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ON THE COMPARISON OF DENSITY
TYPE TOPOLOGIES GENERATED BY

FUNCTIONS

Abstract

In the paper there is presented a necessary and sufficient condition
to compare f -density topologies.

1 Preliminaries

Throughout the paper we shall use standard notation: R will be the set of real
numbers, N the set of positive integers, L the family of Lebesgue measurable
subsets of R and |E| the Lebesgue measure of a measurable set E. A point x ∈
R is a right-hand density point of a measurable set E if lim

h→0+

|(x,x+h)∩E|
h = 1,

or equivalently if lim
h→0+

|(x,x+h)\E|
h = 0. In the same way we define a left-hand

density point of E. We say that x is a density point of E if x is a right-hand
density point and a left-hand density point of E. We will denote by Φd(E)
the set of all density points of E (compare [8]).

From Lebesgue Density Theorem it follows that |E 4 Φd(E)| = 0 for any
measurable set E. It is also well known ([8, Th. 22.5]) that the family Td :=
{E ∈ L : E ⊂ Φd(E)} forms a topology on the real line, called the density
topology.
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Replacing the denominator h in the definition of a density point by f (h),
where f is a nondecreasing function tending to zero at zero, we obtain gen-
eral notions of density point, density operator, and density topology. To
keep a connection with the ”ordinary” density we should also assume that

lim infx→0+
f(x)
x <∞. Otherwise, for any x ∈ R and E ∈ L

|(x, x+ h) \ E|
f(h)

≤ |(x, x+ h)|
h

· h

f(h)
−→
h→0+

0.

Let us denote by A the family of all nondecreasing functions f : (0,∞) →
(0,∞) such that limx→0+ f(x) = 0 and lim infx→0+

f(x)
x < ∞. Fix f ∈ A,

E ∈ L and x ∈ R. We say that x is a right-hand f -density point of E if

lim
h→0+

|(x, x+ h) \ E|
f(h)

= 0.

By Φ+
f (E) we denote the set of all right-hand f -density points of E. In the

same way one may define left-hand f -density points of E and the set Φ−f (E).
We say that x is an f -density point of E if it is a right and left-hand f -density
point of E. By Φf (E) we denote the set of all f -density points of E, i.e.
Φf (E) := Φ+

f (E) ∩ Φ−f (E).
It is easily seen that

• Φ+
f (E + a) = Φ+

f (E) + a,

• Φ+
f (E ∩ F ) = Φ+

f (E) ∩ Φ+
f (F ),

• if |E4F | = 0 then Φ+
f (E) = Φ+

f (F ),

and analogous properties hold for Φ−f and Φf . It is also clear that

• x is an f -density point of E if and only if

lim
h→0,k→0

h≥0,k≥0,h+k>0

|(x− h, x+ k) \ E|
f(h+ k)

= 0.

In [2] it was proved that

• Φ+
f (E) (Φ−f (E), Φf (E)) are measurable,

• Tf := {E ∈ L : E ⊂ Φf (E)} is a topology stronger than the natural
topology on the real line.
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The topology Tf is called a topology generated by a function f or f -density
topology. Among f -density topologies there are: the density topology, topolo-
gies generated by sequences (compare [3]), ψ-density topologies (compare [1])
and others. The purpose of this paper is to produce necessary and sufficient
conditions for the inclusion Tf1 ⊂ Tf2 for f1, f2 ∈ A.

Different functions can generate the same operator and the same topology.
The only important thing is the behavior of a function f ∈ A close to zero.
Defining a function f on some interval (0, δ) we consider that it is specified
in any permissible way on [δ,∞). Obviously, even functions f1, f2 ∈ A such
that f1 (x) 6= f2 (x) for all x > 0 can generate the same operator (for example,

this is true if for some r > 0, 1
r < f1(x)

f2(x)
< r for all x sufficiently close to

zero). Fortunately, different operators generate different topologies. To check
if Tf1 ⊂ Tf2 , it is enough to examine right-hand f -density point at zero for all
measurable sets. Indeed, from Φf (E + a) = Φf (E) + a, Φ−f (−E) = −Φ+

f (E)
and [3, Prop. 4], it follows

Proposition 1. For each f1, f2 ∈ A the following conditions are equivalent

1. ∀
E∈L

(
0 ∈ Φ+

f1
(E)⇒ 0 ∈ Φ+

f2
(E)
)
,

2. ∀
E∈L

(0 ∈ Φf1 (E)⇒ 0 ∈ Φf2 (E)) ,

3. ∀
E∈L

Φf1 (E) ⊂ Φf2 (E) ,

4. Tf1 ⊂ Tf2 .

2 Useful lemmas

In the paper we check whether, for certain functions f1, f2 ∈ A, there exists
a measurable set E, such that 0 ∈ Φf2 (E) \ Φf1 (E). To simplify proofs we
will consider interval sets and functions ”constant on intervals”. We say that
E is an interval set if E = ∪∞n=1 [an, bn] for some tending to zero sequences
(an), (bn) with 0 < bn+1 < an < bn, n ∈ N. By As we denote the family of all
functions f ∈ A of the form

f(x) = yn for x ∈ (xn+1, xn] ,

where sequences (xn) and (yn) are decreasing and tend to zero.
Fix an arbitrary function f ∈ A. Let a := f(1), (kn) be an increasing

sequence of all numbers n for which f−1
((

a
2kn+1 ,

a
2kn

])
is a nondegenerated

interval and let xn be the right endpoint of this interval. In [3, Th. 1] it was
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demonstrated that the function g(x) := a
2kn

for x ∈ (xn+1, xn] belongs to As

and Φf = Φg. Thus we have

Lemma 1. For any function f ∈ A there is a function g ∈ As such that
Φf = Φg, g ≤ 2f and f (x) ≤ g (x) except for a countable set.

Lemma 2. Let f ∈ As, t, h be positive numbers and E be a measurable set
satisfying

lim sup
x→0+

|E ∩ (0, x)|
f (x)

> t.

There is an interval [a, b] ⊂ (0, h) such that

|E ∩ (a, b)|
f (b)

= t and
|E ∩ (a, x)|

f (x)
≤ t for x ∈ (a, b] .

Proof. Let (xn) and (yn) be decreasing sequences tending to 0 such that

f(x) = yn for x ∈ (xn+1, xn]. Since |E∩(0,x)|f(x) ≤ |E∩(0,xn)|
f(xn)

for x ∈ (xn+1, xn],

lim sup
n→∞

|E ∩ (0, xn)|
f (xn)

= lim sup
x→0+

|E ∩ (0, x)|
f (x)

> t.

Fix a positive integer n0 such that xn0 < h and
|E∩(0,xn0)|

f(xn0)
> t. From the

continuity of Lebesgue measure, it follows that
|E∩(c,xn0)|

f(xn0)
= t for some c ∈

(0, xn0). Let

p := max

{
n : n ≥ n0 ∧ xn > c ∧ |E ∩ (c, xn)|

f (xn)
≥ t
}

and b := xp. Using again the continuity of measure we find a ∈ [c, b] with

|E ∩ (a, b)|
f (b)

= t.

Thus, for x ∈ (a, b] ∩ (xp+1, xp],

|E ∩ (a, x)|
f (x)

≤ |E ∩ (a, xp)|
f (xp)

= t.

On the other hand, if x ∈ (a, b]∩ (a, xp+1], then x ∈ (xn+1, xn] for some n > p.

Since xn > a ≥ c, we have |E∩(c,xn)|
f(xn)

< t and

|E ∩ (a, x)|
f (x)

≤ |E ∩ (c, xn)|
f (xn)

< t.
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Lemma 3. For any f ∈ As there exists an interval set C and a positive
number t such that

t ≤ lim sup
x→0+

|C ∩ (0, x)|
f (x)

≤ 2t.

Proof. Let (xn) and (yn) be decreasing sequences tending to 0 such that
f(x) = yn for x ∈ (xn+1, xn]. Since f ∈ A, there is t > 0 such that

lim supx→0+
|R∩(0,x)|

f(x) = lim supx→0+
x

f(x) > t. Applying Lemma 2 we can

choose sequences (an), (bn) such that an < bn, bn+1 < min
{

1
nan, tf (an)

}
,

bn − an
f (bn)

= t and
x− an
f (x)

≤ t for x ∈ (an, bn] .

Put C :=
⋃∞

n=1 [an, bn]. For any n ∈ N we have |C∩(0,bn)|f(bn)
> bn−an

f(bn)
= t, and

consequently lim supx→0+
|C∩(0,x)|

f(x) ≥ t. On the other hand, if x ∈ (an, bn]

then

|C ∩ (0, x)|
f (x)

≤ x− an + bn+1

f (x)
≤ x− an

f (x)
+

bn+1

f (an)
< t+ t = 2t,

and if x ∈ (bn, an−1] then applying the previous result we obtain

|C ∩ (0, x)|
f (x)

=
|C ∩ (0, bn)|

f (x)
≤ |C ∩ (0, bn)|

f (bn)
< 2t.

Hence lim supx→0+
|C∩(0,x)|

f(x) ≤ 2t.

3 Comparison of topologies

By definition, from lim supx→0+
f1(x)
f2(x)

< ∞ it follows that Φf1 ⊂ Φf2 and

Tf1 ⊂ Tf2 . Consequently, if lim infx→0+
f1(x)
f2(x)

> 0 and lim supx→0+
f1(x)
f2(x)

<∞,

then Tf1 = Tf2 . However, the functions

f1 (x) :=
1

n!
for x ∈

(
1

(n+ 1)!
,

1

n!

]
, n ∈ N

and

f2 (x) :=
1

n!
for x ∈

[
1

(n+ 1)!
,

1

n!

)
, n ∈ N

generate the same topology (see [3, Ex. 1]), although lim infx→0+
f1(x)
f2(x)

= 0.
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Theorem 1. (compare [10, Th. 2.6]) For any functions f1, f2 ∈ A with

limx→0+
f1(x)
f2(x)

= 0 there is a measurable set D such that 0 ∈ Φf2 (D)\Φf1 (D).

Proof. By Lemma 1, there is a function g1 ∈ As such that g1 ≤ 2f1 and
Φf1 = Φg1 . Using Lemma 3 we can find an interval set C and a positive
number t such that

t ≤ lim sup
x→0+

|C ∩ (0, x)|
g1 (x)

≤ 2t.

Let D := R \ C. Since

lim sup
x→0+

|(0, x) \D|
g1 (x)

= lim sup
x→0+

|C ∩ (0, x)|
g1 (x)

≥ t > 0,

we have 0 /∈ Φg1 (D) = Φf1 (D). On the other hand,

lim sup
x→0+

|(0, x) \D|
f2 (x)

≤ lim sup
x→0+

|(0, x) \D|
f1 (x)

· lim sup
x→0+

f1 (x)

f2 (x)

≤ 2 lim sup
x→0+

|C ∩ (0, x)|
g1 (x)

· lim sup
x→0+

f1 (x)

f2 (x)
≤ 4t · 0 = 0,

so 0 ∈ Φf2 (D).

Corollary 1. If limx→0+
f1(x)
f2(x)

= 0, then Tf1 $ Tf2 .

It is easily seen that the condition limx→0+
f1(x)
f2(x)

= 0 is not necessary for

Tf1 $ Tf2 . Indeed, if f1 (x) := x and f2 (x) := 1
n! for x ∈

(
1

(n+1)! ,
1
n!

]
, then

lim supx→0+
f1(x)
f2(x)

= 1 > 0 and Tf1 = Td $ Tf2 (see [3, Th. 4]).

S. J. Taylor in [9] investigated f -density points for a function f (x) =
xψ (x), where ψ is a nondecreasing and continuous function with limx→0+ ψ (x) =
0. The symmetric version of Taylor’s definition was used in [10] to introduce
a notion of ψ-density point and ψ-density topology. A main result of [11]
gave necessary and sufficient conditions for the the inclusion of one ψ-density
topology in another. We will transfer it to f -density topologies. Fortunately,
our general framework allows for a simplification of proofs given in [11].

Let f1, f2 ∈ A. We define sequences

An := Anf1f2 :=

{
x ∈ (0,∞) : f1 (x) <

1

n
f2 (x)

}
,

εn := εnf1f2 := lim sup
x→0+

|An ∩ (0, x)|
f1 (x)

.
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Of course, these sequences are decreasing, and so (εn) is convergent.

Lemma 4. If 0 ∈ Φ+
f2

(R \ E), then for every positive integer n

lim sup
x→0+

|E ∩ (0, x)|
f1 (x)

= lim sup
x→0+

|E ∩An ∩ (0, x)|
f1 (x)

.

Proof. By assumption,

lim
x→0+

|E ∩ (0, x)|
f2 (x)

= 0. (1)

Let us fix a positive integer n and a positive x such that f1 (x) < 1. If x /∈ An,
then f1 (x) ≥ 1

nf2 (x) and consequently

|(E \An) ∩ (0, x)|
f1 (x)

≤ n |E ∩ (0, x)|
f2 (x)

. (2)

If (0, x] ⊂ An, then
|(E \An) ∩ (0, x)|

f1 (x)
= 0. (3)

Finally, if x ∈ An and (0, x] \ An 6= ∅, then for b := sup ((0, x] \An) and any
a from [b− bf1 (b) , b] \An we have f1 (a) ≥ 1

nf2 (a), and so

|(E \An) ∩ (0, x)|
f1 (x)

=
|(E \An) ∩ (0, b)|

f1 (x)
≤ |(E \An) ∩ (0, a)|

f1 (a)
+
b− a
f1 (b)

(4)

≤ n |E ∩ (0, a)|
f2 (a)

+ b.

Since a ≤ b ≤ x, conditions (1)-(4) imply

lim
x→0+

|(E \An) ∩ (0, x)|
f1 (x)

= 0

which gives

lim sup
x→0+

|E ∩ (0, x)|
f1 (x)

≤ lim sup
x→0+

|E ∩An ∩ (0, x)|
f1 (x)

+ lim sup
x→0+

|(E \An) ∩ (0, x)|
f1 (x)

= lim sup
x→0+

|E ∩An ∩ (0, x)|
f1 (x)

≤ lim sup
x→0+

|E ∩ (0, x)|
f1 (x)

.
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Corollary 2. If 0 ∈ Φ+
f2

(R \ E), then for every positive integer n

lim sup
x→0+

|E ∩ (0, x)|
f1 (x)

≤ lim sup
x→0+

|An ∩ (0, x)|
f1 (x)

.

Theorem 2. Let f1, f2 ∈ A. If limn→∞ εn = 0, then Tf2 ⊂ Tf1 .

Proof. Let us suppose that 0 ∈ Φ+
f2

(E). By Corollary 2,

0 ≤ lim sup
x→0+

|(0, x) \ E|
f1 (x)

≤ lim sup
x→0+

|An ∩ (0, x)|
f1 (x)

= εn

for every positive integer n. Thus lim supx→0+
|(0,x)\E|
f1(x)

= 0, and consequently

0 ∈ Φ+
f1

(E). From Proposition 1 we conclude that Tf2 ⊂ Tf1 .

Theorem 3. Let f1, f2 ∈ A. If limn→∞ εn > 0, then there is a measurable
set D such that 0 ∈ Φf2 (D) \ Φf1 (D).

Proof. By Lemma 1 there exists g1 ∈ As such that Φf1 = Φg1 and g1 ≤ 2f1.
Let us define

Ãn :=

{
x ∈ (0,∞) : g1 (x) <

1

n
f2 (x)

}
and ε̃n := lim sup

x→0+

∣∣∣Ãn ∩ (0, x)
∣∣∣

g1 (x)
.

Since A2n ⊂ Ãn,

ε̃n = lim sup
x→0+

∣∣∣Ãn ∩ (0, x)
∣∣∣

g1 (x)
≥ lim sup

x→0+

|A2n ∩ (0, x)|
2f1 (x)

=
1

2
ε2n,

and consequently limn→∞ ε̃n ≥ 1
2 limn→∞ ε2n > 0. Set t := 1

2 limn→∞ ε̃n and
choose n0 such that ε̃n > t for n ≥ n0. Applying Lemma 2 we can define
intervals [an, bn], n ≥ n0 such that bn+1 < min

{
an,

1
nf2 (an)

}
,∣∣∣Ãn ∩ (an, bn)

∣∣∣
g1 (bn)

= t and

∣∣∣Ãn ∩ (an, x)
∣∣∣

g1 (x)
≤ t for x ∈ (an, bn] .

Let

E :=

∞⋃
n=n0

(
Ãn ∩ (an, bn)

)
and D := R \ E.

For n ≥ n0 we have |E∩(0,bn)|g1(bn)
≥ |Ãn∩(an,bn)|

g1(bn)
= t > 0, and so 0 /∈ Φg1 (D) =

Φf1 (D).
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It remains to prove that 0 ∈ Φf2 (D). Consider x ∈ (0, bn0 ]. We first assume
that x ∈ (an, bn] for some n ≥ n0 and define

x′ := inf
{
y :
∣∣∣Ãn ∩ [y, x]

∣∣∣ = 0
}
.

If x′ > an, then one can find x∗ ∈ Ãn ∩ (an, x
′] such that x′ − x∗ < g1 (an).

Thus

|E ∩ (0, x)|
f2 (x)

≤

∣∣∣Ãn ∩ (an, x)
∣∣∣+ bn+1

f2 (x)
≤

∣∣∣Ãn ∩ (an, x
′)
∣∣∣

f2 (x∗)
+

bn+1

f2 (an)
(5)

<

∣∣∣Ãn ∩ (an, x
∗)
∣∣∣+ (x′ − x∗)

ng1 (x∗)
+

1

n
≤ t

n
+

1

n
+

1

n
=
t+ 2

n
.

If x′ ≤ an, since
∣∣∣Ãn+1 ∩ (an+1, bn+1)

∣∣∣ > 0, we can apply (5) for n+ 1 and

obtain

|E ∩ (0, x)|
f2 (x)

=
|E ∩ (0, bn+1)|

f2 (x)
≤ |E ∩ (0, bn+1)|

f2 (bn+1)
<
t+ 2

n+ 1
. (6)

Assume now that x ∈ (bn+1, an] for some n ≥ n0. As in the previous case, we
get

|E ∩ (0, x)|
f2 (x)

≤ |E ∩ (0, bn+1)|
f2 (bn+1)

<
t+ 2

n+ 1
. (7)

From (5)-(7) it follows that lim supx→0+
|E∩(0,x)|

f2(x)
= 0, which gives 0 ∈ Φf2 (D).

Corollary 3. If Tf2 ⊂ Tf1 , then limn→∞ εn = 0.

Theorem 2 and Corollary 3 lead to

Theorem 4. Tf2 ⊂ Tf1 if and only if limn→∞ εn = 0.

We can use the above theorem to compare the density topology Td with
others f -density topologies. A topology Tf is stronger than Td if and only if
for any positive ε and sufficiently large n, the inequality∣∣{x ∈ (0, h) : f (x) < x

n

}∣∣
f (h)

< ε
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holds for sufficiently small h. Analogously, Tf ⊂ Td if and only if for any ε > 0
and sufficiently large n,

|{x ∈ (0, h) : f (x) > nx}|
h

< ε

for sufficiently small h.

4 Applications

Using the condition formulated in Theorem 4 we have found answers for some
questions and have simplified some difficult proofs. Let 〈s〉 = {sn}n∈N be an
unbounded, nondecreasing sequence of positive numbers. We say that x ∈ R
is an 〈s〉-density point of a set E ∈ L if

lim
n→∞

∣∣∣E ∩ [x− 1
sn
, x+ 1

sn

]∣∣∣
2
sn

= 1.

For any E ∈ L we denote by Φ〈s〉(E) the set of all 〈s〉-density points E. The

family T〈s〉 :=
{
E ∈ L : E ⊂ Φ〈s〉(E

}
is a topology called topology generated

by the sequence 〈s〉 (see [6]). It is easy to check that T〈s〉 is equal to the topol-

ogy generated by the function f〈s〉 (x) := 1
sn

for x ∈
(

1
sn+1

, 1
sn

]
, and that f〈s〉

belongs to the family A1 :=
{
f ∈ A : lim infx→0+

f(x)
x > 0

}
(compare [3]).

In [4] it is proved that there are continuum topologies Tf with f ∈ A1 such
that Tf is different from all topologies generated by sequences. However, the
construction presented in this paper is rather complicated. Theorem 4 lets us
find simpler examples (compare [5]). In [6] a necessary and sufficient condition
was given for comparability of density topologies generated by sequences. This
condition can be easily obtained from Theorem 4. Finally, in [7] the condition
from Theorem 4 is used to compare ψ-density topologies with topologies gen-

erated by functions from A0 :=
{
f ∈ A : lim infx→0+

f(x)
x = 0

}
more precisely

than in [1].
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