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ON SEQUENCES OF MONOTONE
FUNCTIONS

Abstract

Several kinds of convergence (including pointwise, monotone, a.c.,
uniform, . . . ) in the family of monotone functions are investigated.

Let R denote the set of all reals. Observe that the limit f of a converging
sequence of monotone functions fn : I 7→ R, where I is a nondegenerate inter-
val, is a monotone function. Of course, there is a subsequence (fnk

)k, where
all functions fnk

are decreasing or increasing and consequently, the function f
is decreasing or respectively increasing as the limit of the subsequence (fnk

)k.

Theorem 1. If f : [a, b] 7→ R is an increasing function (i.e. nondecreasing)
then there are continuous increasing functions fn : [a, b] 7→ R, n = 1, 2, . . .,
such that fn(a) = f(a), fn(b) = f(b) for n ≥ 1 and limn→∞ fn = f .

Proof. Fix a positive integer n and observe that the set

A =

{
x ∈ [a, b]; osc f(x) ≥ 1

n

}
is empty or finite. We can assume that A is nonempty. Let

A = {x1, . . . , xk}, x1 < · · · < xk.

There are closed intervals Ii = [ai, bi], i ≤ k, such that

bi−1 < ai < xi < bi < ai+1 for i = 2, . . . , k − 1;

if a < x1 then a < a1 < x1 < b1;
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if a = x1 then a = a1 = x1 < b1;

if xk < b then ak < xk < bk < b;

if xk = b then ak < xk = bk = b;

bi − ai < 1
n for i ≤ k;

f(bi)− f(ai) < osc f(xi) + 1
n for i ≤ k.

Since osc f(x) < 1
n for each point x ∈ [a, b]\A, there are points ci,j ∈ (bi−1, ai),

i = 2, . . . , k, j ≤ j(i), such that

bi−1 = ci,1 < ci,2 < · · · < ci,j(i)−1 < ci,j(i) = ai for i = 2, . . . , k;

f(ci,j+1)− f(ci,j) <
1

n
for i = 2, . . . , k.

Analogously, if a < a1 (bk < b) there are points c1,j , j ≤ j(1), (ck+1,j , j ≤
j(k + 1),) such that

a = c1,1 < · · · < c1,j(1) = a1

(bk = ck+1,1 < · · · < ck+1,j(k+1) = b) for j ≤ j(1) (j ≤ j(k + 1));

f(c1,j+1)− f(c1,j) <
1

n(
f(ck+1,j+1)− f(ck+1,j) <

1

n

)
for j ≤ j(1) (j ≤ j(k + 1)).

Define on the interval [a, b] the following continuous increasing function

fn(x) =

 f(x) for x ∈ {a, b, ci,j}, i ≤ k + 1, j ≤ j(i)
f(x) for x = xi, i ≤ k
linear otherwise on [a, b].

We will prove that limn→∞ fn = f .
If x ∈ {a, b, xi; i ≤ k} then fn(x) = f(x). Moreover, if x ∈ [ci,j , ci,j+1] then

|fn(x)− f(x)| < 1
n . So, if

x ∈ [a, b] ∧ dist (x,A) = inf
{
|u− x|;u ∈ A

}
≥ 1

n

then

|fn(x)− f(x)| < 1

n
.

For each point x ∈ [a, b] which is a discontinuity point of the function f
there is a positive integer n such that osc f(x) > 1

n . Consequently, for every
k > n we have fk(x) = f(x).
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Now we suppose that x ∈ [a, b] is a continuity point of the function f . Fix
a positive real η and a positive integer n with 2

n < η. Let

B =

{
x ∈ [a, b]; osc f(x) ≥ 1

n

}
.

Since x ∈ [a, b] \B and B is a closed set, there is a positive integer k > n with(
x− 1

k
, x+

1

k

)
∩B = ∅.

Fix an integer m > k. If

E =

{
y ∈ [a, b]; osc f(y) ≥ 1

m

}
then

|fm(x)− f(x)| < 1

m
< η

if dist (x,E) ≥ 1
m and

|fm(x)− f(x)| < osc f(y) +
1

m
<

1

n
+

1

m
<

2

n
< η

for some y ∈ E \B, if dist (x,E) < 1
m .

So, limn→∞ fn(x) = f(x) and the proof is completed.

It is well known that the limit of a decreasing (increasing) sequence of
continuous functions is upper (lower) semicontinuous.

Theorem 2. If f : [a, b] 7→ R is an upper semicontinuous increasing function
then there are continuous increasing functions fn : [a, b] 7→ R, n ≥ 1, such
that fn ≥ fn+1 > f for n ≥ 1 and f = limn→∞ fn.

In the proof of the above theorem we apply the following sandwich lemma:

Lemma 1. Let f : [a, b] 7→ R be an upper semicontinuous increasing (de-
creasing) function and let g : [a, b] 7→ R be a continuous function such that
f(x) < g(x) for each x ∈ [a, b]. Then there is a continuous increasing (decreas-
ing) function h : [a, b] 7→ R such that f(x) < h(x) < g(x) for all x ∈ [a, b].

Proof of Lemma 1. We suppose that the function f is increasing. The
proof for a decreasing function f is analogous. From the upper semicontinuity
of f follows that f is continuous from the right hand. Let

r = inf
{
g(x)− f(x);x ∈ [a, b]

}
.
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Since the function g − f is positive and lower semicontinuous, the real r is
positive. Define the set

A =
{
x ∈ [a, b]; osc f(x) ≥ r

5

}
and we observe that it is empty or finite. We can assume that A is nonempty.
Let

A = {x1, . . . , xk}, x1 < · · · < xk.

There are closed intervals Ii = [ai, xi], i ≤ k, such that

a < ai < xi < ai+1 < xi+1 ≤ b for i = 1, . . . , k − 1;

f(xi)− f(ai) < osc f(xi) +
r

5
for i ≤ k;

|g(x)− g(xi)| <
r

5
for x ∈ Ii, i ≤ k.

Let x0 = a. Since osc f(x) < r
5 for each point x ∈ [a, b] \ A, there are points

ci,j ∈ [xi−1, ai], i = 1, . . . , k, j ≤ j(i), such that

xi−1 = ci,1 < ci,2 < · · · < ci,j(i)−1 < ci,j(i) = ai for i = 1, . . . , k;

f(ci,j+1)− f(ci,j) <
r

5
for i = 1, . . . , k and j ≤ j(i)− 1.

Analogously, if xk < b there are points ck+1,j , j ≤ j(k + 1), such that

xk = ck+1,1 < · · · < ck+1,j(k+1) = b;

f(ck+1,j+1)− f(ck+1,j) <
r

5
for j < j(k + 1).

Define on the interval [a, b] a continuous increasing function in the following
way:

g1(x) =

 f(x) for x ∈ {a, b, ci,j}, i ≤ k + 1, j ≤ j(i)
f(x) for x = xi, i ≤ k
linear otherwise on [a, b].

If x ∈ {a, b, xi; i ≤ k} then g1(x) = f(x). Moreover, if x ∈ [ci,j , ci,j+1] then
|g1(x)− f(x)| < r

5 .
Let

h(x) = g1(x) +
r

4
, x ∈ [a, b].

Then h is a continuous increasing function and for

x ∈ [a, b] \
⋃
i≤k

Ii
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the inequalities

f(x) < g1(x) +
r

5
< h(x) < f(x) + r ≤ g(x)

are true. If x ∈ Ii for some i ≤ k then

f(x) ≤ f(xi−) = f(ai) +
r

5
< g1(ai) +

r

4
= h(ai) ≤ h(x)

= f(xi) +
r

4
≤ g(xi)− r +

r

4
< g(xi)−

r

5
< g(x).

So, the function h satisfies to all requirements.

Proof of Theorem 2. Since the function f is upper semicontinuous, there
are continuous functions gn : [a, b] 7→ R such that

f(x) < gn+1(x) < gn(x), x ∈ [a, b], n ≥ 1,

and f = limn→∞ gn ([1]).
By Lemma 1 there is a continuous increasing function f1 : [a, b] 7→ R

with f < f1 < g1. Let h2 = min(f1, g2). By Lemma 2 there is a continuous
increasing function f2 : [a, b] 7→ R with f < f2 < h2 = min(f1, g2). Next
by induction, for each positive integer n > 2 there is a continuous increasing
function fn : [a, b] 7→ R with f < fn < min(fn−1, gn). Consequently, the
sequence (fn)n satisfies all requirements and the proof is completed.

Remark 1. If the function f is upper semicontinuous and increasing (decreas-
ing) then there are continuous increasing (decreasing) functions gn : [a, b] 7→ R
such that gn(a) = f(a), gn(b) = f(b), gn ≥ gn+1 for n ≥ 1 and limn→∞ gn =
f .

Without loss of the generality we can suppose that

b = u = inf
{
x ∈ [a, b]; f(x) = f(b)

}
and

a = v = sup
{
x ∈ [a, b]; f(x) = f(a)

}
,

since in the contrary case we can consider the reduced function f/[u, v].
We will prove the remark for the case of an increasing function f , because

the case of a decreasing f is analogous. Let (an)n and (bn)n be sequences such
that

a < an+1 < an < · · · < a1 < b1 < · · · < bn < bn+1 < b,

and
a = lim

n→∞
an, ; b = lim

n→∞
bn.
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By Theorem 2, there is a decreasing sequence of continuous increasing func-
tions fn : [a, b] 7→ R with f = limn→∞ fn and fn > f for n = 1, 2, . . .. Find a
strictly increasing sequence (nk)k of positive integers such that

lim
k→∞

nk =∞;

fnk
(ak)− f(ak)

ak − a
< min

i<k

fni
(ai)− f(ai)

k(ai − a)
for k > 1;

fnk
(bk)− f(bk)

b− bk
< min

i<k

fni
(bi)− f(bi)

k(b− bi)
for k > 1.

For k ≥ 1 let

hk(x) =
fnk

(ak)− f(ak)

ak − a
(x− a) for x ∈ [a, ak],

hk(x) =
fnk

(bk)− f(bk)

b− bk
(b− x) for x ∈ [bk, b]

and

gk(x) =

 f(x) + hk(x) for x ∈ [a, ak]
fnk

(x) for x ∈ [ak, bk]
f(x) + hk(x) for x ∈ [bk, b].

The sequence (gk)k satisfies all requirements and the proof is completed.

Remark 2. If a function f : [a, b] 7→ R is increasing (decreasing) and lower
semicontinuous then there is a increasing sequence of continuous increasing
(decreasing) functions fn : [a, b] 7→ R such that fn(a) = f(a), fn(b) = f(b) for
n ≥ 1 and limn→∞ fn = f .

Proof. It suffices to apply Remark 1 to the function (−f).

We will write that a.c. limn→∞ fn = f ([2, 3]) if for each point x there is a
positive integer n(x) such that for n > n(x) the equality fn(x) = f(x) is true.

Since monotone functions have only countable sets of discontinuity points,
we prove the following theorem:

Theorem 3. Suppose that functions f, fn : [a, b] 7→ R satisfy the following
conditions:

• f = a.c. limn→∞ fn;

• for each integer n ≥ 1 the set D(fn) of all discontinuity points of the
function fn is countable.
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Then for each nonempty closed set F ⊂ [a, b] there are an open interval I and a
positive integer k such that I∩F 6= ∅ and for each point x ∈ (F ∩I)\

⋃
nD(fn)

and for each integer n > k the equality f(x) = fn(x) is true.

Proof. Since a.c. limn→∞ fn = f , for each point x ∈ [a, b] there is a positive
integer n(x) such that f(x) = fn(x) for all integers n > n(x). For each integer
m ≥ 1 let

Am =
{
x ∈ [a, b];n(x) = m

}
.

Let F ⊂ [a, b] be a nonempty closed set. If the set F has an isolated point
then the condition of our theorem is satisfied. So, we can assume that F is a
perfect set. Since

F =
⋃
m

(Am ∩ F ),

by the Baire category theorem there is an integer k ≥ 1 such that the set
Ak ∩F is of the second category in F . Consequently, there is an open interval
I such that I ∩ F 6= ∅ and for every open interval J ⊂ I with J ∩ F 6= ∅ the
set J ∩ F ∩Ak is of the second category in F . Since the set

E =
⋃
n

D(fn)

is countable, the set
B = (I ∩ F ∩Ak) \ E

is dense in I∩F . The restricted functions fn/([a, b]\E), n ≥ 1, are continuous
and for m,n > k and x ∈ B the equalities

fn(x) = fm(x) = f(x)

are true. So, for m,n > k and for x ∈ (I ∩ F ) \E we obtain fm(x) = fn(x) =
f(x) and the proof is finished.

Corollary 1. If functions fn : [a, b] 7→ R are continuous and increasing (de-
creasing) and a.c. limn→∞ fn = f then the function f is increasing (decreasing)
and in the class B∗1 (i.e. for every nonempty closed set F ⊂ [a, b] there is an
open interval I such that I ∩ F 6= ∅ and the restricted function f/(F ∩ I) is
continuous [2, 3]).

Proof. This corollary is an evident consequence of the last theorem.

Theorem 4. Suppose that the function f : [a, b] 7→ R is increasing (decreas-
ing) and in the class B∗1 . Then there is a sequence of continuous increasing
(decreasing) functions fn : [a, b] 7→ R with f = a.c. limn→∞ fn.
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Proof. Observe that there are nonempty closed sets Fn, n ≥ 1, such that

[a, b] =
⋃
n

Fn,

Fn ⊂ Fn+1, n ≥ 1,

and the restricted functions f/Fn are continuous ([2]). For each integer n ≥ 1
the functions f/Fn can be extended to a continuous increasing (decreasing)
function fn : [a, b] 7→ R such that fn(a) = f(a) and fn(b) = f(b). Evidently,

f = a.c. lim
n→∞

fn

and the proof is completed.

Theorem 5. Let f : [a, b] 7→ R be a function. The following conditions are
equivalent:

(a) f is increasing (decreasing);

(b) There are increasing (decreasing) functions fn : [a, b] 7→ R such that
fn(a) = f(a), fn(b) = f(b) and the sets D(fn) of all discontinuity points
of fn, n ≥ 1, are finite and limn→∞ V (fn − f, a, b) = 0, where V (fn −
f, a, b) denotes the total variation of fn − f on [a, b];

(c) There is a sequence of increasing (decreasing) functions fn : [a, b] 7→ R
which uniformly converges to f on [a, b] and for which fn(a) = f(a),
fn(b) = f(b) and the sets D(fn), n ≥ 1, are finite.

Proof. The implication (c) ⇒ (a) is evident. Since for each point x ∈ [a, b]
we have

|fn(x)− f(x)| ≤ V (fn − f, a, b),

we obtain the implication (b) ⇒ (c). So, it suffices to prove the implication
(a) ⇒ (b). Fix an increasing function f and a positive real η. Observe that
the set D(f) is countable. We may assume that D(f) is nonempty. Let

D(f) = {a1, . . . , ak, . . .}.

Define g(a) = 0 and for x ∈ (a, b] let

g(x) =
∑
ai<x

osc f(ai) + (f(x)− f(x−)).

Put
h(x) = f(x)− g(x) for x ∈ [a, b].
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Then the function h is increasing and continuous and f = h+ g. Since∑
i

osc f(ai) ≤ f(b)− f(a) <∞,

there is a positive integer k with∑
i>k

osc f(ai) <
η

2
.

Put g1(a) = 0, g1(b) = g(b) and for x ∈ (a, b) let

g1(x) =
∑

ai<x;i≤k

osc f(ai) + (f(x)− f(x−)).

If
f1(x) = h(x) + g1(x) for x ∈ [a, b],

then the function f1 is increasing and

f1(a) = f(a), f1(b) = f(b),

the set D(f1) ⊂ {a1, . . . , ak, b} is finite, and

V (f1 − f, a, b) = 2
∑
i>k

osc f(ai) < 2
η

2
= η.

This completes the proof for the increasing functions. If f is a decreasing
function on [a, b] then we can use the proved part to the function (−f). So,
the proof is completed.

Now, denote by ω1 the first uncountable ordinal number and consider a
transfinite sequence of monotone functions fα : [a, b] 7→ R, α < ω1. We
will say that the sequence (fα)α<ω1 converges to a function f (then we write
limα fα = f) if for each point x ∈ [a, b] there is a countable ordinal α(x) such
that f(x) = fα(x) for α > α(x) ([4]).

Theorem 6. If a function f : [a, b] 7→ R is the limit of a transfinite sequence
of monotone functions fα, α < ω1, then there is a countable ordinal β such
that f = fα for α > β.

Proof. The assumptions imply the monotonicity of the function f . Let
A ⊂ [a, b] be a countable set containing D(f) ∪ {a, b} which is dense in [a, b].
There is a countable ordinal β such that

fα(x) = f(x), x ∈ A, α > β.
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If α > β is a countable ordinal then fα = f . Of course, if there is a point
x ∈ [a, b] with fα(x) 6= f(x) then x ∈ [a, b] \A. Consequently, f is continuous
at x and there is a positive real r such that fα(x) is not in the interval (f(x)−
r, f(x) + r). Since the graph of the restricted function f/A is dense in the
graph of f , there are points u, v ∈ A with

f(x)− r < f(u) < f(x) < f(v) < f(x) + r.

But
fα(u) = f(u), fα(v) = f(v)

and fα is monotone, so

fα(x) ∈ (f(x)− r, f(x) + r),

a contrary. This completes the proof.

Since each nondegenerate interval I is the union of closed intervals In,
n ≥ 1, such that int (In) ∩ int (Im) = ∅ for n 6= m, we obtain that

Remark 3. Theorems 1, 4, 5 and 6 and Remarks 1 and 2 are true for mono-
tone functions f : I 7→ R with fn(a+) = f(a+) and fn(b−) = f(b−).
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