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A CHANGE OF VARIABLES FORMULA
FOR DARBOUX INTEGRALS

Abstract

We offer an inequality involving upper and lower Darboux integrals
of bounded real functions which implies a number of variations of the
change of variables formula for Riemann integrals.

Throughout this paper Dg denotes one of the four Dini derivates of a
continuous real valued function g on a compact interval [a, b] (the same Dini
derivate at all x). Let g(a) ≤ g(b) and let Dg be bounded on [a, b]. Let f be
a bounded function on g[a, b] such that for almost every t ∈ [a, b], one or both
of the functions f(g(·)) or Dg(·) is continuous at t.

We offer the following change of variables formula for Darboux integrals.

Theorem 1. For upper and lower Darboux integrals we have the inequality:∫ b

a

f
(
g(t)

)
Dg(t) dt ≥

∫ g(b)

g(a)

f(x) dx

≥
∫ g(b)

g(a)

f(x) dx ≥
∫ b

a

f
(
g(t)

)
Dg(t) dt .

(∗)

Moreover, if f(g(t))Dg(t) is R-integrable on [a, b], then f(x) is R-integrable
on [g(a), g(b)] and ∫ b

a

f
(
g(t)

)
Dg(t) dt =

∫ g(b)

g(a)

f(x) dx .

The inspiration for this work was references [H] and [T], which provided
essentially the following proposition.
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Proposition 1. In Theorem 1, let Dg be continuous almost everywhere on
[a, b] and let g be nondecreasing. Then we have∫ b

a

f
(
g(t)

)
Dg(t) dt =

∫ g(b)

g(a)

f(x) dx

≥
∫ g(b)

g(a)

f(x) dx =

∫ b

a

f
(
g(t)

)
Dg(t) dt .

(∗∗)

The continuity hypothesis in this paper is satisfied, for example, when
f is everywhere continuous; likewise it is satisfied when Dg is continuous
almost everywhere on [a, b] as in Proposition 1. The hypothesis of Theorem 1
subsumes both of these cases.

Theorem 1 has immediate applications to Riemann integration. We offer
some of these.

Corollary 1. Let k be a real valued function on [a, b] with a bounded difference
quotient, and k(a) ≤ k(b). Let h be a bounded function on k[a, b]. If two of the
three functions h(k(t))Dk(t), h(k(t)), Dk(t) are R-integrable on [a, b], then h
is R-integrable on [k(a), k(b)], h(k(t))Dk(t) is R-integrable on [a, b], and∫ b

a

h
(
k(t)

)
Dk(t) dt =

∫ k(b)

k(a)

h(x) dx .

To prove this from Theorem 1, recall that a bounded function is R-inte-
grable on [a, b] if and only if it is continuous almost everywhere on [a, b]. Thus
in particular, the product of two R-integrable functions is R-integrable on
[a, b].

Corollary 2. In Theorem 1 let f(g(t))Dg(t) be R-integrable on [a, b]. Then
f is R-integrable on the interval g[a, b].

To prove this apply Theorem 1 on the intervals [a, s] and [r, b] where g
takes its maximum at s and its minimum at r.

Corollary 3. In Theorem 1 let f be R-integrable on g[a, b] and let Dg be
R-integrable on [a, b]. Then f(g(t))Dg(t) is R-integrable on [a, b] and∫ b

a

f
(
g(t)

)
Dg(t) dt =

∫ g(b)

g(a)

f(x) dx .

(See also [V]).
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Proof. In view of Theorem 1, it suffices to prove that m(X) = 0 where

X =
{
x : f

(
g(t)

)
Dg(t) is discontinuous at x} .

Put

X1 =
{
x ∈ X : Dg is continuous at x} .

Then m(X \ X1) = 0 because Dg is R-integrable on [a, b]. Also Dg(x) 6= 0
for each x ∈ X1 because Dg is continuous at x and f is bounded. Moreover,
f is discontinuous at g(x) for each x ∈ X1. Now each x ∈ X1 lies in an open
interval Ix with Dg bounded away from 0 on Ix. Thus g has an absolutely
continuous inverse g−1 on g(Ix). But m(g(X1)) = 0 because f is R-integrable.
Hence

m
(
Ix ∩X1

)
≤ m

(
g−1

(
g(Ix ∩X1)

))
= 0 .

Thus X1 is the union of countably many subsets of measure 0, so m(X1) =
m(X) = 0.

Corollary 4. Let (∗∗) hold in Theorem 1. Then f(g(t))Dg(t) is R-integrable
on any interval [u, v] for which g(u) = g(v).

We defer the proof of Corollary 4 until we prove Theorem 1. Finally we
show by example that the equations in (∗∗) need not hold in Theorem 1.

Our techniques will be quite different from those used for change of vari-
ables for the Lebesgue and other integrals. Compare with the work found in
references [F], [G1], [G2], [K], [V], for example.

We turn now to some definitions we will use. We say that a finite increasing
sequence a = x0 < x1 < . . . < xn = b is a partition of the interval [a, b]. The
xi are called the dividing points of this partition. By the norm of the partition
we mean maxn

i=1(xi−xi−1). By the inherited partition of the subinterval [u, v]
of [a, b] we mean the partition whose dividing points are u, v and all the xi
between u and v. We say that another partition of [a, b], a = y0 < y1 < . . . <
ym = b is a refinement of this one if for each xi there is a yj with yj = xi.

We say that the partition a = x0 < x1 < . . . < xn = b is a special partition
of [a, b] if there is a finite increasing sequence of integers 0 = n0 < n1 < . . . <
nk = n such that for each index j = 0, 1, . . . , k−1 either g(xnj

) = g(xnj+1
), or

nj+1 = nj + 1 and g(xnj
) < g(xnj+1

) and g(xnj
, xnj+1

) =
(
g(xnj

), g(xnj+1
)
)
.

By a Riemann sum for f(g(t))Dg(t) on the partition a = x0 < x1 < . . . <
xn = b we mean a sum of the form

n∑
i=1

f
(
g(ti)

)
Dg(ti)(xi − xi−1)
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where ti is any point in the interval [xi−1, xi]. If f(g(ti))Dg(ti) is replaced by

sup
{
f
(
g(t)

)
Dg(t) : t ∈

[
xi−1, xi

]}
the sum is called an upper sum. Likewise when f(g(ti))Dg(ti) is replaced by

inf
{
f
(
g(t)

)
Dg(t) : t ∈

[
xi−1, xi

]}
the sum is called a lower sum. Similar definitions are given for f on partitions
of the interval [g(a), g(b)].

By a mixed sum on the partition a = x0 < x1 < . . . < xn = b we mean
a sum of the form

∑n
i=1 f

(
g(si)

)
Dg(ti)(xi − xi−1) where si and ti are in

[xi−1, xi]. Thus a Riemann sum for f(g(t))Dg(t) is a particular kind of mixed
sum.

Special partitions and mixed sums are ad hoc definitions in this paper.

Lemma 1. Let a = x0 < x1 < . . . < xn = b be a partition of [a, b]. Then it
has a refinement that is a special partition of [a, b].

Proof. Assume g(a) < g(b); otherwise g(a) = g(b) and the given partition is
a special partition.

Let y be the least number in the set [a, b]∩ g−1
(
g(b)

)
, let z be the greatest

number in the set [a, b] ∩ g−1
(
g(a)

)
, and let w be the greatest number in the

set [a, y] ∩ g−1
(
g(a)

)
.

We use induction on n. If n = 1, the dividing points in the special partition
are the distinct points among a, b, y and w. Note that g(w, y) =

(
g(w), g(y)

)
if w < y, g(a) = g(w) if a < w and g(y) = g(b) if y < b.

Assume n ≥ 2 and the conclusion holds for partitions of any subinterval of
[a, b] with fewer than n+ 1 dividing points. We have three cases.

Case 1. g(xn−1) ≥ g(b). Then y ≤ xn−1. Use g(b) = g(y) and the
induction hypothesis on the inherited partition of the interval [a, y].

Case 2. g(xn−1) ≤ g(a). Then xn−1 ≤ z. Use g(a) = g(z) and the
induction hypothesis on the inherited partition of the interval [z, b].

Case 3. g(a) < g(xn−1) < g(b). Use the induction hypothesis on the
respective inherited partitions of the intervals [a, xn−1] and [xn−1, b].

This covers all cases, and the induction is proved.

Lemma 2. Let a = x0 < x1 < . . . < xn = b be a partition of [a, b]. Let δ > 0.
Then there is a refinement of this partition that is a special partition of [a, b]
of norm < δ.

Proof. Take a refinement of norm < δ and apply Lemma 1 to it.
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Lemma 3. Let a = x0 < x1 < . . . < xn = b be any partition of [a, b], let
g(a) = g(b), and ε > 0. Then there is a refinement of this partition with a
mixed sum on it > −ε (< ε).

Proof. The proof follows by induction on n. Let n = 1. Choose any x ∈ [a, b].
We use g(b)− g(a) = 0 and Dini’s Theorem [S] to select t ∈ [a, b] such that

f
(
g(x)

)
Dg(t)(b− a) > −ε

as follows. For f(g(x)) > 0 choose t so that

Dg(t) >
(
g(b)− g(a)

)
(b− a)−1 − εf

(
g(x)

)−1
(b− a)−1

and multiply by the positive number f
(
g(x)

)
(b− a); for f

(
g(x)

)
< 0 choose t

so that
Dg(t) <

(
g(b)− g(a)

)
(b− a)−1 − εf

(
g(x)

)−1
(b− a)−1

and multiply by the negative number f
(
g(x)

)
(b − a); for f

(
g(x)

)
= 0, any t

will do.
Now assume that n ≥ 2 and the conclusion holds when [a, b] is replaced by

any subinterval, ε is replaced by any positive number, and the partition has
fewer than n+ 1 dividing points.

Case 1. g(x1) = g(a) or g(xn−1) = g(b). Use the induction hypothesis on
the respective inherited partitions of the intervals [a, x1] and [x1, b], or [a, xn−1]
and [xn−1, b].

Case 2. g(x1) < g(a) < g(xn−1). Let q ∈ (x1, xn−1) such that g(q) =
g(a). Use the induction hypothesis on the respective inherited partitions of
the intervals [a, q] and [q, b].

Case 3. g(x1) > g(a) > g(xn−1). Analogous to Case 2.
Case 4. g(x1) ≥ g(xn−1) > g(a). Let u be the smallest number in the

set [a, b] ∩ g−1
(
g(xn−1)

)
. Then u ≤ x1, and the Intermediate Value Theorem

may be used to select v1 ∈ [a, u] and v2 ∈ [xn−1, b] such that g(v1) = g(v2).
As in the proof for n = 1, use Dini’s Theorem [S] to choose r ∈ [a, u] and
s ∈ [xn−1, b] such that

f
(
g(v1)

)
Dg(r)(u− a) > f

(
g(v1)

)(
g(u)− g(a)

)
− 1

4
ε , (1)

f
(
g(v2)

)
Dg(s)(b− xn−1) > f

(
g(v2)

)(
g(b)− g(xn−1)

)
− 1

4
ε . (2)

Recall that g(a) = g(b), g(u) = g(xn−1), g(v1) = g(v2), and add (1) and (2)
to obtain

f
(
g(v1)

)
Dg(r)(u− a) + f

(
g(v2)

)
Dg(s)(b− xn−1) > −1

2
ε . (3)
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Apply the induction hypothesis to the inherited partition of the subinterval
[u, xn−1] (with 1

2ε), and add the inequality obtained to (3).

Case 5. g(xn−1) ≥ g(x1) > g(a). Let u be the largest number in the
set [a, b] ∩ g−1

(
g(x1)

)
. Then u ≥ xn−1. Argue as in Case 4 and use the

subintervals [a, x1], [x1, u] and [u, b].

Case 6. g(x1) < g(a) and g(xn−1) < g(a). This is analogous to Cases 4
and 5, so we leave it.

This covers all the cases to prove the induction for the first inequality (with
> −ε). The second inequality (with < ε) is proved analogously. We leave the
rest.

Lemma 4. Let ε > 0 and δ > 0. Then there is a special partition of [a, b]
with norm < δ and a mixed sum on it

>

∫ g(b)

g(a)

f(x) dx− ε .

Proof. We can dismiss the case in which g(a) = g(b); for here we just apply
Lemma 3 to any partition of [a, b] of norm < δ. So assume g(a) < g(b).

Let a = x0 < x1 < . . . < xn = b be a special partition of [a, b] of
norm < δ (Lemma 2). Say 0 = n0 < n1 < . . . < nk = n such that for
any j = 0, 1, . . . , k − 1, either g(xnj

) = g(xnj+1
) or g(xnj

) < g(xnj+1
) and

g
(
xnj

, xnj+1

)
=
(
g(xnj

), g(xnj+1
)
)

and nj+1 = nj + 1. For any such j we
consider the two possibilities.

Case 1. g(xnj ) = g(xnj+1). Use Lemma 3 to obtain a refinement of the
inherited partition of the interval [xnj , xnj+1 ] and a mixed sum on it

>

∫ g(xnj+1
)

g(xnj
)

f(x) dx− ε(2k)−1 .

Case 2. g
(
xnj

, xnj+1

)
=
(
g(xnj

), g(xnj+1
)
)
. Let M denote the sup of

f on the interval
[
g(xnj ), g(xnj+1)

]
. We use Dini’s Theorem [S] to find a

t ∈ [xnj , xnj+1 ] such that

M Dg(t)
(
xnj+1 − xnj

)
> M

(
g
(
xnj+1

)
− g
(
xnj

))
− ε(2k)−1

as follows. Choose t so that

Dg(t) >
(
g
(
xnj+1

)
− g
(
xnj

))(
xnj+1 − xnj

)−1 − ε(2k)−1M−1
(
xnj+1 − xnj

)−1
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an multiply by M(xnj+1 − xnj ) if M is positive; choose t so that

Dg(t) <
(
g
(
xnj+1

)
− g
(
xnj

))(
xnj+1 − xnj

)−1 − ε(2k)−1M−1
(
xnj+1 − xnj

)−1
an multiply by M(xnj+1

− xnj
) if M is negative; choose any t if M = 0. Then

we choose s ∈ [xnj
, xnj+1

] so that

f
(
g(s)

)
Dg(t)

(
xnj+1

− xnj

)
> M

(
g(xnj+1

)− g(xnj
)
)
− ε(2k)−1

≥
∫ g(xnj+1

)

g(xnj
)

f(x) dx− ε(2k)−1 .

From Cases 1 and 2 we easily see that there is a refinement of a = x0 <
x1 < . . . < xn = b and a mixed sum on it

≥
k−1∑
j=0

∫ g(xnj+1
)

g(xnj
)

f(x) dx− ε =

∫ g(b)

g(a)

f(x) dx− ε .

So far we have not used the continuity hypothesis on f and Dg. Now we
use this hypothesis to change from mixed sums to Riemann sums and complete
the proof of Theorem 1.

Lemma 5. Let ε > 0. Then there is a δ > 0 such that for any partition
a = x0 < x1 < . . . < xn = b of [a, b] with norm < δ and for any mixed sum W
on this partition, there is a Riemann sum W0 on the same partition such that
|W −W0| < ε.

Proof. Use the Vitali Covering Theorem to find finitely many intervals I1, I2,
. . . , Ik such that

m
(

[a, b] \
(
∪kj=1Ij

))
< ε

where m is Lebesgue measure, and such that either∣∣f(g(u)
)
− f

(
g(v)

)∣∣ < ε or
∣∣Dg(u)−Dg(v)

∣∣ < ε

when u and v lie in an interval concentric with any Ij and having twice the
length of Ij (1 ≤ j ≤ k).

Now f and Dg are bounded. Choose M with M > |f | and M > |Dg|. Let

δ =
1

2

k
min
j=1

(length Ij)
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and let the partition a = x0 < x1 < . . . < xn = b have norm < δ. Let

W =

n∑
i=1

f
(
g(si)

)
Dg(ti)(xi − xi−1)

(
si, ti ∈ [xi−1, xi]

)
.

Now ∣∣∣∑∗
f
(
g(si)

)
Dg(ti)

(
xi − xi−1

)∣∣∣ ≤M2
∑∗

(xi − xi−1) < M∗ε ,∣∣∣∑∗
f
(
g(ti)

)
Dg(ti)

(
xi − xi−1

)∣∣∣ ≤M2
∑∗

(xi − xi−1) < M∗ε ,

(1)

where
∑∗

means sum on those indices i for which [xi−1, xi] does not meet any
Ij . But if [xi−1, xi] does meet some Ij , either∣∣∣f(g(si)

)
Dg(ti)

(
xi − xi−1

)
−f

(
g(ti)

)
Dg(ti)

(
xi − xi−1

)∣∣∣ ≤M(xi − xi−1)ε, or∣∣∣f(g(si)
)
Dg(ti)

(
xi − xi−1

)
− f

(
g(si)

)
Dg(si)

(
xi − xi−1

)∣∣∣ ≤M(xi − xi−1)ε .
(2)

We use (1) and (2) to select ri = si or ti in such a way that if

W0 =

n∑
j=1

f
(
g(ri)

)
Dg(ri)(xi − xi−1) ,

then ∣∣W −W0

∣∣ < 2M2ε+Mε
∑
i

(
xi − xi−1

)
< 2M2ε+Mε(b− a) .

We leave the rest.

Proof. [Proof of Theorem 1] We deduce the first inequality from Lemmas
4 and 5. The last inequality is proved similarly by reversing appropriate
inequalities in Lemma 4 and its proof. We leave the rest.

Proof. [Proof of Corollary 4] Let a ≤ u < v ≤ b and let (∗∗) hold. Let
g(u) = g(v). We define a function h on [a + v − u, b] as follows: put h(x) =
g(x− v + u) for a+ v − u ≤ x ≤ v and h(x) = g(x) for v < x ≤ b. Note that
h(b) = g(b), h(v) = g(u) = g(v), h(a+ v − u) = g(a),∫ v

a+v−u
f
(
h(t)

)
Dh(t) dt =

∫ u

a

f
(
g(t)

)
Dg(t) dt ,
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∫ b

v

f
(
h(t)

)
Dh(t) dt =

∫ b

v

f
(
g(t)

)
Dg(t) dt .

By hypothesis,∫ u

a

f
(
g(t)

)
Dg(t) dt+

∫ v

u

f
(
g(t)

)
Dg(t) dt+

∫ b

v

f
(
g(t)

)
Dg(t) dt

=

∫ g(b)

g(a)

f(x) dx .

By Theorem 1,∫ v

a+v−u
f
(
h(t)

)
Dh(t) dt+

∫ b

v

f
(
h(t)

)
Dh(t) dt ≥

∫ h(b)

h(a+v−u)
f(x) dx .

Take the difference of the last two (in)equalities and obtain∫ v

u

f
(
g(t)

)
Dg(t) dt ≤ 0 .

Similar arguments on the lower integrals give
∫ v

u
f
(
g(t)

)
Dg(t) dt ≥ 0 . It fol-

lows that f(g(t))Dg(t) is Riemann integrable on [u, v].

We conclude this paper with some examples.

Example 1. Let g(x) = |x| for −1 ≤ x ≤ 1, let f(x) = 1 if x is rational, and
f(x) = 0 if x is irrational. Then g(−1) = g(1) = 1, and∫ g(1)

g(−1)
f(x) dx = 0 < 1 =

∫ 1

−1
f
(
g(t)

)
Dg(t) dt ,

So the equations in (∗∗) need not hold in Theorem 1 when g is not monotone.

Example 2. Let E be a measurable subset of [0, 1] such that any subinterval
of [0, 1] meets E in a set of positive measure, and meets its complement {E in
a set of positive measure. let g be the indefinite integral of the characteristic
function of E: g(x) =

∫ x

0
χ

E
(t) dt . Then g is strictly increasing, and the sets

A = {t : g′(t) = 1} and B = {t : g′(t) = 0} are dense in [0, 1]; hence g(A)
and g(B) are dense in g[0, 1]. Now let f be identically 1. It follows that∫ 1

0

f
(
g(t)

)
Dg(t) dt = 1 > m(E) = g(1)− g(0) =

∫ g(1)

g(0)

f(x) dx .

So the equations in (∗∗) need not hold in Theorem 1 when Dg is not Riemann
integrable.
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Example 3. Let E and g be as in Example 2, and put k = g. On the range of
k put h(x) = 1 if x ∈ k(B) and h(x) = 0 if x /∈ k(B). Then h

(
k(t)

)
Dk(t) = 0

for all t, and∫ 1

0

h
(
k(t)

)
Dk(t) dt = 0 < m(E) = k(1)− k(0) =

∫ k(1)

k(0)

h(x) dx .

Of course the continuity hypothesis of the paper is not satisfied by h and Dk.
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