Ian June L. Garces, Department of Mathematics, Ateneo de Manila University, P.O. Box 154, 1099 Manila, The Philippines Lee Peng-Yee, Division of Mathematics, National Institute of Education, Singapore 259756, e-mail: leepy@@am.nie.ac.sg Zhao Dongsheng, Division of Mathematics, National Institute of Education, Singapore 259756, e-mail: leepy@@am.nie.ac.sg

MOORE-SMITH LIMITS AND THE HENSTOCK INTEGRAL

Abstract

An integral is defined using the Moore-Smith limit and this new integral is compared to the Henstock integral.

It is well-known though not easily found in the literature that the Riemann integral can be defined by Moore-Smith limit using divisions. Then many properties of the Riemann integral will have straightforward proofs. In this paper, we shall investigate whether the Henstock integral can also be defined by means of Moore-Smith limit involving δ -fine divisions. We assume that the reader is familiar with the definition of the Henstock integral [3].

A division D of [a, b] is a finite set of interval-point pairs $([u, v], \xi)$ such that the intervals [u, v] from D are non-overlapping and their union is [a, b] and also $\xi \in [u, v]$ for each $([u, v], \xi) \in D$. Let $D_1 = \{([u, v], \xi)\}$ and $D_2 = \{([s, t], \eta)\}$ be two divisions of [a, b]. Then D_2 is said to be finer than D_1 in the Riemann sense, or in symbols, $D_2 \sqsupseteq D_1$ if for each $([s, t], \eta) \in D_2$ we have $[s, t] \subset [u, v]$ for some $([u, v], \xi) \in D_1$ and when [s, t] = [u, v] we have $\eta = \xi$. Then $(\mathcal{D}, \sqsupseteq)$ is a directed set of divisions D of [a, b]. More precisely, the following conditions are satisfied:

- 1. $D \supseteq D$ for all $D \in \mathcal{D}$;
- 2. if $D_1, D_2, D_3 \in \mathcal{D}$ with $D_1 \supseteq D_2$ and $D_2 \supseteq D_3$, then $D_1 \supseteq D_3$;
- 3. if $D_1, D_2 \in \mathcal{D}$ with $D_1 \supseteq D_2$ and $D_2 \supseteq D_1$, then $D_1 = D_2$; and

Mathematical Reviews subject classification: Primary: 26A39 Received by the editors November 27, 1997

4. for every $D_1, D_2 \in \mathcal{D}$, there exists $D_3 \in \mathcal{D}$ such that $D_3 \supseteq D_1$ and $D_3 \supseteq D_2$.

Hence the Riemann integral of f on [a, b] is the Moore-Smith limit [1] of Riemann sums using (\mathcal{D}, \supseteq) . In symbols,

$$\int_{a}^{b} f = \lim_{D \in \mathcal{D}} (D) \sum f(\xi)(v - u).$$

We recall that a function f is *Henstock integrable* to A on [a, b] if for every $\epsilon > 0$ there exists $\delta(x) > 0$ such that for any δ -fine division D of [a, b] we have

$$\left| (D) \sum f(\xi)(v-u) - A \right| < \epsilon.$$

A division D of [a, b] is δ -fine if $\xi \in [u, v] \subset (\xi - \delta(\xi), \xi + \delta(\xi))$ for each $([u, v], \xi) \in D$. Now let \mathcal{D} be the family of δ -fine divisions of [a, b] for some given $\delta(x) > 0$. For $D_1, D_2 \in \mathcal{D}$, we write $D_2 \ge D_1$ and say that D_2 is finer than D_1 in the Henstock sense using δ if for every $([s, t], \eta) \in D_2$ we have $[s, t] \subset [u, v]$ for some $([u, v], \xi) \in D_1$, and $\{\xi : ([u, v], \xi) \in D_1\} \subset \{\eta : ([s, t], \eta) \in D_2\}$. Then (\mathcal{D}, \geq) is a directed set. A function f is said to be H_1 -integrable to A on [a, b] if A is the Moore-Smith limit of the Riemann sums using the directed set (\mathcal{D}, \geq) . More precisely, there exists $\delta(x) > 0$ such that for every δ -fine division D_0 such that for every δ -fine division $D \ge D_0$ we have

$$|(D)\sum f(\xi)(v-u) - A| < \epsilon.$$

We say that A is the H_1 -integral of f on [a, b] and that f is H_1 -integrable on [a, b] using δ . Note the difference that here we choose $\delta(x)$ first then ϵ , whereas in the definition of the Henstock integral $\delta(x)$ comes after ϵ .

Example 1. A Riemann integrable function on [a, b] is H_1 -integrable there using an arbitrary $\delta(x) > 0$, and the two integrals are equal.

Example 2. The Dirichlet function, given by f(x) = 1 when x is rational and 0 when x is irrational, is H_1 -integrable on [0, 1], using δ where $\delta(r_i) = 2^{-i}$ for $i = 1, 2, \ldots$ and $\{r_1, r_2, \ldots\}$ are the rational numbers in [0, 1].

Example 3. Let f(x) = F'(x) where F(0) = 0 and $F(x) = x^2 \sin x^{-2}$ where $x \neq 0$. Then f is H_1 -integrable on [0,1], using δ where $\delta(x) = \delta_n$ when $x \in (1/(n+1), 1/n]$ for some suitable δ_n and $n = 1, 2, \ldots$, and arbitrary when x = 0.

It is easy to see that every H_1 -integrable function on [a, b] is also Henstock integrable there. We will be using this fact frequently in the succeeding discussion.

For convenience, we say that f is H_1 -integrable on a set $X \subset [a, b]$ if $f \mathcal{X}_X$ is H_1 -integrable on [a, b] where \mathcal{X}_X denotes the characteristic function of X. We may define the primitive F of f on [a, b] with f(x) = 0 for $x \in [a, b] - X$. It is easy to see that if f is H_1 -integrable on X_1 using δ_1 and on X_2 using δ_2 then f is H_1 -integrable on the union $X_1 \cup X_2$ using $\delta = \min\{\delta_1, \delta_2\}$. However, we have the following.

Lemma 4. Let f be H_1 -integrable on a closed set $X_1 \subset [a, b]$ using δ_1 , and on another closed set $X_2 \subset [a, b]$, with f(x) = 0 for $x \notin X_1 \cup X_2$. If the primitive F of f on [a, b] is absolutely continuous there, then f is H_1 -integrable on $X_1 \cup X_2$ using δ , where $\delta(x) = \delta_1(x)$ when $x \in X_1$.

PROOF. We may assume $X_1 \subset X_2$. Suppose f is H_1 -integrable on X_2 using δ_2 . Then for every $\epsilon > 0$ there exists a δ_i -fine division D_i on [a, b], i = 1, 2, such that for any δ_i -fine division $D \ge D_i$ we have

$$\left| (D) \sum_{\xi \in X_i} f(\xi)(v-u) - A_i \right| < \epsilon,$$

where A_i denotes the H_1 -integral of f on X_i . We may assume $\delta_2(x) \leq \delta_1(x)$ for all $x \in [a, b]$. Put $\delta(x) = \delta_1(x)$ when $x \in X_1$ and $\delta_2(x)$ when $x \in [a, b] - X_1$. We may modify $\delta_2(x)$, if necessary, so that $(x - \delta_2(x), x + \delta_2(x)) \cap X_1 = \emptyset$ when $x \notin X_1$.

Since F is absolutely continuous on [a, b], there exists $\eta > 0$ such that for any partial division D of [a, b] we have

$$|(D)\sum F(u,v)| < \epsilon$$
 whenever $(D)\sum |v-u| < \eta$,

where F(u, v) = F(v) - F(u). Note that the Saks-Henstock Lemma [3, p. 11], for the H_1 -integral holds. If, in addition, D is δ_2 -fine partial division of [a, b] with $\xi \in X_2$ such that

$$\left| (D) \sum \{ f(\xi)(v-u) - F(u,v) \} \right| < \epsilon,$$

then $(D) \sum |v - u| < \eta$ implies $|(D) \sum f(\xi)(v - u)| < 2\epsilon$.

Now, take a δ -fine division D_0 of [a, b] such that $D_0 \ge D_1, D_2$ using δ_1 and a subset E of D_0 covers X_1 with $|E - X_1| < \eta$. For any δ -fine division $D \ge D_0$, take a δ_2 -fine division D_3 of those intervals in D which are δ_1 -fine, namely, those with $\xi \in X_1$. Note that $(D_3) \sum f(\xi)(v-u)$ and $(D) \sum_{\xi \in X_1} f(\xi)(v-u)$

are sums over the same intervals, in which D_3 may contain $([u, v], \xi)$ with $\xi \in X_1$ and $\xi \in X_2 - X_1$. Then we have

$$\begin{split} \left| (D) \sum_{\xi \in X_2} f(\xi)(v-u) - A_2 \right| &\leq \left| (D) \sum_{\xi \in X_1} f(\xi)(v-u) - A_1 \right| \\ &+ \left| A_1 - (D_3) \sum_{\xi \in X_1} f(\xi)(v-u) \right| \\ &+ \left| (D_3) \sum_{\xi \in X_2} f(\xi)(v-u) + (D) \sum_{\xi \in X_2 - X_1} f(\xi)(v-u) - A_2 \right| \\ &+ \left| (D_3) \sum_{\xi \in X_2 - X_1} f(\xi)(v-u) \right| \\ &\leq 5\epsilon. \end{split}$$

The proof is complete.

Theorem 5. Let f be H_1 -integrable on a closed set X_n with primitive F_n for $n = 1, 2, ..., and X = \bigcup_{n=1}^{\infty} X_n$. If f is non-negative on [a, b] and $F_n(b) - F_n(a) \to A$ as $n \to \infty$, then f is H_1 -integrable on X.

PROOF. We may assume that $X_n \subset X_{n+1}$ for each $n = 1, 2, \ldots$. Since f is H_1 -integrable on X_n , there exists $\delta_n(x) > 0$ such that for any δ_n -fine division D of [a, b] we have

$$(D)\sum_{\xi\in X_n} |f(\xi)(v-u) - F_n(u,v)| < \frac{1}{2^n},$$

where $F_n(u, v) = F_n(v) - F_n(u)$ and F_n is the primitive of $f \mathcal{X}_{X_n}$ on [a, b]. Put $\delta(x) = \delta_n(x)$ when $x \in X_n - X_{n-1}$ with $X_0 = \emptyset$, otherwise arbitrary. We may modify $\delta_n(x)$, if necessary, as in Lemma 4. Since f is non-negative on [a, b], $f \mathcal{X}_{X_n}$ is absolutely H_1 -integrable on [a, b] and so $f \mathcal{X}_{X_n}$ is absolutely Henstock integrable on [a, b]. Thus, F_n is absolutely continuous on [a, b], and the result of Lemma 4 applies.

Given $\epsilon > 0$, there exists an integer N > 0 such that

$$|A - F_N(a, b)| < \epsilon$$
 and $\sum_{n=N+1}^{\infty} \frac{1}{2^n} < \epsilon$.

Further, there exists a δ -fine division D_N of [a, b] such that for any δ -fine $D \ge D_N$ of [a, b] we have

$$\left| (D) \sum_{\xi \in X_N} \{ f(\xi)(v-u) - F_N(u,v) \} \right| < \epsilon.$$

Here we have used Lemma 4 to obtain D_N and the last inequality. Note that $F_n(u,v) \to F(u,v)$ as $n \to \infty$ and $0 \le F(u,v) - F_n(u,v) \le F(u,v) - F_N(u,v)$ for $n \ge N$. Here F(a,b) = A. Then for any δ -fine division $D \ge D_N$ of [a,b] we obtain

$$\begin{split} \left| (D) \sum_{\xi \in X} f(\xi)(v-u) - A \right| &\leq \left| (D) \sum_{\xi \in X_N} \{ f(\xi)(v-u) - F_N(u,v) \} \right| \\ &+ \sum_{n=N+1}^{\infty} \left| (D) \sum_{\xi \in X_n - X_{n-1}} f(\xi)(v-u) - F_n(u,v) \right| \\ &+ |A - F_N(a,b)| \\ &\leq 3\epsilon. \end{split}$$

Hence f is H_1 -integrable on X.

With the idea presented in the proofs of Lemma 4 and Theorem 5, we can now look at the H_1 -integrability of a Henstock integrable function. Note that the Cauchy Criterion [3, p. 10], also holds for H_1 -integral. We give first the following lemmas.

Lemma 6. Let X be a closed subset of [a, b]. If f is H_1 -integrable and bounded on [a, b], then f is H_1 -integrable on X.

PROOF. Let $|f(x)| \leq M$ for all $x \in [a, b]$. By the Cauchy Criterion, there exists $\delta(x) > 0$ such that for each $\epsilon > 0$ there is a δ -fine division D_0 of [a, b] such that for any δ -fine divisions $D, D' \geq D_0$ of [a, b] we have

$$\left| (D) \sum f(\xi)(v-u) - (D') \sum f(\xi)(v-u) \right| < \epsilon.$$

Further, there exists a finite union E of closed intervals such that $E \supset X$ and $|E - X| < \frac{\epsilon}{M}$. We can assume that a subset of D_0 forms a division of E. For every δ -fine divisions $D_1, D_2 \ge D_0$ of [a, b], let D_1^* and D_2^* be the respective subsets of D_1 and D_2 which form divisions of E. Note that $(D_i) \sum_{\xi \in X} f(\xi)(v-u) = (D_i^*) \sum_{\xi \in X} f(\xi)(v-u)$ for i = 1, 2. We may assume further that

$$(D_1)\sum_{\xi\in\overline{[a,b]-E}}f(\xi)(v-u)=(D_2)\sum_{\xi\in\overline{[a,b]-E}}f(\xi)(v-u).$$

Then

$$\begin{aligned} \left| (D_1) \sum_{\xi \in X} f(\xi)(v-u) - (D_2) \sum_{\xi \in X} f(\xi)(v-u) \right| \\ &\leq \left| (D_1) \sum_{\xi \notin X} f(\xi)(v-u) - (D_2) \sum_{\xi \notin X} f(\xi)(v-u) \right| \\ &+ (D_1^*) \sum_{\xi \notin X} |f(\xi)|(v-u) + (D_2^*) \sum_{\xi \notin X} |f(\xi)|(v-u)| \\ &\leq 3\epsilon. \end{aligned}$$

By the Cauchy Criterion again, the above inequalities imply that f is H_1 -integrable on X.

Lemma 7. Let f be a measurable function on [a, b]. Then there exists a sequence $\{X_i\}$ of closed subsets of [a, b] such that f is H_1 -integrable on each X_i and $|[a, b] - \bigcup_{i=1}^{\infty} X_i| = 0$.

PROOF. It is well-known [2, p. 192] that there exists a sequence $\{\varphi_n\}$ of continuous functions on [a, b] such that $\varphi_n(x) \to f(x)$ almost everywhere in [a, b]. By Egoroff's Theorem and Lemma 6, for each $i = 1, 2, \ldots$, there is a closed set $X_i \subset [a, b]$ with $|[a, b] - X_i| < \frac{1}{i}$ such that f is H_1 -integrable on X_i . Obviously,

$$|[a,b] - \bigcup_{i=1}^{\infty} X_i| \le |[a,b] - \bigcup_{i=1}^{N} X_i| \le |[a,b] - X_N| < \frac{1}{N} \to 0$$

as $N \to \infty$, that completes the proof of the lemma.

Let a function F be defined on [a, b] and $X \subset [a, b]$. The function F is said to be $AC^*(X)$ if for every $\epsilon > 0$ there exists $\eta > 0$ such that for any partial division $D = \{([u, v], \xi)\}$ of [a, b] with u or v in X

$$(D)\sum |v-u| < \eta$$
 implies $(D)\sum |F(u,v)| < \epsilon.$

Further, F is said to be ACG^* on [a, b] if [a, b] is the union of X_1, X_2, \ldots such that F is $AC^*(X_i)$ for each i. This definition is equivalent to the definition in [3, p. 29] with F being continuous on [a, b] and to the classical definition in the book by Saks [4], that is, if F is ACG^* on [a, b], then F is continuous there. It was shown in [3, p. 34] that is f is a Henstock integrable function on [a, b], then its primitive F is ACG^* on [a, b] and we can assume that $[a, b] = \bigcup X_i$ such that F is $AC^*(X_i)$ and X_i is closed for each i.

On the other hand, a sequence $\{F_n\}$ of functions defined on [a, b] is said to be $UAC^*(X)$ where $X \subset [a, b]$ if, in the definition of $AC^*(X)$, $\eta > 0$ is

independent of *n*. Further, $\{F_n\}$ is $UACG^*$ on [a, b] if $[a, b] = \bigcup X_i$ such that $\{F_n\}$ is $UAC^*(X_i)$ for each *i* and we can assume that X_i is closed for each *i*. Furthermore, the sequence $\{F_n\}$ is said to be *oscillation-convergent* to some function *F* defined on [a, b] if $[a, b] = \bigcup X_i$ with X_i being closed and for every *i* and $\epsilon > 0$ there is an integer N > 0 such that for any partial division $D = \{([u, v], \xi)\}$ of [a, b] with ξ in X_i we have

$$\sum |F_n(u,v) - F(u,v)| < \epsilon$$

whenever $n \ge N$. The following lemma was proved in [3, p. 56]

Lemma 8. Let $\{f_n\}$ be a sequence of Henstock integrable functions on [a, b]and is control-convergent to some function f on [a, b]; that is, the following conditions are satisfied:

- 1. $f_n(x) \to f(x)$ almost everywhere in [a, b] as $n \to \infty$;
- 2. the sequence $\{F_n\}$ of primitives of $\{f_n\}$ is $UACG^*$ on [a, b]; and
- 3. $\{F_n\}$ converges uniformly on [a, b].

Then $\{F_n\}$ is oscillation-convergent to the primitive F of f on [a,b].

Lemma 9. Let f be Henstock integrable on [a, b] with primitive F. Then there exists a sequence $\{F_n\}$ of absolutely continuous functions that is oscillation-convergent to F on [a, b].

PROOF. Since f is Henstock integrable on [a, b], F is ACG^* on [a, b]; that is, there exists a sequence $\{X_n\}$ of closed subsets of [a, b] such that F is $AC^*(X_n)$ for each n. We may assume that $X_n \subset X_{n+1}$ and $a, b \in X_n$ for each n. Since X_n is closed, we can write $(a, b) - X_n = \bigcup_{k=1}^{\infty} (a_k, b_k)$ and put

$$F_n(x) = \begin{cases} F(x) & \text{when } x \in X_n; \\ F(a_k) + \frac{F(b_k) - F(a_k)}{b_k - a_k} (x - a_k) & \text{when } x \in (a_k, b_k) \text{ for all } k. \end{cases}$$

Since f is Henstock integrable on [a, b], its primitive F and thus F_n are continuous on [a, b]. Further, we can assume that $F_n \to F$ uniformly as $n \to \infty$.

Since F_n is $AC^*(X_n)$ for each n, given an $\epsilon > 0$ there exists $\eta_n > 0$ such that for any partial division π_n of [a, b] with u or v in X_n

$$(\pi_n)\sum |v-u| < \eta_n$$
 implies $(\pi_n)\sum |F_n(u,v)| < \epsilon$.

Let N be fixed. For $n \ge N$, $F_n(x) = F_N(x)$ for all $x \in X_N$. Thus we can choose $\eta = \min_{1 \le i \le N} \{\eta_i\}$ for all F_n so that $\{F_n\}$ is $UAC^*(X_N)$. Hence $\{F_n\}$ is $UACG^*$ on [a, b].

Now define

$$f_n(x) = \begin{cases} f(x) & \text{when } x \in X_n; \\ \frac{F(b_k) - F(a_k)}{b_k - a_k} & \text{when } x \in (a_k, b_k) \text{ for all } k. \end{cases}$$

It is easy to see that f_n is Henstock integrable on [a, b] and F_n is the primitive of f_n for each n. Since $X_n \uparrow [a, b], f_n(x) \to f(x)$ almost everywhere in [a, b].

From the above discussion, $\{f_n\}$ is control-convergent to f on [a, b]. Thus, by Lemma 8, $\{F_n\}$ is oscillation-convergent to F on [a, b]. The proof is complete.

We now give the main result of the paper.

Theorem 10. Let f be Henstock integrable on [a,b]. Then there is an H_1 -integrable function g such that f(x) = g(x) almost everywhere in [a,b].

PROOF. By Lemma 7, there exists a sequence $\{X_i\}$ of closed subsets of [a, b] such that f is H_1 -integrable on each X_i and $|[a, b] - \bigcup_{i=1}^{\infty} X_i| = 0$. Let $X = \bigcup_{i=1}^{\infty} X_i$ and $X_i \subset X_{i+1}$ for each i. We prove that f is H_1 -integrable on X.

We may assume that the result of Lemma 9 holds; that is, for every *i* there exists an integer $n(i) \ge i$ such that for any partial division *D* of [a, b] with *u* or *v* in X_i , we have

$$(D)\sum |F_{n(i)}(u,v) - F(u,v)| < \frac{1}{2^{i}},$$

where F is the primitive of f on [a, b] and $F_{n(i)}(x)$ is as defined in the proof of Lemma 9.

Since f is H_1 -integrable on $X_{n(i)}$ for each i, $f_{n(i)}$ is also H_1 -integrable on $X_{n(i)}$, where $f_{n(i)}$ is as defined in Lemma 9. There exists $\delta_{n(i)}(x) > 0$ such that for any $\delta_{n(i)}$ -fine division D of [a, b] we have

$$(D)\sum_{\xi\in X_i} |f_{n(i)}(\xi)(v-u) - F_{n(i)}(u,v)| < \frac{1}{2^i}.$$

For i = 1, 2, ..., put $\delta(x) = \delta_i(x)$ if $x \in X_i - X_{i-1}$ with $X_0 = \emptyset$; otherwise, put $\delta(x) > 0$ arbitrary. We may modify $\delta_i(x)$, if necessary, as in Lemma 4.

Given $\epsilon > 0$, there exists a positive integer $N = n(i_0)$ such that

$$\sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \epsilon.$$

Further, there exists a δ -fine division D_N of [a, b] such that for any δ -fine division $D \ge D_N$ of [a, b] we have

$$\left| (D) \sum_{\xi \in X_{i_0}} \{ f(\xi)(v-u) - F_N(u,v) \} \right| < \epsilon.$$

For any δ -fine division $D = \{([u, v], \xi)\}$ of [a, b] with $\xi \in X_n - X_{n-1}$ and $D \ge D_N$, we have

$$\begin{split} \left| (D) \sum_{\xi \in X} \{ f(\xi)(v-u) - F(u,v) \} \right| &\leq \left| (D) \sum_{\xi \in X_{i_0}} \{ f(\xi)(v-u) - F_N(u,v) \} \right| \\ &+ \sum_{i=i_0+1}^{\infty} \left| (D) \sum_{\xi \in X_i - X_{i-1}} \{ f(\xi)(v-u) - F_{n(i)}(u,v) \} \right| \\ &+ \left| (D) \sum_{\xi \in X_{i_0}} \{ F_N(u,v) - F(u,v) \} \right| \\ &+ \sum_{i=i_0+1}^{\infty} \left| (D) \sum_{\xi \in X_i - X_{i-1}} \{ F_{n(i)}(u,v) - F(u,v) \} \right| \\ &< \epsilon + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} + \frac{1}{2^{i_0}} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} \\ &< 4\epsilon. \end{split}$$

Therefore, f is H_1 -integrable on X.

Corollary 11. A function f is Henstock integrable on [a,b] if and only if f(x) = g(x) almost everywhere in [a,b] for some H_1 -integrable function g on [a,b].

It is not known whether every Henstock integrable function on [a, b] is also H_1 -integrable there. We conjecture that it is not.

References

- [1] N. Dunford and J. T. Schwartz, *Linear Operators* I, Interscience 1958.
- [2] C. Goffman, *Real Functions*, Rinehart 1953.
- [3] P. Y. Lee, Lanzhou Lectures in Henstock Integration, World Scientific 1989.
- [4] S. Saks, Theory of the Integral, 2nd ed, Hafner 1937.

I. J. L. GARCES, L. PENG-YEE AND Z. DONGSHENG