as did Hildebrandt [33] and de Rham [63]. Van der Waerden’s simple
proof for the base 10 case, however, does not immediately transfer to the case
of base 2. While all published proofs of non-differentiability follow more or
less the same logic, the one by Billingsley [17] is arguably the most natural,
and that is the one we present here.
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Theorem 2.1 (Takagi). The Takagi function T does not possess a finite
derivative at any point.

Proof. (Billingsley) Put φk(x) = 2−kφ(2kx) for k = 0, 1, . . . . Fix a point x,
and, for each n ∈ N, let un and vn be the dyadic rationals of order n with
vn − un = 2−n and un ≤ x < vn. Then

T (vn)− T (un)

vn − un
=

n−1∑
k=0

φk(vn)− φk(un)

vn − un
,

since φk(un) = φk(vn) = 0 for all k ≥ n. But for k < n, φk is linear on [un, vn]
with slope φ+k (x), the right-hand derivative of φk at x. Thus,

T (vn)− T (un)

vn − un
=

n−1∑
k=0

φ+k (x).

Since φ+k (x) = ±1 for each k, this last sum cannot converge to a finite limit.
Hence, T does not have a finite derivative at x.

Billingsley’s argument was modified by Cater [22] to show that T does
not have a finite one-sided derivative anywhere. The above proof makes it
plausible, however, that there exist points with T ′(x) = ±∞. An Editor’s
note affixed to Hildebrandt’s paper asked readers to characterize the set of
such points. The call was answered three years later by Begle and Ayres [15],
who claimed that T ′(x) = ∞ if Dn(x) → ∞, and T ′(x) = −∞ if Dn(x) →
−∞. This is certainly believable at first sight: If we agree that for dyadic
rational points we choose the binary expansion ending in all zeros, then the
last equation in the above proof can be written as

T (vn)− T (un)

vn − un
= Dn(x). (2.1)

The limit of the left-hand side as n → ∞, if it exists, is called the dyadic
derivative of T at x. Convergence of the slopes in (2.1) to ±∞ is necessary in
order that T ′(x) = ±∞, but it is of course, a priori, not sufficient. (In fact,
there are examples of nowhere differentiable functions for which the dyadic
derivative exists almost everywhere [12, Example 3.3].) Begle and Ayres as-
sumed that for fixed n, the slope Dn(x) cannot jump by more than ±2 as
one moves from one dyadic interval into the next. But this is already false for
n = 4, as D4(x) = −2 for 7/16 ≤ x < 1/2, and D4(x) = 2 for 1/2 ≤ x < 9/16.

The paper by Begle and Ayres appears to have been forgotten soon after
its publication, as was Hildebrandt’s note. In any case, there is no evidence
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in the literature that the mistake was ever noticed – until a few years ago,
that is. We learned of Begle and Ayres’ work from an historical survey by
Prof. H. Okamoto [62]. Knowing that Prof. M. Krüppel [45] had recently
written about the improper derivatives of the Takagi function, we sent him
a courtesy notification. Krüppel’s stunning reply was that, while he did not
know about Begle and Ayres, the result could not possibly be true, as his own
paper contained a counterexample! (Curiously, Lemma 7.4 of Anderson and
Pitt [12] implies the same incorrect statement. In their case, however, the
culprit appears to be a typographical error.)

We present Krüppel’s example here in somewhat simplified form. Let x =∑∞
n=1 2−an , where an = 4n. Then certainly Dn(x) → ∞. A well-known

formula for T (x) at dyadic rational points is

T

(
k

2m

)
=

1

2m

k−1∑
j=0

(m− 2sj), (2.2)

where sj is the number of ones in the binary representation of the integer
j. (There are several ways to derive this formula; see Section 4.) For given
m, let k be the integer such that k/2m < x < (k + 1)/2m. Then the secant
slopes over the dyadic intervals [k/2m, (k + 1)/2m] containing x indeed tend
to +∞ in view of (2.1). However, if we put m = an+1 − 1, then sk = n,
sk−1 = n+ an+1 − an − 2, and sk−2 = n+ an+1 − an − 3. Thus, (2.2) yields

2m
[
T

(
k + 1

2m

)
− T

(
k − 2

2m

)]
= 3m− 2sk − 2sk−1 − 2sk−2

= 4an − an+1 − 6n+ 7

→ −∞,

as n→∞. Since the intervals [(k−2)/2m, (k+1)/2m] also contain x, it follows
that T cannot have an infinite derivative at x.

Intrigued by these developments, the present authors and Prof. Krüppel
independently set out to find the correct answer. The result:

Theorem 2.2 (Allaart and Kawamura, Krüppel). Let x ∈ (0, 1) be non-
dyadic, and write

x =

∞∑
n=1

2−an ,

where {an} is a strictly increasing sequence of positive integers. Then T ′(x) =
∞ if and only if

an+1 − 2an + 2n− log2(an+1 − an)→ −∞. (2.3)
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By the symmetry of the Takagi function, T ′(x) = −∞ if and only if T ′(1−
x) =∞. It is easy to see from the definition (1.1) that if x is a dyadic rational,
then T ′+(x) = +∞ and T ′−(x) = −∞, where T ′+ and T ′− denote the right- and
left-hand derivatives of T , respectively. Combined with these facts, Theorem
2.2 gives a complete characterization of the infinite derivatives of T .

In fact, the condition (2.3) is necessary in order that T ′−(x) = +∞. For
T ′+(x) = +∞, it is sufficient that an − 2n → ∞, and this can be seen to
be equivalent to the Begle and Ayres condition that Dn(x) → ∞. Allaart
and Kawamura [8] give several examples illustrating the condition (2.3). For
instance, the condition holds for an = 3n; for any increasing polynomial of
degree 2 or higher; and for any exponential sequence an = bαnc with 1 <
α < 2. On the other hand, it fails whenever lim supn→∞ an+1/an > 2. The
logarithmic term in (2.3) is sometimes a difference maker: The sequence an =
2n does not satisfy (2.3); neither does an = 2n + n. But an = 2n + (1 + ε)n
satisfies (2.3) for any ε > 0.

Theorem 2.2 implies that, if the density d1(x) exists and lies strictly be-
tween 0 and 1/2, then T ′(x) = ∞. By symmetry, T ′(x) = −∞ if 1/2 <
d1(x) < 1. As a result, the sets {x : T ′(x) =∞} and {x : T ′(x) = −∞} have
Hausdorff dimension 1.

2.2 Continuity properties

Since T is nowhere differentiable, it is certainly not Lipschitz. However, Shid-
far and Sabetfakhri [69] showed that T is Hölder continuous of any order α < 1.
That is, for each 0 < α < 1, there is a constant Cα such that

|T (x)− T (y)| ≤ Cα|x− y|α,

for all x and y in [0, 1]. This result prompted an interesting question. A
theorem of Marcinkiewicz says that for every Lipschitz function f on [0, 1]
there is a C1 function g which agrees with f outside a set of arbitrarily small
measure, and Brown and Koslowski [19] wondered if the Lipschitz requirement
in this theorem can be replaced with the weaker condition that f be Hölder
continuous of any order α < 1. They show that this is not so: the Takagi
function provides a counterexample, since for any set M of positive Lebesgue
measure, the set of difference quotients{

T (x)− T (y)

x− y
: x ∈M,y ∈M and x 6= y

}
is unbounded.
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While the Takagi function is not Lipschitz, it does satisfy a local Lipschitz
condition at each “slow point”. Abbott et al. [1] call a point x in [0, 1] a slow
point with constant K (K a positive integer) if |Dn(x)| ≤ K for every n. They
show that there is a uniform bound P = P (K) > 0 such that for each slow
point x with constant K and for each y ∈ [0, 1], |T (y)−T (x)| ≤ P |y−x|. They
also manage to compute the Hausdorff dimension of the set of slow points with
constant K; it is 1+log2 r, where r = cos(π/(2(K+1))). The paper by Abbott
et al. also contains results for more general functions based on the tent map;
we will return to it in Section 7.

The result of Shidfar and Sabetfakhri was sharpened by Anderson and
Pitt [12], who showed that not only T , but every function f in the so-called
Zygmund space Λ∗d is Lipschitz of order θ(y) = y log(1/y); that is to say, there
is a constant M such that, for all x and y with y > 0 sufficiently small,

|f(x+ y)− f(x)| ≤My log(1/y).

From this, one can deduce that the graph of T has Hausdorff dimension 1, a
result first obtained by Mauldin and Williams [59] on which we will elaborate
in the next section.

More precise estimates on the oscillations of T were obtained by Kôno
[44]. He describes both the “worst-case” behavior and the “typical” size (in
the Lebesgue sense) of the oscillations. Let

σu(h) = log2(1/h) and σl(h) =
√

log2(1/h), h > 0.

Theorem 2.3 (Kôno 1987). The oscillations of the Takagi function satisfy

lim sup
|x−y|→0

T (x)− T (y)

(x− y)σu(|x− y|)
= 1 = − lim inf

|x−y|→0

T (x)− T (y)

(x− y)σu(|x− y|)
.

The extremal case of the above theorem is rare – at most points x the
oscillations are of a smaller order.

Theorem 2.4 (Kôno 1987). For almost every x ∈ [0, 1], we have

lim sup
h→0

T (x+ h)− T (x)

hσl(|h|)
√

2 log log σl(|h|)
= 1 = − lim inf

h→0

T (x+ h)− T (x)

hσl(|h|)
√

2 log log σl(|h|)
.

Kôno proves the last theorem by developing T (x) in terms of Rademacher
functions and applying the law of the iterated logarithm. Note that for fixed
x ∈ [0, 1], Theorem 2.3 implies

−1 ≤ lim inf
h→0

T (x+ h)− T (x)

h log2(1/|h|)
≤ lim sup

h→0

T (x+ h)− T (x)

h log2(1/|h|)
≤ 1. (2.4)
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Within these bounds, various kinds of behavior are possible. Krüppel [45]
shows that if x is dyadic rational, then

lim
h→0

T (x+ h)− T (x)

|h| log2(1/|h|)
= 1.

Allaart and Kawamura [8] characterize for which points x the limit

lim
h→0

T (x+ h)− T (x)

h log2(1/|h|)
(2.5)

exists. This requires the following definition.

Definition 2.5. Let x ∈ [0, 1] be non-dyadic, and let {an} and {bn} be the
(unique) strictly increasing sequences of positive integers such that

x =

∞∑
n=1

2−an , 1− x =

∞∑
n=1

2−bn .

We say x is density-regular if d1(x) exists and one of the following holds:

(a) 0 < d1(x) < 1; or

(b) d1(x) = 0 and an+1/an → 1; or

(c) d1(x) = 1 and bn+1/bn → 1.

Theorem 2.6 (Allaart and Kawamura 2010). Let x be non-dyadic. The limit
in (2.5) exists if and only if x is density-regular, in which case the limit is
equal to d0(x)− d1(x).

One can also consider the probability distribution of T (x + h) − T (x) for
small h when x is chosen at random from [0, 1]. Gamkrelidze [29] adapts
Kôno’s approach to give the following Central Limit Theorem-type result:

lim
h↓0

λ

({
x :

T (x+ h)− T (x)

h
√

log2(1/h)
≤ y

})
=

1√
2π

∫ y

−∞
e−t

2/2dt,

where λ denotes Lebesgue measure.

3 Graphical properties.

Figure 1 shows the graph of the Takagi function, restricted to the interval
[0, 1]. A number of features quickly jump out. The graph is symmetric about
the line x = 1/2, and it has cusps and local minima at the dyadic rational
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points. An important aspect of the graph is that it has two 1/4-scale copies
of itself at its top; this is due to the self-affine nature of T , and leads quickly
to the fact, observed by many an author, that the absolute maximum of T is
attained at uncountably many points. More specifically, we have

Theorem 3.1 (Kahane 1959 [34]). The maximum value of T is 2/3. The set
M of points where T attains the maximum value is a perfect set of Hausdorff
dimension 1/2, and consists of all the points x with binary expansion satisfying
ε2n−1 + ε2n = 1 for each n.

Proof. The simplest way to see this is to rewrite (1.1) as

T (x) =

∞∑
n=0

1

4n
φ1(4nx),

where φ1 is the “table-top” function φ1(x) = φ(x) + (1/2)φ(2x). Let

Tn(x) :=

n−1∑
k=0

1

2k
φ(2kx), (3.1)

and note that T2n(x) =
∑n−1
k=0 4−kφ1(4kx), for n ∈ N. Figure 2 shows the

graphs of T2 and T4. One sees by induction that the maximum value of T2n is

1

2
+

1

2
· 1

4
+ · · ·+ 1

2

(
1

4

)n−1
,

and hence,

M := max{T (x) : x ∈ [0, 1]} =

∞∑
k=0

1

2

(
1

4

)k
=

2

3
.

If x ∈ [0, 1], then T (x) achieves this maximum value of 2/3 if and only if x lies
in the middle half of each quarternary interval to which it belongs – in other
words, if the quarternary expansion of x contains only 1’s and 2’s. In terms
of the binary expansion x =

∑∞
n=1 εn/2

n of x, it means that ε2n−1 + ε2n = 1
for each n. Thus, the set M := {x ∈ [0, 1] : T (x) = M} is a Cantor-like set
constructed by removing at each step the two outside fourths of each remaining
quarternary interval. As a result, dimHM = log 2/ log 4 = 1/2.

(Kahane did not show that the dimension ofM is 1/2, but he easily could
have: the technique for calculating the dimensions of generalized Cantor sets
was by 1959 well established.)
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Figure 2: The functions T2(x) = φ1(x) (left) and T4(x) = φ1(x) + (1/4)φ1(4x)
(right)

3.1 Humps and local extrema

The appearance of smaller-scale similar copies of the graph of T is not limited
to the central part of the graph; it happens everywhere. We introduce two
definitions and a lemma to make this precise. Let

GT := {(x, T (x)) : 0 ≤ x ≤ 1}

denote the graph of T over the unit interval [0, 1]. The term ‘balanced’ in the
following definition is taken from Lagarias and Maddock [50].

Definition 3.2. A dyadic rational of the form x = 0.ε1ε2 . . . ε2m is called
balanced if D2m(x) = 0. If Dj(x) = 0 for exactly n indices 1 ≤ j ≤ 2m, we say
x is a balanced dyadic rational of generation n. By convention, we consider
x = 0 to be a balanced dyadic rational of generation 0. The set of all balanced
dyadic rationals is denoted by B. For each n ∈ Z+, the set of balanced dyadic
rationals of generation n is denoted by Bn. Thus, B =

⋃∞
n=0 Bn.

Lemma 3.3. Let m ∈ N, and let x0 = k/22m = 0.ε1ε2 . . . ε2m be a balanced
dyadic rational. Then for x ∈ [k/22m, (k + 1)/22m] we have

T (x) = T (x0) +
1

22m
T
(
22m(x− x0)

)
.

In other words, the part of the graph of T above the interval [k/22m, (k +
1)/22m] is a similar copy of the full graph GT , reduced by a factor 1/22m and
shifted up by T (x0).
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Figure 3: The “humps” H(1/4), H(5/8) and H(7/8), enclosed in rectangles
from left to right. Note that in binary, 1/4 = 0.01, 5/8 = 0.1010, and 7/8 =
0.111000. Only the first of these, H(1/4), is a leading hump.

Proof. This follows immediately from the definition (1.1), since the slope
of T2m over the interval [k/22m, (k + 1)/22m] is equal to D2m(x0) = 0, and
T (x0) = T2m(x0).

Definition 3.4. For a balanced dyadic rational x0 = k/22m as in Lemma
3.3, let H(x0) denote the portion of the graph of T restricted to the interval
[k/22m, (k+ 1)/22m]. By Lemma 3.3, H(x0) is a similar copy of the full graph
GT ; we call it a hump. Its height is 2

3 ( 1
4 )
m

, and we call m its order. By the
generation of the hump H(x0) we mean the generation of the balanced dyadic
rational x0. A hump of generation 1 will be called a first-generation hump. By
convention, the graph GT itself is a hump of generation 0. If Dj(x0) ≥ 0 for
every j ≤ 2m, we call H(x0) a leading hump. See Figure 3 for an illustration
of these concepts.

The Takagi function T takes on a local maximum value at a point x =∑∞
n=0 εn/2

n precisely when the point (x, T (x)) is located at the top of some
hump. This is the case if and only if for some m ∈ N,

ε1 + · · ·+ ε2m = m, and ε2n−1 + ε2n = 1 for each n > m.

The first part of the above condition ensures that (x, T (x)) lies on a hump
of order m; the second part implies that it lies at the top of that hump. In
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particular, the points of local maximum of T lie dense in [0, 1]. This result too
is due to Kahane [34]. On the other hand, since T ′+(x) =∞ and T ′−(x) = −∞
at each dyadic x, T has a local minimum value at every dyadic rational point
x. Kahane shows that there are no local minima at non-dyadic points.

3.2 Humps and Hausdorff measure

It is often necessary to count the humps of a given order and/or generation,
and this counting involves the Catalan numbers

Cn :=
1

n+ 1

(
2n

n

)
, n = 0, 1, 2, . . . .

Lemma 3.5. Let m ∈ N.

(i) There are
(
2m
m

)
humps of order m.

(ii) There are Cm leading humps of order m.

(iii) There are 2Cm−1 first-generation humps of order m.

This lemma is helpful in the study of the level sets of T (see Section 6).
Another use is the following. Mauldin and Williams [59] first showed that the
graph of T has Hausdorff dimension one, but remarked that they did not know
whether it has σ-finite linear measure. Anderson and Pitt [12] showed that the
answer is affirmative, not only for the Takagi function but for a much wider
class of functions (the so-called Zygmund space Λ∗d). Odani [60] explicitly
decomposed the graph of T into countably many sets of finite linear measure,
as follows.

Let S denote the set of points (x, y) on GT which belong to humps of
infinitely many generations, and for n = 0, 1, 2, . . . , let En denote the set of
points which belong to a hump of generation n, but not to a hump of generation
n+ 1. Then

GT = S ∪ E0 ∪ E1 ∪ E2 ∪ . . . .

Since E0 is the graph of T with all the first-generation humps removed, it is
intuitively clear (and can be made rigorous) that the restriction of T to πX(E0)
is monotone increasing on [0, 1/2], and monotone decreasing on [1/2, 1]. Hence,
E0 has finite linear measure. Next, E1 consists of countably many copies of
E0, one inside each first-generation hump. For each m ∈ N, there are 2Cm−1
copies with contraction ratio 1/4m by Lemma 3.5. Thus,

H1(E1) =

∞∑
m=1

2Cm−1

(
1

4

)m
H1(E0) =

1

2

∞∑
n=0

Cn

(
1

4

)n
H1(E0) = H1(E0),
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where we have used the well-known fact that
∑∞
n=0 Cn(1/4)n = 2. Induc-

tively, this argument can be continued to show that H1(En) < ∞ for each
n. It remains to verify that H1(S) < ∞. Order the first-generation humps
H1, H2, . . . in some arbitrary manner, and for i ∈ N, let Φi be the similarity
map which maps GT onto Hi. Then it is easy to check that

S =

∞⋃
i=1

Φi(S).

The open set condition is satisfied (take (0, 1) × R, say). As above, the con-
traction ratios of the Φi sum to 1, so Moran’s equation gives dimH S = 1. An
easy exercise (it is clear which coverings to use) shows that H1(S) <∞. Thus,
the graph of T has σ-finite linear measure. (In fact, H1(S) > 0 as well, since
πX(S) has full Lebesgue measure.)

Essentially the same construction is given by Buczolich [21, Theorem 9].
He shows additionally that the set S is an “irregular” 1-set, meaning that it
intersects every continuously differentiable curve in a set of H1-measure zero.
In [20, Theorem 10], Buczolich shows also that the Takagi function is “micro
self-similar”, in the sense that the graph of T itself is a micro tangent set of
T at almost every point x ∈ [0, 1].

4 Alternative representations of T (x).

While (1.1) is arguably the simplest and certainly the most common expression
for T (x), many other representations occur in the literature, and most have
some unique advantage in proving certain things about the Takagi function or
its generalizations.

1. Dynamical systems view. To begin, put ψ(x) := 2φ(x) for x ∈ [0, 1], and
note that ψ is a special case of a “tent map”, which maps [0, 1] onto itself. It
is easy to see that we can write (1.1) as

T (x) =

∞∑
n=1

1

2n
ψ(n)(x), x ∈ [0, 1], (4.1)

where ψ(n) denotes n-fold iteration of ψ. Since
∑∞
n=1 1/2n = 1, (4.1) rep-

resents T (x) as a weighted average of the iterates of x under the chaotic
dynamical system ψ.

2. Takagi’s definition. Most authors define the Takagi function by either
(1.1) or (4.1), but it should be pointed out that Takagi himself defined T (x)
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differently. For n ∈ N, let an denote the number of binary digits among
{ε1, . . . , εn−1} that are different from εn. In other words, an = On(x) if
εn = 1, and an = In(x) if εn = 0. Takagi defined T (x) by

T (x) =

∞∑
n=1

an
2n
. (4.2)

To see that (1.1) and (4.2) are equivalent, express φ(x) in terms of the binary
expansion of x by

φ(x) =

∞∑
k=1

εk(1− ε1) + (1− εk)ε1
2k

.

This generalizes to

φ(2nx)

2n
=

∞∑
j=1

εn+j(1− εn+1) + (1− εn+j)εn+1

2n+j
. (4.3)

We can similarly write an = εnOn(x) + (1 − εn)In(x). Inserting (4.3) into
(1.1) and interchanging summations it is now easy to obtain (4.2). (This is
essentially the proof given by Lagarias and Maddock [50, Lemma 2.1].)

Kôno [44], and later Gamkrelidze [29], used a form similar to (4.2) (express-
ing an in terms of the Rademacher functions Xn(x) = (−1)εn) to investigate
probabilistic properties of the graph of T .

3. Tambs-Lyche’s definition. In 1939, Tambs-Lyche [77] gave the following
expression for T (x). Write

x =

∞∑
j=1

2−lj ,

where {lj} is a strictly increasing sequence of integers (the sum being finite if
x is dyadic). Then

T (x) =

∞∑
j=1

lj − 2(j − 1)

2lj
. (4.4)

This formula is useful for approximating solutions to the equation T (x) = y,
as shown in [6, Section 4.2].

Tambs-Lyche actually defined his function by the summation in the right
hand side of (4.4), and stated without proof that it is equivalent to (1.1).
Tambs-Lyche’s formula too has been rediscovered many times. In her thesis
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and subsequent publication [38], Kawamura used a relationship with Lebesgue’s
singular function (explained in the next section) to obtain the expression

T (x) =

∞∑
n=1

εn(x)
On(x)− In(x) + 2

2n
=

∞∑
n=1

εn(x)
n− 2(In(x)− 1)

2n
, (4.5)

which is clearly equivalent to (4.4). De Amo and Fernández-Sánchez [11] derive
(4.4) explicitly from (1.1), while Kuroda [48] deduces it directly from Takagi’s
definition (4.2). Here we give a short proof using (1.1). Recall the definition
of Tn from (3.1), and note that Tn is piecewise linear with slope Dn(x) at
all points not of the form j/2n. Moreover, T (j/2n) = Tn(j/2n). Thus, if
0 < l ≤ m and j ∈ Z+, we have

T

(
j

2l
+

1

2m

)
− T

(
j

2l

)
=

1

2m
Dm

(
j

2l

)
=
m− 2sj

2m
, (4.6)

where sj is the number of 1’s in the binary expansion of j. This immediately
gives T (1/2m) = m/2m, and a straightforward induction argument yields

T

 n∑
j=1

2−lj

 =

n∑
j=1

lj − 2(j − 1)

2lj

for all n ∈ N and integers 1 ≤ l1 < l2 < · · · < ln. The continuity of T gives
(4.4).

As a by-product of (4.6) (putting l = m and summing over j), we obtain
the formula given by Krüppel [45]:

T

(
k

2m

)
=

1

2m

k−1∑
j=0

(m− 2sj), (4.7)

which was used in Section 2.1.

4. Random walk definition. Lagarias and Maddock [50, Section 2] use (4.2)
to express T (x) in terms of the sequence {Dn(x)} as follows:

T (x) =
1

2
− 1

4

∞∑
n=1

(−1)εn+1
Dn(x)

2n
. (4.8)

This formula is useful in the study of level sets, because one easily infers from
it the following important fact.
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Lemma 4.1. If |Dn(x)| = |Dn(x′)| for every n, then T (x) = T (x′).

Note that {Dn(x)}n is a symmetric simple random walk when x is chosen
at random in [0, 1]. Thus, (4.8) expresses T as a functional of a random walk.

5. Fourier series. While the definition (1.1) gives T (x) directly as a
Schauder series, it is also relatively easy to compute the Fourier series for
T (x). Hata and Yamaguti [31] point out that

φ(x) =
1

4
− 2

π2

∑
k∈N, k odd

cos 2πkx

k2
,

and this results in the Fourier series

T (x) =
1

2
− 2

π2

∞∑
m=1

Am cos 2πmx,

where Am = (2nk2)−1 if m = 2nk, with k odd. The Fourier coefficients Am
satisfy 1/m2 ≤ Am ≤ 1/m. In particular, the Fourier series of T (x) is non-
lacunary, in contrast to the Weierstrass function which is defined as a lacunary
Fourier series.

5 Functional and difference equations.

De Rham [63] was the first to point out that the Takagi function on [0, 1]
satisfies the functional equation

f(x) =

{
(1/2)f(2x) + x, 0 ≤ x ≤ 1/2,

(1/2)f(2x− 1) + (1− x), 1/2 ≤ x ≤ 1.
(5.1)

Kairies, Darsow and Frank [36] observed (5.1) and proved the following results:

1. Any function f : [0, 1]→ R satisfying (5.1) is nowhere differentiable, and
coincides with T on the dyadic rationals.

2. If f : [0, 1]→ R satisfies (5.1) and is bounded, then f = T .

3. A recursive relation for the moments Mn =
∫ 1

0
xnf(x) dx of any function

f satisfying (5.1) is given by

M0 = 1/2, Mn =
1

(n+ 1)(n+ 2)
+

1

2(2n+1 − 1)

n−1∑
k=0

(
n

k

)
Mk.
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(The paper [36] was inadvertently printed before the page proofs were
received; a list of corrections is given in [24].) Later, extending the results of
[36], Kairies [35] gave a list of seven functional equations satisfied by T (x), and
investigated which subsets of these equations imply that a bounded function
f satisfying them must in fact be the Takagi function.

In 1984, Hata and Yamaguti [31] started a new direction by regarding
the Takagi function and related functions as solutions of discrete boundary
value problems. This was quite natural, since (1.1) gives T (x) directly as a
Schauder series, and from the Schauder expansion of a function one quickly
obtains an infinite system of difference equations which the function satisfies.
Using these difference equations, Hata and Yamaguti showed that the Tak-
agi function is closely related to another special function, namely Lebesgue’s
singular function, which plays an important role in many areas of probability.
Kawamura [38] later adopted their approach and found a close relationship
between other nowhere differentiable functions, singular functions, and self-
similar sets in the plane.

First, we briefly recall Schauder expansions. Whereas a function’s Fourier
expansion uses trigometric functions, the Schauder expansion uses the “tent”
functions

Sn,i(x) =

{
2φ(2nx), if i

2n ≤ x ≤
i+1
2n

0, otherwise,

for 0 ≤ i ≤ 2n− 1 and n ∈ Z+. Thus, the graph of Sn,i is the regular isosceles
triangle of unit height whose base is the interval [i/2n, (i+ 1)/2n].

It is well known that every continuous function f : [0, 1] → R which van-
ishes at 0 and 1 has a unique Schauder expansion of the form

f(x) =

∞∑
n=0

2n−1∑
i=0

an,iSn,i(x), (5.2)

where

an,i = f

(
2i+ 1

2n+1

)
− 1

2

{
f

(
i

2n

)
+ f

(
i+ 1

2n

)}
.

Applying this to the Takagi function, we immediately obtain

Theorem 5.1 (Hata-Yamaguti, 1983). The Takagi function T (x) is the unique
continuous solution of the discrete boundary value problem

T

(
2i+ 1

2n+1

)
− 1

2

{
T

(
i

2n

)
+ T

(
i+ 1

2n

)}
=

1

2n+1
, (5.3)
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where 0 ≤ i ≤ 2n−1, n ∈ Z+, and the boundary conditions are T (0) = T (1) =
0.

Next, recall Lebesgue’s singular function. Imagine flipping an unfair coin
with probability r ∈ (0, 1) of heads and probability 1 − r of tails. Note that
r 6= 1/2. Let the binary expansion of t ∈ [0, 1]: t =

∑∞
n=1 ωn/2

n be determined
by flipping the coin infinitely many times. More precisely, ωn = 0 if the n-th
toss is heads and ωn = 1 if it is tails. We define Lebesgue’s singular function
Lr(x) as the distribution function of t:

Lr(x) := Prob{t ≤ x}, 0 ≤ x ≤ 1.

With the function Lr is associated a probability measure µr on [0, 1], called
the binomial measure, under which the binary digits of a number t ∈ [0, 1]
are independent, taking the values 0 and 1 with probabilities r and 1 − r,
respectively.

It is well-known that Lr(x) is strictly increasing, but its derivative is zero
almost everywhere. De Rham [64] showed that Lr(x) is the unique continuous
solution of the functional equation

Lr(x) =

{
rLr(2x), 0 ≤ x ≤ 1

2 ,

(1− r)Lr(2x− 1) + r, 1
2 ≤ x ≤ 1.

(5.4)

In particular, the graph of Lr is self-affine. Hata and Yamaguti showed that
Lr(x) is also the unique continuous solution of the following discrete boundary
value problem:

Lr

(
2i+ 1

2n+1

)
= (1− r)Lr

(
i

2n

)
+ rLr

(
i+ 1

2n

)
, (5.5)

where 0 ≤ i ≤ 2n − 1 and n ∈ Z+. The boundary conditions are Lr(0) = 0
and Lr(1) = 1. From (5.3) and (5.5), they proved the important and useful
relationship

1

2

∂

∂r
Lr(x)

∣∣∣∣
r=1/2

= T (x). (5.6)

This identity can also be obtained from the following expression for Lr(x),
due to Lomnicki and Ulam [54]:

Lr(x) =
r

1− r

∞∑
n=1

εnr
n−In(1− r)In . (5.7)

Differentiating this with respect to r and setting r = 1/2 gives the right hand
side of (4.5), and hence we have (5.6). (In [38] the reverse approach is taken,
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and (4.5) is derived from (5.7) using (5.6).) We note that (5.6) also leads to a
very short proof of (4.7): It is easy to see that

Lr

(
k

2m

)
=

k−1∑
j=0

rm−sj (1− r)sj ,

where sj is the number of 1’s in the binary expansion of j. Differentiating
gives (4.7).

The functional equations (5.1) and (5.4) are both special cases of the gen-
eral family of functional equations studied by de Rham [64]. De Rham consid-
ers the Takagi function and Lebesgue’s singular function in separate papers,
and does not appear to have noticed the relationship (5.6).

5.1 Evaluating T (x) for rational x

One particular use of the functional equation (5.1) is to the exact evaluation
of T (x) for rational x. As noted by Knuth [41, p. 32, p. 103], T (x) is rational
whenever x is, and by applying (5.1) repeatedly one obtains a system of linear
equations which is easily solved. We give the details here, and also examine
the number of iterations required to compute T (x).

Let x = p/q, where p, q ∈ N with gcd(p, q) = 1. Assume first that p < q/2.
Then, by (5.1) and the symmetry of T , we can write T (p/q) = 1

2T (p′/q)+(p/q),
where p′ = min{2p, q − 2p}. If q is even, the fraction p′/q simplifies. If q is
odd, then gcd(p′, q) = 1 again. These ideas lead to the following two-stage
algorithm for evaluating T (p/q):

Step 1. Let q = 2mq′, with q′ odd, and assume gcd(p, q) = 1. Put q0 := q,
p0 := min{p, q−p}, and qj := qj−1/2, pj := min{pj−1, qj−pj−1}, j = 1, . . . ,m.
Let p′ := pm. Then, after applying the functional equation m times, putting
the results together and simplifying, we obtain

T

(
p

q

)
=

1

2m
T

(
p′

q′

)
+

1

q

m−1∑
j=0

pj .

So it remains to compute T (p/q) for odd q.

Step 2. Let q be odd and gcd(p, q) = 1. Put p0 := min{p, q− p}, and pj :=
min{2pj−1, q−2pj−1}, j = 1, 2, . . . . Note that T (pj/q) = 1

2T (pj+1/q)+(pj/q)
for each j ≥ 0. Since pj ≡ ±2pj−1 (mod q), we have pj ≡ ±2jp0 (mod q)
for each j, so there will be some positive integer j such that pj = p0. The
smallest such j is the number k := min{j ∈ N : 2j ≡ ±1 (mod q)}. Such a j
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always exists by Euler’s theorem, and k ≤ ϕ(q), where the Euler function ϕ(q)
denotes the number of integers in {1, 2, . . . , q − 1} relatively prime to q. Let
ordq(2) denote the order of 2 in the group of units of Z/qZ. That is, ordq(2) is
the smallest positive integer n such that 2n ≡ 1 (mod q). It is an elementary
exercise in number theory to show that

k =

{
1
2 ordq(2), if q|2j + 1 for some j ∈ N
ordq(2), otherwise.

It now takes precisely k iterations of the functional equation to express T (p/q)
in terms of itself. Solving for T (p/q) and simplifying, we eventually obtain

T

(
p

q

)
=

1

q(2k − 1)

k−1∑
j=0

2k−jpj .

The inverse problem is also interesting: given a rational y in the range of
T , is there a rational point x ∈ [0, 1] such that T (x) = y? This question is
still open. Knuth [41, p. 103] gives an algorithm which produces solutions of
the equation T (x) = y for many rational y. This involves starting with an
initial value v and walking along a particular directed graph, updating v by
some fixed arithmetic operation at each node. Which node may be visited
next depends not only on the graph but also on whether the transition will
keep the value of v within certain bounds. The algorithm terminates when one
visits a node for the second time with the same value of v. It is, however, not
known whether the algorithm always terminates. A different method which
gives solutions for many (but not all) rational y is given by Allaart [6, Section
4.2].

6 Level sets.

In this section we consider the level sets

L(y) := {x ∈ [0, 1] : T (x) = y}, y ∈ R.

Of course, L(y) = ∅ if y 6∈ [0, 2/3]. The simplest level set is L(0) = {0, 1}.
At the other extreme, in view of Theorem 3.1, we have that L(2/3) is an
uncountable (Cantor) set of dimension 1/2. In general, L(y) can be finite,
countably infinite or uncountable, and which of these three possibilities is
the most common depends on the precise mathematical meaning assigned the
word “most”. If L(y) is finite, it must have an even number of points by the
symmetry of the graph of T , but any even positive number is possible. If L(y)



26 Pieter C. Allaart and Kiko Kawamura

is uncountable, its Hausdorff dimension can be zero or strictly positive, but
never more than 1/2.

Level sets are partitioned into easier to understand pieces called local level
sets. Each local level set is either finite or a Cantor set, and the members of
a local level set are easily obtained from one another by certain combinatorial
operations (“block flips”) on their binary expansions. A level set can consist
of finitely many, countably infinitely many, or uncountably many local level
sets. As with the cardinalities of the level sets, which of these three is the
most common depends on how one defines “most”. Many questions about the
level sets of T remain open.

6.1 Finite or infinite?

The level sets of the Takagi function and related functions were first considered
by Anderson and Pitt [12]. Their Theorem 7.3, which applies to a large class
of functions, implies that L(y) is countable for almost every y ∈ [0, 23 ]. This
result was improved recently by Buczolich [21], who focused on the Takagi
function itself and concluded the following.

Theorem 6.1 (Buczolich 2008). For almost every ordinate y, L(y) is finite.

Sketch of proof. (Allaart 2011). We sketch a proof here that is slightly
different from the original proof by Buczolich, and which uses the notion of
humps and leading humps defined in Section 3. For the full details, see [5,
Section 3]. Observe first that Lemma 4.1 immediately implies the following.

Lemma 6.2. For every hump H there is a leading hump H ′ of the same
order and generation as H, such that πY (H) = πY (H ′). On the other hand,
for every leading hump H ′ there are only finitely many humps H such that
πY (H) = πY (H ′).

Next, define a set

X∗ := [0, 1]\
⋃

x0∈B1

I(x0).

In other words, X∗ is obtained by removing all the dyadic closed intervals
above which the graph of T has a first-generation hump. The importance of
X∗ is made clear by the next lemma, which we state here without proof.

Lemma 6.3. The Takagi function T maps X∗ onto [0, 12 ]. Moreover, T is
strictly increasing on X∗ ∩ [0, 12 ).

Lemmas 6.2 and 6.3 can be used to prove the crucial fact that L(y) is finite
whenever the horizontal line ly at level y intersects only finitely many leading
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humps. Using this fact, the proof of the theorem can be completed as follows.
If y is chosen at random from [0, 23 ] and H is a leading hump of order m, the

probability that the line ly intersects H is (1
4 )
m

. Letting H′ denote the set of
all leading humps, this gives∑

H∈H′
P(y ∈ πY (H)) =

∞∑
m=0

Cm

(
1

4

)m
<∞,

since there are Cm leading humps of order m by Lemma 3.5, and Cm ∼
4m/(m3/2

√
π). Thus, by the Borel-Cantelli lemma, the probability that ly

intersects infinitely many leading humps is zero. Therefore, L(y) is finite with
probability 1.

Despite the above result, the average cardinality of the level sets of T is
infinite. That is, ∫ 2/3

0

|L(y)| =∞.

This was shown by Lagarias and Maddock [51]. An alternative proof based
on Lemma 6.3 is given by Allaart [5].

Whereas the above results are probabilistic in nature, a quite different
picture emerges when one views the level sets of T from the perspective of
Baire category. Define the sets

Sco∞ := {y ∈ [0, 23 ] : L(y) is countably infinite},
Suc∞ := {y ∈ [0, 23 ] : L(y) is uncountably infinite}.

Theorem 6.4 (Allaart 2011). The set Suc∞ has the decomposition Suc∞ = E∪M ,
where E is a dense Gδ set, and M is a countable set disjoint from E which
consists exactly of the local maximum ordinate values of T . As a result, the
set {y ∈ [0, 23 ] : L(y) is countable} is of the first category.

For the proof and a more explicit description of the set E, see Allaart
[5, Section 4]. There it is also shown that Suc∞ does not contain any dyadic
rational ordinates y. Note that the residual set Suc∞ has Lebesgue measure zero
by Theorem 6.1. However, it has full Hausdorff dimension one; see Lagarias
and Maddock [51].

The set Sco∞ is rather more difficult to describe. It contains the images of
all dyadic rational abscissas x in [0, 1], so it is dense in [0, 23 ]. But it is not
known whether it contains more.

Closely related to the level sets of T is the occupation measure defined
by µT (A) = λ({x ∈ [0, 1] : T (x) ∈ A}), for Borel sets A ⊂ R. Buczolich
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[21] shows that µT is singular with respect to Lebesgue measure. This is
witnessed by the set S from Section 3.2: It is relatively straightforward to
show that |L(y)| =∞ when y ∈ πY (S), so Theorem 6.1 implies λ(πY (S)) = 0.
On the other hand, πX(S) has full measure in [0, 1], because almost every
x ∈ [0, 1] has the property that Dn(x) = 0 for infinitely many n. Consequently,
µT (πY (S)) = λ(πX(S)) = 1.

6.2 Cardinalities of finite level sets

Since almost all level sets are finite in the Lebesgue sense, it is natural to ask
what these finite cardinalities can be. By the symmetry of T and the fact
that L(T ( 1

2 )) = L( 1
2 ) is countably infinite, the number of points in each finite

level set must be even. Allaart [6] shows that, vice versa, every positive even
number occurs. In fact, we have the following. Let

S2n := {y : |L(y)| = 2n}, n ∈ N.

Theorem 6.5 (Allaart 2011). For each n ∈ N, S2n is uncountable but nowhere
dense.

It is not known whether S2n has positive Lebesgue measure for each n.
The argument used in the proof of Theorem 6.5 unfortunately does not give
enough to prove this stronger statement. As a partial result in this direction,
however, Allaart [6] shows that λ(S2n) > 0 whenever n is either a power of
2, or the sum or difference of two powers of 2. And for the specific case of
S2, fairly tight bounds on its Lebesgue measure can be given which show, not
surprisingly perhaps, that 2 is the most common finite cardinality.

Theorem 6.6 (Allaart 2011). The Lebesgue measure λ(S2) of S2 satisfies

5

12
< λ(S2) <

35

72
.

Since the graph of T has height 2/3, this implies that if an ordinate y is
chosen at random in the range of T , the probability that L(y) contains exactly
two points lies between 62.5% and 72.9%. The proof of Theorem 6.6 is based
on a simple counting argument which uses the fact, from Lemma 3.5, that the
graph of T contains exactly Cm−1 first-generation leading humps. See [6] for
the details.

Which specific ordinates y satisfy |L(y)| = 2? It is clear from the graph
that y must be less than 1

2 . Allaart [6] gives two sufficient conditions, the first
condition being directly in terms of the binary expansion of y.
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Theorem 6.7 (Allaart 2011). Let 0 < y < 1
2 such that y is not a dyadic

rational, and suppose the binary expansion of y does not contain a string
of three consecutive 0’s anywhere after the occurrence of its first 1. Then
|L(y)| = 2.

Thus, for instance, the set S2 includes the points y = 1/3 = 0.(01)∞,
y = 1/7 = 0.(001)∞, and y = 1/40 = 0.05(1100)∞.

The second condition, which is neither weaker nor stronger than the first,
involves the orbit of y under iteration of the map

Ψ(x) =

{
0, if y = 0

4
(
y − k

2k

)
, if k

2k
≤ y < k−1

2k−1 , k = 3, 4, . . . .

Note that Ψ maps [0, 12 ) onto itself. Let Ψn denote the nth iterate of Ψ,
with Ψ0(y) := y. For n = 0, 1, 2, . . . , let kn be that number k ≥ 3 for which
k/2k ≤ Ψn(y) < (k − 1)/2k−1, or put kn =∞ if Ψn(y) = 0.

Theorem 6.8 (Allaart 2011). Let 0 ≤ y < 1
2 . If kn+1 ≤ 2kn for every n,

then |L(y)| = 2.

This gives many more examples. For instance, the condition of the theo-
rem obviously holds for the fixed points of Ψ, which are y∗k := k/(3 · 2k−2),
k ≥ 4. Perhaps unexpectedly, this shows that infinitely many dyadic ratio-
nal ordinates belong to S2, the first three being 1/8, 3/27 and 1/28. More
generally, of course, many of the periodic points of Ψ satisfy kn+1 ≤ 2kn and
are therefore in S2. For instance, y = 1/11 does not satisfy the “no 3 zeros”
condition of Theorem 6.7, but it has (kn)n≥0 = (7, 6, 5, 5, 6, 5, 5, 4, 4, 4)

∞
, and

since 7 ≤ 2 · 4, Theorem 6.8 yields 1/11 ∈ S2.
Allaart [6] actually gives a slightly weaker condition than the one given

in Theorem 6.8, which includes lower order terms, and also gives an accom-
panying necessary condition in terms of the sequence (kn). Together these
conditions cover most cases, but still leave a small gap.

Theorems 6.7 and 6.8 are corollaries to the following, precise but somewhat
abstract, characterization of membership in S2.

Theorem 6.9 (Allaart 2011). Let 0 < y < 1
2 . Then |L(y)| = 2 if and only if

Φ(Ψn(y)) >
2

3
for all n ≥ 0,

where

Φ(y) :=

{
0, if y = 0,

4k(y − tk), if k
2k
≤ y < k−1

2k−1 , k = 3, 4, . . . .
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6.3 Hausdorff dimension

Recall from Section 3 that the maximum value of T is 2/3, and L(2/3) is a
Cantor set of Hausdorff dimension 1/2. One might ask whether there exist any
level sets with Hausdorff dimension strictly greater than 1/2. This question
was first addressed by Maddock [55], who proved that the intersection of the
graph of T with any line of integer slope has Hausdorff dimension at most
0.668. In particular, 0.668 is an upper bound for the dimensions of the level
sets. Maddock himself conjectured that the real maximum is 1/2. The issue
was finally settled by de Amo et al. [9].

Theorem 6.10 (de Amo et al. 2011). For each ordinate y, the box-counting
dimension of L(y) is at most 1/2, and hence, dimH L(y) ≤ 1/2.

The proof, which is surprisingly elementary, makes good use of the self-
affinity of the graph of T and uses a cleverly devised induction argument.

A direct consequence of Theorem 6.1 is that almost all level sets (in the
Lebesgue sense) have Hausdorff dimension zero. On the other hand, Lagarias
and Maddock [51] have shown that the set

{y : dimH L(y) > 0}

has full Hausdorff dimension one. This is accomplished by putting a sequence
of subsets of the range [0, 23 ] in one-to-one bi-Lipschitz correspondence with
certain well-behaved subsets of the domain [0, 1] whose Hausdorff dimension
is easy to calculate and gets arbitrarily close to 1.

It is not known exactly which numbers occur as the Hausdorff dimension
of some level set of T .

6.4 Local level sets

Lagarias and Maddock [50, 51] introduce the concept of a local level set of the
Takagi function. They first define an equivalence relation on [0, 1] by

x ∼ x′ def⇐⇒ |Dj(x)| = |Dj(x
′)| for each j ∈ N. (6.1)

The local level set containing x is defined by

Llocx := {x′ : x′ ∼ x}.

Note that by Lemma 4.1, x ∼ x′ implies T (x) = T (x′), so each local level
set is contained in some level set. Lagarias and Maddock point out that each



The Takagi Function: a Survey 31

local level set is either finite or a Cantor set. Members of the same local
level set can be obtained from one another by simple operations on their
binary expansions, called “block flips” in [50]. This works as follows. Let
Z(x) = {n ≥ 0 : Dn(x) = 0} ∪ {∞}. For any two elements k, l ∈ Z(x) with
k < l ≤ ∞, form the point x′ with binary expansion x′ =

∑∞
n=1 2−nε′n by

setting ε′n = εn if n ≤ k or n > l, and ε′n = 1 − εn if k < n ≤ l. Then
|Dn(x′)| = |Dn(x)| for each n, and so x′ ∈ Llocx . Every element of Llocx can be
obtained from x by at most countably many operations of this type.

One of the results in [50] concerns the average number of local level sets
contained in a level set chosen at random. Let N loc(y) denote the number of
local level sets contained in L(y).

Remark 6.11. Lagarias and Maddock [50] define Llocx slightly differently, ef-
fectively viewing local level sets as subsets of the Cantor space {0, 1}N. How-
ever, this distinction does not affect the number of local level sets contained
in any level set, which is all we are concerned with in this survey.

Theorem 6.12 (Lagarias and Maddock, 2010). The expected number of local
level sets contained in a level set L(y) with y chosen at random from [0, 23 ] is
3
2 . More precisely,

E[N loc(y)] :=
3

2

∫ 2/3

0

N loc(y) dy =
3

2
.

A simpler proof of this theorem is given by Allaart [5]. In that paper, local
level sets are also examined from the category point of view. The result is in
marked contrast with the conclusion of Theorem 6.12. Define the sets

Sloc∞ := {y : L(y) contains infinitely many different local level sets},
Sloc,uc∞ := {y : L(y) contains uncountably many different local level sets}.

Theorem 6.13 (Allaart 2011). (i) The set Sloc∞ is residual (co-meager) in
[0, 23 ].

(ii) The set Sloc,uc∞ is dense in [0, 23 ], and intersects any subinterval of [0, 23 ]
in a continuum.

6.5 Open problems

A number of interesting questions about the level sets of the Takagi function
remain open. We give a brief selection here, and refer to Lagarias [49] for
additional problems.
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Problem 6.1. Describe the set Sco∞ of ordinates y with a countably infinite
level set. Or less ambitiously, determine whether Sco∞ contains any points
which are not the image of a dyadic rational.

Problem 6.2. (Knuth [41, p. 32, Exer. 83]) Does there exist, for each rational
ordinate y ∈ [0, 23 ], a rational abscissa x ∈ [0, 1] such that T (x) = y? If x is
irrational but y = T (x) is rational, must L(y) be uncountable?

Problem 6.3. Determine the probability distribution of |L(y)|. In other
words, find λ(S2n) for each n ∈ N. This could be very difficult, but the weaker
problem of showing that λ(S2n) > 0 for every n (or finding a counterexample)
may be solvable.

Problem 6.4. Determine the probability distribution of N loc(y), the number
of local level sets contained in L(y). This too may be difficult.

Problem 6.5. The set Sloc,uc∞ intersects each subinterval of [0, 23 ] in a contin-
uum. Is it residual? Does it have Hausdorff dimension 1? Weaker than the
last question, does Sloc∞ have Hausdorff dimension 1?

Problem 6.6. (Lagarias [49]) Determine the dimension spectrum of T . That
is, determine the function

f(α) := dimH{y : dimH L(y) ≥ α}.

7 Generalizations.

7.1 The Takagi-van der Waerden functions

An immediate generalization of the Takagi function is the sequence of functions

fr(x) :=

∞∑
n=0

1

rn
φ(rnx), r = 2, 3, . . . .

Thus, f2 is the Takagi function and f10 is van der Waerden’s function. Billings-
ley’s argument (with only trivial modifications) shows that each fr is nowhere
differentiable. Van der Waerden’s original and elegant proof for the case r = 10
works for all even r ≥ 4, but not for odd r or for r = 2.

Each fr is also Hölder continuous of any order α < 1. This follows from
the more general result of Shidfar and Sabetfakhri [70], but is also easy to
prove directly. In fact, by analogy with (2.4), we have

−1 ≤ lim inf
h→0

fr(x+ h)− fr(x)

h logr(1/|h|)
≤ lim sup

h→0

fr(x+ h)− fr(x)

h logr(1/|h|)
≤ 1.
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It seems likely that fr has an infinite derivative at many points, but we have
not found any detailed study of this question in the literature.

Generalizing Kahane’s result [34], Baba [13] determines for each r ≥ 2 the
maximum value Mr of fr and the set of points Er = {x ∈ [0, 1] : fr(x) = Mr}.

Theorem 7.1 (Baba 1984). (i) If r is odd, then Er = {1/2} and Mr =
r/(2r − 2).

(ii) If r is even, then Er is a Cantor set of dimension 1/2, and Mr =
r2/(2r2 − 2).

7.2 The Takagi class

Another direct generalization of the Takagi function is obtained by replacing
the factor 1/2n in (1.1) with a general (real) constant cn. This gives functions
of the form

f(x) =

∞∑
n=0

cnφ(2nx). (7.1)

It is immediately clear that the series converges uniformly, and hence defines
a continuous function f , when

∑∞
n=0 |cn| <∞. Hata and Yamaguti [31] show

that this condition is also necessary, and call the collection of functions of the
form (7.1) the Takagi class. They note that each member of the Takagi class
solves a discrete version of the Dirichlet boundary value problem involving the
“discrete Laplacian”

∆i,nf := f

(
i

2n

)
+ f

(
i+ 1

2n

)
− 2f

(
2i+ 1

2n+1

)
,

in the sense that ∆i,nf = −cn for n ≥ 0 and i = 0, 1, . . . , 2n − 1, with
f(0) = f(1) = 0.

Beside the Takagi function itself, the Takagi class contains a number of
interesting examples from the classical literature. For instance, Faber [26]
introduced the highly lacunary series

F (x) =

∞∑
k=1

1

10k
φ(2k!x),

and showed that F has no derivative, finite or infinite, at any point. More-
over, he proved that F does not satisfy a Lipschitz condition of any or-
der. Kahane [34] likewise constructs lacunary series of the form f(x) =∑∞
ν=1 pν2−kνφ(2kνx), and shows how pν and kν can be chosen so that the

modulus of continuity of f is majorized (respectively minorized) by a given
function satisfying appropriate conditions.
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Many of the functions in the Takagi class are fractals, in the sense that the
Hausdorff dimension of their graph is strictly greater than one. Besicovitch
and Ursell [16] showed that, if f is any function satisfying a Lipschitz condition
of order δ ∈ (0, 1], then

1 ≤ dimH(f) ≤ 2− δ, (7.2)

where dimH(f) denotes the Hausdorff dimension of the graph of f . They show
that within these bounds any dimension is possible. The implications of their
work for the Takagi class are collected in the following theorem.

Theorem 7.2 (Besicovitch and Ursell, 1937). Let f(x) =
∑∞
n=0 2−δanφ(2anx),

where 0 < δ < 1 and an+1 − an ≥ A for some constant A > 0. Then f is
Lipschitz of order δ but of no smaller order, and:

(i) If an+1/an →∞, then dimH(f) = 1.

(ii) If an = µn where µ > 1, then 1 < dimH(f) < 2 − δ. Moreover, for
each d ∈ (1, 2− δ) there exists µ > 1 such that, if an = µn, then dimH(f) = d.

(iii) If an+1/an → 1 but an+1 − an →∞, then dimH(f) = 2− δ.

Examples of (i), (ii) and (iii) are, respectively: an = 2n
2

, an = 2n, and
an = n2. Note that in all three cases the series (7.1) is lacunary. Generally
speaking, the more lacunary the series, the smaller the dimension of the graph
is. When the series is extremely lacunary as in (i), the fine structure of the
graph virtually disappears and the function f becomes “almost differentiable”.
But the above theorem does not say anything about the important (nonlacu-
nary) case an = n. In other words, it does not give the dimension of the
functions

gδ(x) =

∞∑
n=0

2−δnφ(2nx), 0 < δ < 1. (7.3)

This boundary case was addressed more than half a century later by Ledrappier
[52], using modern tools that were not yet available to Besicovitch and Ursell.

Here too gδ is Lipschitz of order δ. Ledrappier showed that typically, gδ
attains the upper bound in (7.2). More precisely, he proved that dimH(gδ) =
2−δ whenever 2δ−1 is an Erdős number. A number λ ∈ (0, 1) is called an Erdős
number if the probability distribution of

∑∞
n=0 λ

nεn (the so-called Bernoulli
convolution) has Hausdorff dimension 1, where {εn} are i.i.d. random variables
taking the values 1 and −1 each with probability 1/2. Later progress on
Bernoulli convolutions due to Solomyak [71] implies that almost every λ ∈
(1/2, 1) is Erdős, and hence, by Ledrappier’s result, dimH(gδ) = 2 − δ for
almost every δ ∈ (0, 1). Ledrappier’s approach is dynamical, viewing the graph
of gδ as the repeller for some expanding self-map of [0, 1]× R. The deep and
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difficult proof uses ideas from smooth ergodic theory and a Marstrand-type
lemma concerning projections of measures.

Recently, Katzourakis [37] has reported that, with an = 2νn for a pa-
rameter ν ∈ N, the function f in Theorem 7.2 can be used to construct a
“pathological” solution to the nonlinear Aronsson partial differential equation
and to the Infinity-Laplace PDE system.

For δ > 1, the function gδ defined by (7.3) is Lipschitz and hence almost
everywhere differentiable. When 1 ≤ δ ≤ 2, gδ turns out to be the extremal
function in a certain approximate convexity problem; see Section 8.3 below.

After the publication of Hata and Yamaguti’s paper, Kôno [44] investi-
gated the Takagi class in greater generality. Perhaps the most striking result,
concerning the differentiability of f , is the following:

Theorem 7.3 (Kôno 1987). Let f be defined by (7.1), and put an := 2ncn.
(i) If {an} ∈ `2, then f is absolutely continuous and hence differentiable

almost everywhere.
(ii) If {an} 6∈ `2 but limn→∞ an = 0, then f is nondifferentiable at almost

every point of [0, 1], but f is differentiable on an uncountably large set, and
the range of f ′ is R.

(iii) If lim supn→∞ |an| > 0, then f is nowhere differentiable.

Kôno [44] also considers the oscillations of f (stating more general forms of
Theorems 2.3 and 2.4), and proves furthermore that the Takagi class contains
only one function which is smooth in Zygmund’s sense. That is, if

f(x+ h) + f(x− h)− 2f(x) = o(h) as h ↓ 0 (7.4)

for all x ∈ (0, 1), then cn = a/4n for some constant a, and f(x) = 2ax(1− x).

A special case of the Takagi class arises when one takes cn = ±1/2n for all
n in (7.1). Precisely, let r = (r0, r1, . . . ) be a sequence with rn ∈ {−1, 1} for
each n, and define

Fr(x) =

∞∑
n=0

rn
2n
φ(2nx). (7.5)

For example, the alternating Takagi function

T̂ (x) =

∞∑
n=0

(−1)n
φ(2nx)

2n
, (7.6)

depicted in Figure 4, is of the above form. It was introduced by Kawamura
[38], who showed that it has a direct connection with a family of self-similar
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Figure 4: The alternating Takagi function

sets in the plane determined by two contractions which includes the Koch
curve and Pólya’s space-filling curve, among others. (Similarly, she showed
that the Takagi function itself is related to another family of self-similar sets,
which includes the Lévy dragon curve as an example.)

In general, (7.5) identifies an uncountably large class of functions which
are “close” to the Takagi function T in the sense that their partial sums are
all piecewise linear with integer slopes that change by ±1 at each step. It
should therefore be no surprise that these functions share a large number of
properties with T . For instance, Allaart [5, Section 5] shows that many of the
results from Section 6 concerning level sets hold for arbitrary Fr: Almost all
level sets of Fr are finite, but their average cardinality is infinite and the set
of ordinates y with uncountably large level sets is residual in the range of Fr.

An interesting random version of the Takagi function is obtained by taking
the components of r to be independent random variables with P(rn = 1) = p
and P(rn = −1) = 1 − p, where 0 ≤ p ≤ 1. The maximum value M of Fr is
then a random variable, and the setM := {x ∈ [0, 1) : F (x) = M} is a random
set. Allaart [2] determines the probability distributions of M and the size of
M. If p < 1/2, the distribution of M is purely atomic and |M| is almost
surely finite, with range {2l(2m − 1) : l ∈ Z+,m ∈ N}. (For instance, one
can have exactly 24 maximum points with positive probability.) If p ≥ 1/2,
the distribution µ of M is singular continuous, and M is a Cantor set with
almost-sure Hausdorff dimension (2p − 1)/2p. In the latter case, Allaart also
determines the Hausdorff dimension and multifractal spectrum of µ.
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7.3 The Zygmund spaces Λ∗d, λ
∗
d and Λ∗d,1

In 1945, Zygmund [83] introduced the class λ∗ of “smooth” functions of period
1, i.e. those functions f satisfying (7.4) uniformly in x, and the wider class Λ∗

of “quasismooth” functions of period 1, which satisfy (7.4) with O(h) replacing
o(h). Zygmund studied various properties of functions in these classes, and
characterized them in terms of uniform approximation by polynomials.

In 1989, Anderson and Pitt [12] introduced the larger classes λ∗d and Λ∗d of
periodic functions satisfying a weaker form of smoothness defined in terms of
differences over dyadic intervals. These classes have simple characterizations
in terms of the Schauder expansions of their members. Recall that every
continuous function f of period 1 which vanishes at 0 has on [0, 1) a unique
Schauder expansion of the form (5.2). For easier comparison with the Takagi
class, we will write the Schauder expansion in the form

f(x) =

∞∑
n=0

rn(x)

2n
φ(2nx), (7.7)

where rn(x) depends only on the first n binary digits of x. More precisely,
rn(x) = Rn(ε1, . . . , εn), where x =

∑∞
n=0 2−nεn and εn ∈ {0, 1}. The classes

Λ∗d and λ∗d are defined as follows: f ∈ Λ∗d if and only if there exists a uniform
bound M such that |rn(x)| < M for all n and all x; and f ∈ λ∗d if and only if
rn(x)→ 0 uniformly in x.

Anderson and Pitt [12] show that Λ∗ ⊂ Λ∗d and λ∗ ⊂ λ∗d. The Takagi
function is an example of a function which is in Λ∗d but not in Λ∗. On the
other hand, as shown by Abbott et al. [1], the alternating Takagi function
T̂ belongs to Λ∗. In general, functions in Λ∗ can have corners but no cusps,
whereas functions in Λ∗d can have logarithmic cusps. It is shown in [12] that
every member f of Λ∗d is Lipschitz of order h log(1/h). That is, there is a
constant C such that, for all 0 ≤ x < x+ h ≤ 1 with h sufficiently small,

|f(x+ h)− f(x)| ≤ Ch log(1/h).

Another result in [12] is that the graph of every f ∈ Λ∗d is of σ-finite linear
measure (see Section 3). With regard to level sets L(y) = {x ∈ [0, 1) : f(x) =
y}, Anderson and Pitt prove that (i) if f ∈ Λ∗d, then L(y) is countable for
almost every y; and (ii) if f ∈ λ∗d, then L(y) is finite for almost every y. It
does not appear to be known whether the condition f ∈ Λ∗d gives enough
regularity to the graph of f in order that L(y) be finite for almost all y.

The specific case of (7.7) where |rn(x)| is constant in x for each n was
studied by Allaart [3]. We shall call the collection of such functions the flexible
Takagi class. It is an immediate generalization of the Takagi class in which the
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Figure 5: A smooth function in the flexible Takagi class, defined by (7.8).

individual “tents” at each level can point either upward or downward, but all
tents within a given level have the same amplitude. This guarantees uniformity
in the fine structure across the domain of f , while allowing for a wide variety
of general shapes of the graph. Indeed, Allaart [3] manages to extend all of
Kôno’s results to this more general setting. Specifically, statements (i)-(iii)
of Theorem 7.3 hold when an = |rn|. Whereas the Takagi class contains (up
to a multiplicative constant) only one function in the Zygmund space λ∗, the
flexible Takagi class contains many. For example, it contains the “bell-shaped”
curve

f(x) =


8x2, x ≤ 1/4

8x(1− x)− 1, 1/4 ≤ x ≤ 3/4

8(1− x)2, x ≥ 3/4,

(7.8)

depicted in Figure 5 and obtained by setting r0 = 1, r1 = 0, and rn =
−22−nX1X2 for n ≥ 2, where Xn(x) = (−1)εn(x) is the nth Rademacher
function. See [3, Section 4] for more examples. Whether all functions in the
flexible Takagi class that belong to λ∗ must be piecewise quadratic remains
open.

A subcollection of the flexible Takagi class in which |rn| = 1 for each n
was studied by Abbott, Anderson and Pitt [1], who denote this subcollection
by Λ∗d,1. It contains the Takagi function, as well as several other interesting
functions that have occurred in the literature. For instance, the Gray Takagi
function of Kobayashi [42], which plays a role in the analysis of Gray code
digital sums (see Section 8.1 below), belongs to Λ∗d,1. It has rn = Xn for each n.

Another example is the function T 3 of Kawamura [38], which has a connection
with certain self-similar sets in the complex plane. It has rn = X1 · · ·Xn for
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Figure 6: The Gray Takagi function (left) and Kawamura’s T 3 (right)

each n. These functions are shown in Figure 6.
For a continuous function f on [0, 1), define the dyadic difference quotients

Dnf as follows. If x ∈ [0, 1), let k be the integer such that k/2n ≤ x <
(k + 1)/2n, and put

Dnf(x) :=
f
(
k+1
2n

)
− f

(
k
2n

)
2−n

= 2n
[
f

(
k + 1

2n

)
− f

(
k

2n

)]
.

(For the Takagi function, Dnf(x) = Dn(x) as in Section 2.1; see (2.1).) Ab-
bott, Anderson and Pitt [1] consider the set SK of slow points with constant
K, that is, the set

SK := SK(f) := {x ∈ [0, 1) : |Dnf(x)| ≤ K for all n}.

They show that for f ∈ Λ∗d,1, the Hausdorff dimension of SK is given by

dimH SK = 1 + log2

(
cos

(
π

2(K + 1)

))
.

Moreover, their proof shows that SK is an s-set, with s being the above dimen-
sion. In particular, the set

⋃∞
K=1 SK of all slow points of f has full Hausdorff

dimension 1. On the other hand, for f ∈ Λ∗d,1 the set of slow points is a null
set, because {Dnf}n is a simple random walk and hence obeys the law of
the iterated logarithm. The authors of [1] are particularly interested in the
interplay between slow points and local Lipschitz properties of a function. Let
L = L(f) denote the set of points x at which f satisfies a local Lipschitz con-
dition; that is, those points x for which there exists a constant M such that
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|f(x)− f(y)| ≤M |x− y| for all y 6= x. Abbott, Anderson and Pitt show that
any f ∈ Λ∗d,1 satisfies a local Lipschitz condition at most points of SK = SK(f)
in the sense that dimH(SK ∩L) = dimH SK . For the Takagi function and the
alternating Takagi function the stronger statement SK ⊂ L holds, but this is
exceptional: If a member f ∈ Λ∗d,1 is chosen “at random”, thenHα(SK∩L) = 0
with probability 1, where α = dimH SK . Since Hα(SK) > 0, this can be in-
terpreted as saying that the “typical” f ∈ Λ∗d,1 satisfies a Lipschitz condition
at very few of its slow points.

7.4 The functions of Sekiguchi and Shiota

Following the important paper of Hata and Yamaguti [31], Sekiguchi and
Shiota [68] studied further generalizions of the Takagi function. Their first
result concerns the system of difference equations

f

(
2j + 1

2n+1

)
− (1− r)f

(
j

2n

)
− rf

(
j + 1

2n

)
= cn,

j = 0, 1, . . . , 2n − 1, n = 0, 1, 2, . . . ,

(7.9)

where r ∈ (0, 1) is a constant parameter. Let Lr(x) be Lebesgue’s singular
function, and define the generalized Schauder function Sr : R→ [0, 1] by

Sr(x) =

{
Lr(x)/r, if 0 ≤ x ≤ 1/2(
1− Lr(x)

)
/(1− r), if 1/2 ≤ x ≤ 1,

and Sr(x + 1) = Sr(x) for all x ∈ R. Sekiguchi and Shiota show that the
system (7.9) with boundary conditions f(0) = a and f(1) = b has a unique
continuous solution f on [0, 1] if and only if

∑∞
n=0 |cn| <∞, in which case

f(x) = a+ (b− a)Lr(x) +

∞∑
n=0

cnSr(2
nx).

The second result of [68] is that Lr(x) is an analytic function of r, and a
recursive construction is given in terms of the functions Sr(x) and Rademacher
functions of the (normalized) kth partial derivative

Tr,k(x) :=
1

k!

∂kLr(x)

∂rk
. (7.10)

Sekiguchi and Shiota use martingale theory (based on the connection of Lr(x)
with unfair coin tossing explained in Section 5) to prove their results. They
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show moreover that the functions Tr,k satisfy the system of difference equations

Tr,k

(
2j + 1

2n+1

)
− (1− r)Tr,k

(
j

2n

)
−rTr,k

(
j + 1

2n

)
= Tr,k−1

(
j + 1

2n

)
− Tr,k−1

(
j

2n

)
for k ≥ 1, n ≥ 0 and j = 0, 1, . . . , 2n − 1, where we set Tr,0 := Lr. Note that
by (5.6), T1/2,1 = 2T .

The special case of the functions Tr,k in which r = 1/2 was investigated
further by Allaart and Kawamura [7]. In that paper we show that T1/2,n(1−
x) = T1/2,n(x) when n is odd, and T1/2,n(1− x) = −T1/2,n(x) when n is even.
We derive from (5.7) and (7.10) the representation

T1/2,n(x) =

∞∑
k=1

εk

(
1

2

)k−n n∑
i=0

(−1)i
(
Ik − 1

i

)(
k − Ik + 1

n− i

)
, 0 ≤ x ≤ 1.

This is then used to prove that for each n, T1/2,n is nowhere differentiable and

Hölder continuous of order h
(

log(1/h)
)n

. That is, there is a constant Cn such
that, for 0 ≤ x < x+ h ≤ 1 and h sufficiently small,

|T1/2,n(x+ h)− T1/2,n(x)| ≤ Cnh
(

log(1/h)
)n
,

and this bound is the best possible. As a result, the graph of T1/2,n has
Hausdorff dimension 1. We also determine the global and local extrema of
T1/2,2 and T1/2,3. The sets of points where these functions attain there abso-
lute maximum are shown to be Cantor sets of Hausdorff dimension zero, and
their members have binary expansions that follow a remarkable pattern. By
contrast, we conjecture that T1/2,n has only finitely many absolute maximum
points when n ≥ 4. Regarding the growth rate of Mn := max0≤x≤1 T1/2,n, we
conjecture that

Mn ∼
2n√
πn

, as n→∞. (7.11)

(Proposition 6.25 in [7] shows that Mn grows at least this fast.)
For general r ∈ (0, 1), the functions Tr,n have not yet been thoroughly

investigated. However, a new paper by de Amo et al. [10] announces the
surprising result that if r 6= 1/2, then Tr,n is differentiable (with vanishing
derivative) almost everywhere for each n. This is in sharp contrast with the
fact that Tr,n is nowhere differentiable if r = 1/2. One might expect a further
study of these functions to reveal many more interesting properties.
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7.5 Other generalizations and variations

Many other generalizations and variations of the Takagi function have been
studied. We briefly mention a few, but the list below is by necessity far from
complete.

Frankl et al. [28] define a generalized Takagi function using arbitrary base
1 + c instead of base 2, where c is any positive real number. These functions
are used in connection with the Kruskal-Katona theorem in combinatorics;
see Section 8.2 below. The resulting graphs look like the graph of T with
the wind blowing in from the side. Another way to create skewed versions of
the Takagi function is of course to take the composition T ◦ h of T with an
arbitrary homeomorphism h : [0, 1]→ [0, 1]; Kawamura [39] considers the case
where h = L−1r and looks at the set of points where T ◦ h has a vanishing
derivative. Tsujii [79] constructs a Takagi-like function of two variables. Sumi
[73] observes that Lebesgue’s singular function Lr(x) can be interpreted as
the probability of “tending to +∞” in a certain kind of random dynamics in
the real line. He then extends this notion to random dynamics in the complex
plane, obtaining a complex version of Lebesgue’s singular function and (by
extending the relationship (5.6)) a complex version of the Takagi function.

For the more general setting where the tent map φ is replaced with an
arbitrary periodic Lipschitz function, see Mauldin and Williams [59] and the
many papers citing this work.

7.6 Open problems

There are many natural questions regarding the functions which have occurred
in this section. Some of the problems listed below may have a known answer,
some have not yet been seriously investigated, and others may be hard.

Problem 7.1. Characterize exactly which functions in the flexible Takagi
class belong to Zygmund’s space λ∗. (A partial characterization is given in [3,
Theorem 4.1].) Must these functions necessarily be piecewise quadratic?

Problem 7.2. The classes Λ∗ and Λ∗d,1 are both contained in Λ∗d, but they

are not disjoint. (For instance, the alternating Takagi function T̂ belongs to
both.) Can one characterize the intersection Λ∗ ∩ Λ∗d,1?

Problem 7.3. Is it true that for every f ∈ Λ∗d,1, the level set Lf (y) := {x ∈
[0, 1] : f(x) = y} is finite for almost every y?

Problem 7.4. A Besicovitch function is one that does not possess a one-
sided (finite or infinite) derivative at any point. Does the flexible Takagi class
contain any Besicovitch functions?
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Problem 7.5. At which points do the Takagi-van der Waerden functions fr
possess an infinite derivative? (See [8] for the case r = 2.)

Problem 7.6. Determine the level set structure of fr for r ≥ 3. In particular,
is the level set of fr at almost every level y finite?

Problem 7.7. Prove or disprove that T1/2,n has a unique global maximum
point and a unique global minimum point when n ≥ 4.

Problem 7.8. Prove or disprove (7.11).

8 Applications.

In this final section, we discuss a number of applications of the Takagi func-
tion and its generalizations. We begin with an application to the digital sum
problem in number theory.

8.1 Applications in Number theory

Let n be a positive integer with binary expansion n =
∑∞
i=0 αi(n)2i, where

αi(n) ∈ {0, 1}. We define the following arithmetical sums:

s(n) =

∞∑
i=0

αi(n), (the binary digital sum), (8.1)

Sk(N) =

N−1∑
n=0

s(n)k, (the power sum), (8.2)

F (ξ,N) =

N−1∑
n=0

eξs(n), (the exponential sum), (8.3)

where k,N are positive integers, and ξ is a real number. Note that s(n) is the
number of ones in the binary expansion of n. As a special case, F (log 2, N) is
the number of odd numbers in the first N rows of Pascal’s triangle.

The power and exponential sums of digital sums were first studied in con-
nection with divisibility problems involving factorials and binomial coefficients,
but they occur in other areas of mathematics as well: algebraic number theory,
topology, combinatorics and computational algorithms. For more information,
see Stolarsky [72].

If N is a power of 2, it is clear that

S1(N) =
N log2N

2
, F (ξ,N) = N log2(1+e

ξ).
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However, it is difficult to get an explicit formula for arbitrary N ∈ N.
The first author to give an exact expression for S1(N) was Trollope [78] in

1968. Delange [25] gave a simpler proof and extended the result to digits in
arbitrary bases. Trollope’s expression is

S1(N) =
N log2N

2
+ E(N), (8.4)

where the error term E(N) involves the Takagi function: if N is written as
N = 2m(1 + x) with m ∈ Z+ and 0 ≤ x < 1, then

E(N) = 2m−1 {2x− T (x)− (1 + x) log2(1 + x)} . (8.5)

We can easily derive this from (4.7) and (5.1). First, note that (4.7) can be
written as

T

(
k

2m

)
=
mk

2m
− 1

2m−1
S(k).

So if N is expressed as above, then N ≤ 2m+1 and

S(N) =
(m+ 1)N

2
− 2mT

(
1 + x

2

)
= 2m−1

(
m(1 + x) + 2x− T (x)

)
,

where the last step follows since T satisfies (5.1). Since

N log2N

2
= 2m−1(1 + x)

(
m+ log2(1 + x)

)
,

(8.5) follows.
It is natual to ask if we can generalize the expressions (8.4) and (8.5) to ar-

bitrary k ∈ N. For k = 2, Coquet [23] obtained an explicit formula and proved
that S2(N) also has a close relationship with a nowhere differentiable func-
tion. Unfortunately, the general formula for Sk(N) given by Coquet included
a function specified only by a complicated recursion.

It seemed quite difficult to find a direct formula for Sk(N) with k ≥ 3, but
finally, in 1995, Okada et al. [61] gave the complete answer not only for the
power sum but also for the exponential sum. The key was to connect F (ξ,N)

with Lebesgue’s singular function Lr(x). Set r = (1 + eξ)
−1

and t = log2N .
Denote the integer part of t by [t], and the fractional part by {t}. Then

F (ξ,N) =
1

r[t]+1
Lr

(
1

21−{t}

)
, (8.6)
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for ξ ∈ R and N ∈ N. Using Salem’s expression for Lr(x) (See [65]), an explicit
expression for F (ξ,N) is obtained.

For Sk(N), observe that the following equality holds for k ∈ N:

Sk(N) =
1

2

∂k

∂ξk
F (ξ,N)

∣∣∣∣
ξ=0

. (8.7)

An essential part of this derivative is (∂k/∂rk)Lr(x)|r=1/2, and hence, Sk(N)
can be expressed explicitly in terms of the nowhere differentiable function
T1/2,k of Section 7.4.

Later, several analogous problems were studied. For instance, instead of
the binary expansion of natural numbers, Kobayashi [42] considered the Gray
code, which is an encoding of natural numbers as sequences of 0’s and 1’s with
the property that the representations of adjacent integers differ in exactly
one position. Though the Gray code was introduced initially as a solution
to a communications problem involving digitization of analogue data, it has
since been used in a wide variety of other applications, including databases,
experimental design and even puzzle solving; see Savage [66].

Kobayashi defined a probability measure µ̃r on [0, 1] analogous to the bi-
nomial measure, but whereby each Gray code digit (rather than binary digit)
of x ∈ [0, 1] is 0 with probability r and 1 with probability 1− r, independently
of the other digits. Adapting the methods of [68] and [61], Kobayashi gave ex-
plicit expressions for the Gray digital sum, the Gray power sum and the Gray
exponential sum, which are defined just as in (8.1)-(8.3), but with Gray code
digits replacing binary digits. The expressions are in terms of the distribution
function L̃r of µ̃r and a nowhere-differentiable continuous function T̃ which
Kobayashi calls the Gray Takagi function; see Section 7.3.

Krüppel [46] modified the Trollope-Delange formula in a different direction,
considering instead of s(n) the alternating binary sum ŝ(n) =

∑∞
i=0(−1)iαi(n).

He derived an expression for Ŝ1(N) =
∑N−1
n=0 ŝ(n) in terms of the alternating

Takagi function T̂ defined in (7.6).

A comprehensive review of the role of nowhere-differentiable functions and
singular measures in the study of digital sum problems is found in Kobayashi
et al. [43].

8.2 Applications in Combinatorics

A few interesting connections between the Takagi function and the discrete
isoperimetric problems in combinatorics have been discovered.
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The first surprising result was given by Frankl et al. [28] in 1995. Let(N
k

)
denote the collection of subsets of N having k elements. For any family

F ⊂
(N
k

)
and positive integer l < k, let the lth shadow of F be

∆l(F) := {G ∈
(
N
l

)
: ∃F ∈ F s.t. G ⊂ F}.

It is clear that |∆l(F)|, the size of the shadow, depends on F . Thus, it is
natural to ask for a fixed m ∈ N, which family F such that |F| = m attains
the minimum size of the shadow. This problem can be viewed as a special
case of the vertex discrete isoperimetric problem by considering a graph whose
vertices correspond to finite subsets of

(N
k

)
, with an edge connecting a set of

cardinality k to each of its subsets of cardinality k − 1.
The shadow minimization problem was solved by Kruskal and Katona in-

dependently. For A,B ∈
(N
k

)
, define the colex order by

A <colex B ⇐⇒ max{a ∈ A\B} < max{b ∈ B\A}.

Denote by Colex(k,m) the family of the first m elements in
(N
k

)
with the

colex order. The Kruskal-Katona theorem says that for all F ⊂
(N
k

)
such that

|F| = m, and l < k,

min |∆l(F)| = |∆l(Colex(k,m))|.

Finally, define the Kruskal-Katona function by

Kk
l (m) = −m+ |∆l(Colex(k,m))|.

Frankl et al. show that, properly normalized, Kk
l (m) converges uniformly to

T (x) if l = k−1. More precisely, define the shadow function Sk by normalizing
Kk
l , where l = k − 1:

Sk(x) := k

(
2k − 1

k

)−1
Kk
k−1

(⌊(
2k − 1

k

)
x

⌋)
, for 0 ≤ x ≤ 1.

Then Sk → T uniformly on [0, 1].
In general, an estimation of the Kruskal-Katona function is hard to cal-

culate. The result above clearly shows the reason. Frankl et al. exploit the
above relationship and various known properties of the Takagi function to give
new estimates of the Kruskal-Katona function. They also define a generalized
Takagi function (using the base 1 + c expansion of x ∈ [0, 1] for an arbitrary
real c > 0) and show that it has a similar connection to the minimum shadow
size for l = bckc.
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Another connection of the Takagi function with combinatorics was given
by Guu [30]. Assume a graph (V,E) with a set of vertices V and a set of edges
E is given. For S ⊂ V , let θ(S) denote the number of edges in E which connect
a vertex in S to a vertex in V \S. For given 0 ≤ k ≤ |V |, the edge discrete
isoperimetric problem is to minimize θ(S) over all S having k elements. Guu
considers as a special case the n-cube Qn = (Vn, En), and defines the function

θ(n, k) = min{θ(S) : S ⊂ Vn, |S| = k}.

He shows that

lim
n→∞

θ(n, b2nxc)
2n

= T (x).

8.3 Applications in Real Analysis

In this subsection we sketch two applications of the Takagi function in real
analysis. One concerns the zero sets of continuous nowhere-differentiable func-
tions, while the other relates to the study of approximate convexity of real
functions.

8.3.1 Zero sets of continuous nowhere-differentiable functions

If a continuous function does not have a finite derivative anywhere, what can
one say about its set of zeros? This question was answered in 1966 by Lipinski
[53], who gave the following characterization.

Theorem 8.1. Let C ⊂ [0, 1]. Then C is the zero set of some nonnegative
continuous nowhere-differentiable function f : [0, 1] → R if and only if C is
closed and nowhere dense.

It is easy to see that the condition on C is necessary. To prove its suffi-
ciency, Lipinski used the Takagi function to construct an example of a function
f with the required properties. To begin, write [0, 1]\C =

⋃∞
n=1(an, bn) with

the union disjoint. (If [0, 1]\C is a finite union of open intervals, the construc-
tion is easy.) Define functions

Ta,b(x) = (b− a)T

(
x− a
b− a

)
, a ≤ x ≤ b,

where 0 ≤ a < b ≤ 1. Thus, the graph of Ta,b is a smaller copy of the graph
of T confined to the interval [a, b]. It is tempting to construct f by putting

f(x) =

{
0, x ∈ C
Tan,bn(x), x ∈ (an, bn), n ∈ N.
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Indeed, Schubert [67] had mistakenly believed that this creates a nowhere
differentiable function. But, as Lipinski points out, f defined this way can be
differentiable (with f ′(x) = 0) at many points of C. In fact, if λ(C) > 0, then
f is differentiable almost everywhere on C. To correct this problem, Lipinski
slightly modified the above construction as follows. Enumerate the dyadic
open subintervals of [0, 1] (i.e. those of the form (j/2n, (j + 1)/2n)) in some
arbitrary order as {An : n ∈ N}. For each n, let Fn be any interval (ain , bin)
contained in An if such an interval exists, and Fn = ∅ otherwise, with the
restriction that no interval (ai, bi) is chosen more than once. Now define a
function f̃ by

f̃(x) =


0, x ∈ C
Tai,bi(x), x ∈ (ai, bi), (ai, bi) 6∈ {Fn}
λ(An)Tain ,bin (x)/(bin − ain), x ∈ Fn.

Lipinski shows that f̃ is continuous and nowhere differentiable, and hence
has the desired properties. Of course, in this construction we can replace T
with any continuous nowhere-differentiable function which is strictly positive
in (0, 1) and vanishes at 0 and 1.

8.3.2 Approximate convexity

Our next application is to approximate convexity of real functions. Let V be
a convex subset of a normed space and let ε ≥ 0, p > 0 be given constants.
Say a function f : V → R is (ε, p)-midconvex if

f

(
x+ y

2

)
≤ f(x) + f(y)

2
+ ε‖x− y‖p, x, y ∈ V.

It was shown by Házy and Páles [32] that if f : V → R is continuous and
(ε, 1)-midconvex, then for all x, y ∈ V and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + εω(t)‖x− y‖, (8.8)

where ω = 2T . A natural question is whether ω in this last inequality can be
replaced by a smaller function. The negative answer came a few years later,
when Boros [18] proved that ω is itself (1, 1)-convex. In terms of T , this comes
down to the inequality

T

(
x+ y

2

)
≤ T (x) + T (y)

2
+

∣∣∣∣x− y2

∣∣∣∣ .
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(To see that this implies the minimality of ω in (8.8), take f = εω, x = 1
and y = 0.) Boros’ proof was somewhat laborious, with no fewer than eight
separate cases in the induction step. But the important thing was that it
confirmed Páles’ conjecture of the minimality of ω.

The next question, then, is what function takes the role of ω when p 6= 1.
More precisely, what is the smallest function ωp such that, whenever f : V → R
is (ε, p)-midconvex, we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + εωp(t)‖x− y‖p (8.9)

for all x, y ∈ V and t ∈ [0, 1]? For p ∈ [1, 2], Tabor and Tabor [74, 75] showed
that the answer is the function

ωp(x) = 2

∞∑
n=0

1

2np
φ(2nx), (8.10)

which belongs to the Takagi class. In [74] they show that any (ε, p)-midconvex
function satisfies (8.9), and in [75] they establish that ωp is itself (1, p)-
midconvex; that is,

ωp

(
x+ y

2

)
≤ ωp(x) + ωp(y)

2
+ |x− y|p. (8.11)

Note that ω2(x) = 4x(1 − x) for x ∈ [0, 1], and ω1(x) = 2T (x). Tabor and
Tabor prove (8.11) first for p = 2, and then deduce it for all p ∈ [1, 2] by
expressing ωp as an infinite series in terms of ω2. A different proof of their
result (which includes that of Boros) is given by Allaart [4], who derives the
formula

ωp

(m
2n

)
=

m−1∑
k=0

n−1∑
i=0

(−1)
εi(k)

2(n−i−1)p+i
, (8.12)

where εi(k) ∈ {0, 1} is determined by
∑n−1
i=0 2iεi(k) = k. Using this expression,

(8.11) can be reduced to a simple inequality for weighted sums of binary digits,
which has an easy induction proof; see [4].

Shortly after Tabor and Tabor’s work appeared, Máko and Páles [56]
proved a much more general result, which has the following remarkable con-
sequence: For p ∈ (0, 1], the minimal function ωp in (8.9) is given by

ωp(x) = 2

∞∑
n=0

1

2n
(φ(2nx))p. (8.13)

Comparing (8.10) and (8.13), it is fascinating to see how at the boundary case
p = 1, the exponent p “jumps” to the other factor in the series’ summand.

For more references to papers concerning approximate convexity, we refer
to [56].
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8.4 Connection with the Riemann Hypothesis

To end this section, we briefly mention a recent result connecting the Takagi
function with the Riemann Hypothesis. For a more detailed account, we refer
to Lagarias [49].

Let Fn be the nth Farey sequence (also called Farey series), that is, the
set of irreducible fractions in (0, 1] with denominator less than or equal to n.
Then |Fn| = Φ(n), where Φ(n) =

∑
k≤n ϕ(k), ϕ being the Euler totient func-

tion. The connection between Farey series and the Riemann Hypothesis is well
documented and goes back to a 1924 paper by Franel [27]. Recently, Balasub-
ramanian, Kanemitsu and Yoshimoto [14] showed, as an interesting example
of their more general theory, that the Riemann Hypothesis is equivalent to the
statement ∑

r∈Fn

T (r) =
1

2
Φ(n) +O(n

1
2+ε) for every ε > 0. (8.14)

Note that the left hand side involves only function values of rational num-
bers, and can hence be computed by the method of Section 5.1. While it
may seem unlikely that the Riemann Hypothesis will some day be solved by
directly proving (8.14), the connection is nonetheless surprisingly elegant and
beautiful.
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