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WAVELET ANALYSIS IN SPACES OF
SLOWLY GROWING SPLINES VIA

INTEGRAL REPRESENTATION

Abstract

In this paper we consider polynomial splines with equidistant nodes
which may grow as O|x|s. We present an integral representation of such
splines with a distribution kernel where exponential splines are used as
basic functions. By this means we characterize splines possessing the
property that translations of any such spline form a basis of correspond-
ing spline space. It is shown that any such spline is associated with a
dual spline whose translations form the biorthogonal basis. We suggest
a scheme of wavelet analysis in the spaces of growing splines based on
integral representation of the splines. The key point of that scheme is
the refinement equation for the exponential splines which contains only
two terms. We construct the so called exponential wavelets. We estab-
lish conditions for a spline to be a basic wavelet which enable us to form
a library of such wavelets. We give formulas for the decomposition of a
spline into a weak orthogonal sum of the sparse-grid spline and an ele-
ment of the corresponding wavelet space. Reconstruction formulas are
presented which permit the use of arbitrary bases of spline and wavelet
spaces.

1 Introduction

In this paper we consider polynomial splines S(x) with equidistant nodes which
may grow as O|x|s. We present an integral representation of such splines with
the distribution kernel. This representation resembles, to some extent, the
Fourier integral of slowly growing functions. Instead of the Fourier exponen-
tials, the so called exponential splines introduced by Schoenberg [11] there are
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used. In particular, the latter are eigenvectors of the operator of shifts and
generalized eigenvectors of the operator of differentiation.

It is worth mentioning periodized exponential splines. It was discovered in
[8] that these splines form orthogonal bases of the spaces of periodic splines. In
the author’s papers [15], [16] this idea was used to come up with the concept
of Spline Harmonic Analysis which is a version of harmonic analysis in the
spaces of periodic splines. This concept allowed, in particular, a flexible com-
putational scheme of the spline wavelet analysis to be developed. Later on a
related approach was applied in [9] to an extended class of periodic functions.

Integral representation provides a suitable tool for operating with growing
splines. In particular, it enables us to characterize splines whose shifts form
a basis of corresponding spline space. It is shown that any such spline is
associated with a dual spline whose shifts form the biorthogonal basis of the
same space.

The technique of integral representation proved to be highly relevant to
the construction of the scheme of wavelet analysis in the spaces of growing
splines. An unusual feature in this case is that the spaces we operate in
are non-Hilbert. However, due to our approach, we circumvent this obstacle.
We base that scheme on the refinement equation for the exponential splines
containing only two terms. Further, we introduce the so-called exponential
wavelets. The latter are related to the exponential splines and provide an inte-
gral representation of elements of the wavelet spaces. We establish conditions
for a spline to be a basic wavelet which results in the creation of a library of
such wavelets. This library includes the well known Battle–Lemarié wavelets
([2], [10]) as well as two kinds of Chui–Wang wavelets ([6]).

We establish formulas for decomposition of a spline into a weak orthogonal
sum of the sparse-grid spline and an element of the corresponding wavelet
space. Reciprocal reconstruction formulas are given as well. We stress that
these formulas allow decomposition from an arbitrary basis of a spline space
into arbitrary bases of the sparse-grid spline space and the wavelet space. The
same may be said of the reconstruction. We also present formulas for the
wavelet transformation of a growing signal.

It should be pointed out that most of the formulas of spline wavelet analysis
established in this paper have their prototypes in the analysis in the space L2

([6]), ([1]). We admit that those relations could be derived by other means.
However, in our opinion, the approach to be presented is most relevant to this
purpose. Moreover, it is rather universal and can be applied to an extended
set of problems. Therefore, to some extent, the paper is of methodological
character.

The paper consists of two parts. Part 1 is devoted to a general descrip-
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tion of the integral representation of splines. It is auxiliary to Part 2 which
is concerned with wavelet analysis. More detailed discussion of integral repre-
sentation of splines can be found in [17], [18].

In the introductory Section 2 we outline the necessary properties of splines
with equidistant nodes and, especially, of the B-splines.

Section 3 is basic to the whole work. At the beginning of this section
we discuss some properties of the periodic distributions. Then we introduce
the exponential splines. In the concluding subsection we derive the integral
representation of the growing splines and present a Parseval type identity.

In Section 4 we establish conditions to be imposed on a spline to ensure
that its translations form a basis of the corresponding spline space. We call
such splines the TB-splines. Dual splines are constructed as well and some
examples of TB-splines are given. Further we discuss the projection of a
growing function onto the spline spaces.

In Part 2 we apply the techniques developed to the wavelet analysis in the
spaces of growing splines. In Section 5 we establish the refinement equation
for the exponential splines and some of its consequences.

In Section6 we introduce exponential wavelets and study their properties.
Further, we obtain the integral representation of elements of the wavelet spaces
and a Parseval type identity in the wavelet spaces.

In Section 7 we construct splines whose translations form a basis of the
wavelet space. We call such splines the TB-wavelets. Dual TB-wavelets are
constructed as well and some examples of TB-wavelets are given.

Decomposition of a spline and its reconstruction are discussed in Section 8
together with formulas for the wavelet transformation of growing signals.

Part I

Integral Representation of
Splines

2 Some Properties of Splines with Equidistant Nodes

This section is an introductory one. We outline here properties of the polyno-
mial splines with equidistant nodes most of which are known [6], [11].

A function pSh will be referred to as a spline of order p if

1. pSh is p− 2 times continuously differentiable,
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2. pSh(x) = Pk(x) as x ∈ (xk, xk+1), xk = hk, Pk ∈ Πp−1,

where Πp−1 is the space of polynomials whose degree does not exceed p− 1.

Splines with h = 1 are called the cardinal ones.

The remarkable feature of the splines defined above is that the space of
these splines is shift invariant [3]. This means that the space of splines of order
p can be looked upon as the span of shifts of a single spline, the so-called B-
spline.

The B-splines pBh of order p are defined as follows.

1Bh(x) =

{
1/h as x ∈ (0, h)
0 else. pBh(x) := 1Bh(x)[p].

Here f [p] means the p-th convolution power of the function f .

Throughout,
∑
r will stand for

∑∞
r=−∞. We will omit the index p· as long

as it is not essential for the considerations, and similarly for the index ·h
Properties of the B-splines.

1. supp pBh(x) = (0, hp).

2. pBh(x) > 0 as x ∈ (0, ph) .

3. The B-spline pBh(x) is symmetric about x = hp/2 where it attains its
unique maximum.

4. h
∑
r Bh(x− rh) ≡ 1.

5. The product

hBh(xh) = B1(x), (1)

i.e. does not depend on h.

6. The convolution is(
pB ∗ qB

)
(x) =

∫ ∞
−∞

pBh(x− y) qBh(y) dy = p+qBh(x).

7. The derivatives are

pB
(q)
h (x) = h−q∇qh(p−qBh(x)) = h−s

q∑
l=0

(−1)l
(
q

l

)
p−qBh(x− hl). (2)
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In what follows we will repeatedly use the 1-periodic function

pu(v) := h
∑
k

e2πivk
pBh((p/2− k)h) =

∑
k

e2πivk
pB1(p/2− k). (3)

These functions were studied extensively in [13], [11]. They are related to the
Euler-Frobenius polynomials. It is important that for any real v the values

pu(v) are strictly positive.
The Fourier Transform of the B-spline is

pB̂h(v) =

(
1− e−ivh

ivh

)p
= e−

ipvh
2

(
sin vh/2

vh/2

)p
. (4)

Proposition 2.1. [12]. Any spline of order p–pSh with its nodes at the points
{hk}∞−∞ can be represented by

pSh(x) = h
∑
k

qk pBh(x− hk). (5)

Remark. If x is any fixed value such that lh ≤ x ≤ (l+1)h then the series
(5) contains only p nonzero terms, l − p + 1 ≤ k ≤ l. So, given a sequence
of coefficients {qk}, the values of the spline S can be computed immediately.
Moreover, Property 4 of the B-splines implies that in this case∣∣∣S(x)

∣∣∣ ≤ max{|ql|}, l − p+ 1 ≤ k ≤ l. (6)

3 Integral Representation

In this section we restrict the class of splines under consideration and introduce
a transform in spline spaces which results in the integral representation of the
splines related to the Fourier integral.

Definition 3.1. We denote by Gs the space of sequences ~a = {ak}∞−∞ which
meet the requirement |ak| ≤M |k|s ∀k with a fixed integer s and any positive
constant M . The space G :=

⋃∞
s=−∞Gs is said to be the space of sequences of

slow growth. Correspondingly, we denote by Fs the space of locally integrable

functions
{
f : |f(x)| ≤ M |x|s ∀x

}
. The space F :=

⋃∞
s=−∞Fs is referred to

as the space of functions of slow growth.

Definition 3.2. We denote by pV
s
h the space of splines pSh such that the

sequences ~q = {qk}∞−∞ in the representation (5) belong to Gs and the space

pVh we define as follows: pVh :=
⋃∞
s=−∞ pV

s
h.
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Remark. We stress that for any spline S ∈ pV
s
h the inequality∣∣∣S(x)

∣∣∣ ≤ L|x|s (7)

holds, with some positive constant L. This follows immediately from (6).
Therefore pV

s
h ⊂ Fs.

3.1 Some Remarks on Periodic Distributions

Let ~a = {ak}∞−∞ ∈ G. Put

F(~a, v) =
∑
k

e−2πikvak. (8)

This series is a 1-periodic distribution [14], p. 331.

Definition 3.3. We denote by Ds the space of 1-periodic distributions given
by (8) with ~a ∈ Gs, and D :=

⋃∞
s=−∞Ds. The space of 1-periodic complex-

valued s-time continuously differentiable functions we denote by Cs.

We emphasize that D−s−2 ⊂ Cs.
Given a sequence ~a ∈ Gs, we define the function

Φ(~a, v) :=
( −1∑
k=−∞

+

∞∑
k=1

) ak
(−2πik)s+2

e−2πikv ∈ D−2 ⊂ C0.

Then the distribution F(~a, v) can be represented by F(~a, v) = a0+Φ(s+2)(~a, v),
where the derivative is used in the sense of the distribution theory [14].

The distribution F(~a, v) determines a functional on the space Cs+2 which
we denote as an integral with a central dot. To be specific, ∀ g(v) ∈ Cs+2

∫ α+1

α

F(~a, v) · g(v) dv

:=a0

∫ α+1

α

g(v) dv +

∫ α+1

α

Φ(~a, v) g(s+2) dv =
∑
k

ak gk.

(9)

Here ĝ = {gk} is the sequence of the Fourier coefficients of the function g. The
integral on the right hand side should be understood in the ordinary sense.

Remark. If ~a ∈ l1 then F(~a, v) ∈ C0. In this case the integral (9) turns out
to be an ordinary one provided g is an integrable function.
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The series in (8) is the Fourier series of the distribution Fh(~a, v). Hence

the integrals ak =
∫ 1

0
F(~a, v) · e2πivk dv are the Fourier coefficients of the

distribution.
Let us discuss multiplication of the distribution F(~a, v) ∈ Ds with a func-

tion g(v) = F(ĝ, v) ∈ Cs+2. The sequence ĝ of the Fourier coefficients of the
function g(v) belongs to G−s−2. The discrete convolution of the sequences ~a

and ĝ is ~b := {bk} = ~a ∗ ĝ =
{∑

l ak−l gl
}
. The following assertion is readily

verified.

Proposition 3.1. The discrete convolution with a sequence from G−s−2 maps
the space Gs into itself. The continuous convolution with a function from
F−s−2 maps the space Fs into itself.

The proposition implies that the series b(v) :=
∑
k e
−2πikvbk = F(~b, v) is

the distribution from the space Ds as well as F(~a, v). Now let ϕ(v) be any
testing function of Cs+2 and {ϕk} be its Fourier coefficients. Let us consider
the integral ∫ 1

0

b(v) · ϕ(v) dv =
∑
k

ϕk
∑
l

gk−lal

=
∑
l

al
∑
k

ϕk gl−k =

∫ 1

0

Fh(~a, v) · g(v)ϕ(v) dv.

This relation justifies the following.

Definition 3.4. The product of a distribution g from Ds with a function
f = F(~a, ·) from Cs+2 will be understood as follows.

g(v)F(~a, v) := F(~a ∗ ~g, v) ∈ Ds. (10)

It corresponds with the conventional definition of multiplication of a dis-
tribution with a function.

3.2 Exponential Splines

Let us return to the B−spline. Eq. (4) implies that

pBh(x− kh) =

∫ ∞
−∞

e2πiω(x−kh)
(1− e−2πiωh

2πiωh

)p
dω

=
1

h

∑
l

∫ 1

0

e2πi(v−l)(x/h−k) (1− e−2πiv)p

(2πi(v − l))p
dv.
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Integration and summation here could be transposed and we appear at the
following representation

pBh(x− kh) =
1

h

∫ 1

0
pmh(v, x)e−2πikv dv, where (11)

pmh(v, x) :=
∑
l

e2πi(v−l)x/h

(
1− e−2πiv

2πi(v − l)

)p
. (12)

Here the product h pBh(x − kh) presents the k-th Fourier coefficient of the
1-periodic with respect to the variable v function pmh(v, x). Hence

pmh(v, x) = h
∑
k

e2πikv
pBh(x− kh) ∈ pV

0
h. (13)

It is apparent from this relation that with any x, mh(·, x) ∈ C∞. As for the
variable x, with any v, pmh(v, ·) is a spline from pV

0
h. The spline pmh(v, x)

is nothing but the exponential spline Φn(x; t) by Schoenberg, [11], p.17, with
t = e2πiv, n = p− 1.

We will not discuss the numerous noteworthy properties of the splines m
here, but will point out only those to be used in what follows. First we mention

that Eq. (1) implies that, mh(v, x) = m1

(
v, xh

)
.

Proposition 3.2. The splines mh(v, x) are eigenvectors of the shift operator.
To be specific

mh(v, x+ lh) = e2πilvmh(v, x). (14)

Now put x = ph/2. Then we have

pmh(v, ph/2) =h
∑
k

e2πikv
pBh((p/2− k)h)

= pu(v) =

(
sinπv

π

)p∑
n

(−1)pn

(v − n)p
.

Recall that the function pu was primarily defined in (3).

Proposition 3.3. The exponential spline m is a generalized eigenvector of
the operator of differentiation in the sense that

pmh(v, x)(s)
x =

(
1− e−2πiv

h

)s
p−smh(v, x).
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Proof. Eq. (12) implies

pmh(v, x)(s)
x =h−s

∑
l

e2πi(v−l)x/h
(
1− e−2πiv

)p
(2πi(v − n))p−s

=

(
1− e−2πiv

h

)s∑
l

e2πi(v−n)x/h

(
1− e−2πiv

2πi(v − n)

)p−s

=

(
1− e−2πiv

h

)s
p−smh(v, x).

Proposition 3.4. The derivative (pmh)
(s)
v is a spline from the space pV

s
h.

Proof. The statement follows immediately from (13).

The convolution of the exponential spline with the B-spline is(
pm(v, ·) ∗ qB

)
(x) =h

∑
k

e2πikv
(
pB(· − kh) ∗ qB

)
(x)

=h
∑
k

e2πikv
p+qBh(x− kh) = p+qm(v, x).

Due to the symmetry of the B-splines we have pBh(x) = pBh(ph− x). Hence

∫ ∞
−∞

pm(v, x) pB(x− kh) dx =
(
pmh(v, ·) ∗ pBh

)
((k + p)h)

= 2pm(v, (k + p)h) =e2πikv
2pm(v, ph) = e2πikv

2pu(v).

(15)

3.3 Integral Representation and a Parseval Type Identity

We proceed now to establishing the central results of the section.

Theorem 3.5. Let a distribution ξ belong to Ds with an integer s. Then the
function

σ(·) :=

∫ 1

0

ξ(v) · pmh(v, ·) dv (16)

is a spline from pV
s ⊂ Fs and

σ(x) = S(x) = h
∑
k

qk pB(x− hk), ~q = {qk}∞−∞ ∈ Gs. (17)

Then the coefficients in (17) are qk =
∫ 1

0
ξ(v)·e2πivk dv. Conversely, any spline

S from pV
s can be represented as the integral (16) with some ξ ∈ Ds.
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Proof. Let qk = ck
(
ξ
)

=
∫ 1

0
ξ(v) · e2πivkh dv be the Fourier coefficients of a

distribution ξ ∈ Ds. The sequence
~q = {qk}∞−∞ ∈ Gs. Then, as it follows from (9),

σ(x) =
∑
k

qk ck

(
pm(·, x)

)
= h

∑
k

qk pB(x− hk) = S(x) ∈ pV
s.

Conversely, assume that S is a spline belonging to pV
s and is given as in (17).

Then F(~q, v); =
∑
k e
−2πikvqk ∈ Ds and the function σ(·) :=

∫ 1

0
F(~q, v) ·

pm(v, ·) dv is a spline from pV
s. Its B−spline coefficients are

Qk =

∫ 1

0

ξ(v) · e2πivk dv = qk.

Therefore, S(x) ≡ σ(x) =
∫ 1

0
F(~q, v) · pm(v, x) dv.

Example. The B−spline coefficients of the spline pm are qk = e2πiuk and,
therefore,

F(~q, v) = h
∑
k

e−2πik(v−u) =
∑
l

δ(u− v − l). (18)

Here δ(u) is the Dirac delta.

We will now present an identity related to the Parseval one. It is funda-
mental for operating with integral-represented splines.

Theorem 3.6. Let some splines S and T belonging to pV
s and pV

−s−4, s ≥ 0
respectively, be given in the integral form by

S(x) =

∫ 1

0

ξ(v) · pm(v, x) dv = h
∑
k

qk pB(x− hk),

T (x) =

∫ 1

0

η(v) pm(v, x) dv = h
∑
k

tk pB(x− hk).

Then the following identity holds.∫ ∞
−∞

S(x)T (x) dx = h

∫ 1

0

ξ(v) · η(v) 2pu(v) dv. (19)

Recall that the function pu was defined in (3). To avoid overloading the
paper, we refer to [17], [18] for the proof of this theorem.
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4 Splines of Type B

4.1 TB-Splines and Their Duals

Definition 4.1. We say that a sequence of splines
{
sk
}∞
−∞ forms a basis of

the space pVh if any spline S ∈ pVh can be represented uniquely as the series
S =

∑∞
−∞ ak sk which converges uniformly on any compact set of the real

line.

The h-shifts of the B-spline form a basis of the space pVh. We describe
now a class of splines which offers the similar property.

Definition 4.2. A spline ϕ ∈ pV
−∞
h is said to be a spline of type B

(TB - spline) if its shifts
{
ϕ(· − kh)

}∞
−∞ form a basis of the space pVh.

Any TB-spline ϕ ∈ pV
−∞
h , if it exists, can be represented as the integral

ϕ(x) =

∫ 1

0

ρ(v) pmh(v, x) dv. (20)

with a function ρ ∈ D−∞ = C∞. Moreover, the inequality (7) enables us to
affirm that for all x belonging to any compact set of the real line

|ϕ(x− kh)| ≤ Cνk, (21)

where the sequence {νk} ⊂ G−∞.

Theorem 4.1. Let a spline ϕ from pV
−∞
h be represented as in (20). Then it

is a TB-spline if and only if |ρ(v)| is strictly positive for all real v. Herewith,
the two expansions of a spline S ∈ pV

s
h

S(x) =
∑
k

Qk ϕ(x− kh) = S(x) =

∫ 1

0

ξ(v) ·m(v, x) dv (22)

are related by

ξ(v) = ρ(v)
∑
k

e−2πikvQk, Qk =

∫ 1

0

ξ(v)

ρ(v)
· e2πivk dv.

Proof. We first point out that ρ belongs to C∞. Due to (14), we may write

ϕ(x− kh) =

∫ 1

0

e−2πikvρ(v)m(v, x) dv. (23)
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These are the Fourier coefficients of the function ρm(·, x) ∈ C∞. Hence

ρ(v)m(v, x) =
∑
k

e2πikvϕ(x− kh). (24)

1. Let |ρ(v)| be strictly positive. Suppose a spline S from pV
s
h is represented

as in (16):

S(x) =

∫ 1

0

ξ(v) ·m(v, x) dv.

Then, referring to (9), we may write

S(x) =

∫ 1

0

ξ(v)

ρ(v)
· ρ(v)m(v, x) dv =

∑
k

Qkϕ(x− kh),

ξ(v) =ρ(v)
∑
k

e−2πikvQk, Qk =

∫ 1

0

ξ(v)

ρ(v)
· e2πikv dv.

Since the values Qk are the Fourier coefficients of the distribution ρ−1 ξ ∈ Ds,
the sequence ~Q = {Qk}∞−∞ ∈ Gs. Then we see from (21) that the series on
the right hand side converges uniformly on any compact set of the real line.
This implies that ϕ is a TB-spline.

2. Conversely, suppose that the function ϕ given by (20) is a TB-spline.
Then its translations form a basis of the space pVh. Let us expand the expo-
nential spline in terms of this basis

m(v, x) =
∑
k

µk(v)ϕ(x− kh).

Substituting it into (24) we get that

ρ(v)
∑
k

µk(v)ϕ(x− kh) =
∑
k

e2πikvϕ(x− kh) =⇒ ρ(v)µk(v) = e2πikv.

Hence it follows that ρ(v) 6= 0 for all real v. But ρ is a continuous 1-periodic
function. Therefore |ρ(v)| is strictly positive.

Generally, bases formed from translations of TB-splines are non-orthogonal
in the L2 sense. However, biorthogonal bases exist.

Definition 4.3. Let two splines ϕ, ϕ̃ from pVh be TB-splines. These splines
are said to be dual to each other if the following relation holds.∫ ∞

−∞
ϕ(x− kh) ϕ̃(x− lh) dx = δkl ,

where δkl means the Kroneker delta.
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We will show that any TB-spline has a dual one.

Theorem 4.2. Let a TB-spline be represented by ϕ(x) =
∫ 1

0
ρ(v)m(v, x) dv.

Then there exists a unique TB-spline ϕ̃ dual to ϕ.

ϕ̃(x) =

∫ 1

0

ρ̃(v)m(v, x) dv, (25)

ρ̃(v) =
(
ρ(v) 2pu(v)h

)−1

. (26)

Proof. Let a spline ϕ̃ be given in the shape (25). Then, due to the identity
(19) and Eq. (23), we have∫ ∞

−∞
ϕ(x− kh) ϕ̃(x− lh) dx = h

∫ 1

0

e−2πi(k−l)v ρ(v) ρ̃(v) 2pu(v) dv.

Provided (25) holds, the integral is∫ ∞
−∞

ϕ(x− kh) ϕ̃(x− lh) dx =

∫ 1

0

e−2πi(k−l)v dv = δkl .

We stress that in this case ϕ̃ ∈ pV
−∞
h just as ϕ.

Conversely, the relation

h

∫ 1

0

e−2πi(k−l)v ρ(v) ρ̃(v) 2pu(v) dv = δkl

means that all the Fourier coefficients ck of the continuous function ρ ρ̃ 2pu,
with k 6= 0 are zero, whereas c0 = 1/h. Therefore (26) is true. That implies
the uniqueness of the dual spline.

Theorem 4.3. Let two TB-splines ϕi, i = 1, 2, be represented in the integral

form by ϕi(x) =
∫ 1

0
ρi(v)m(v, x) dv, and a spline S ∈ pV

s
h be expanded with

respect to the two bases

S(x) =
∑
k

Q1
k ϕ

1(x− kh) = S(x) =
∑
k

Q2
k ϕ

2(x− kh). (27)

Then the coordinates Q are linked via convolution with the sequence

b1,2r :=

∫ 1

0

ρ1(v)

ρ2(v)
e2πivr dv

by Q2
k =

∑
l b

1,2
k−lQ

1
l . In particular,

ϕ1(x− lh) =
∑
k

b1,2k−l ϕ
2(x− kh). (28)
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Proof. The spline S may be written as in (22). Then

ξ(v) = ρ1(v)F( ~Q1, v) = ξ(v) = ρ2(v)F( ~Q2, v).

Hence F( ~Q2, v) = ρ1(v)
ρ2(v)F( ~Q1, v). Since ρ1/ρ2 is a function from D−∞, we

arrive at (27), keeping in mind (10). Eq. (28) is a special case of (27) with
Q1
k = δlk.

4.2 Galerkin Projections

Since the spaces of functions we operate in are non-Hilbert, we should intro-
duce, instead of the notion of orthogonal projection, its weak substitution.

Definition 4.4. Let f be a function of slow growth. We call a spline
S(f) ∈ pVh the Galerkin projection (GP) of the function f onto the spline
space pVh if for all integers k the following relations hold∫ ∞

−∞
S(f, x) pBh(x− kh) dx =

∫ ∞
−∞

f(x) pBh(x− kh) dx := Φk. (29)

Remark. In the case when the function f is square integrable on the real
line, its GP is just the same as the conventional orthogonal projection.

To construct the GP of a function we need the TB-spline dual to the B-
spline. Since in the integral representation of the B-spline the function ρ(v) ≡
1/h, the condition (25) implies that the spline ϕd(x) =

∫ 1

0
pm(v,x)

2pu(v) dv is dual

to the B-spline. We stress that 2pu(v)−1 ∈ C∞. Thus ϕd ∈ pS
−∞
h ⊂ F−∞.

In fact, the coefficients of the B-spline representation of the spline ϕd are of
exponential decay (see [11] e.g.) and the same may be said on the very spline
ϕd.

With the dual spline ϕd at hand the following theorem can be established
immediately.

Theorem 4.4. Let f(x) be a function of slow growth. Then there exists the
unique GP S(f) of the function onto pVh. Moreover, if f ∈ Fs then the spline
S(f) ∈ pV

s
h ⊂ Fs. This spline is equal to S(f, x) =

∑
k Φk ϕ

d(x− kh). In the

integral form S(f, x) =
∫ 1

0
F(~Φ,v)

2pu(v) · pmh(v, x) dv.

The sequence
{

Φk

}
was defined in (29).

Corollary 4.5. The GP of a polynomial P ∈ Πp−1 onto the spline space pVh

is the very polynomial P .



Integral Representation of Spline-Wavelets 243

4.3 Two More Examples of TB-Splines

4.3.1 Fundamental TB-splines

Let us consider the TB-spline pLh:

pLh(x) :=

∫ 1

0

pmh(v, x)

pu(v)
dv. (30)

This spline interpolates the data
{
δ0
k

}
. Setting x = (k + p/2)h, we have

pLh((k +
p

2
)h) =

∫ 1

0

pmh(v, (k + p/2)h))

pu(v)
dv

=

∫ 1

0

e2πivk pmh(v, hp/2)

pu(v)
dv =

∫ 1

0

e2πivk pu(v)

pu(v)
dv = δ0

k.

Such a spline is called a fundamental one.

4.3.2 Selfdual TB-Splines

Let us define the TB-spline pϕ
o by pϕ

o(x) =
∫ 1

0
pm(v,x)√
2pu(v)h

dv. It is readily seen

from (25) that this TB-spline coincides with its dual one. So, it is pertinent to
call it the selfdual TB-spline. The shifts

{
ϕoh(x−kh)

}∞
−∞ form an orthonormal

basis (in the sense of L2) of the space pVh. These TB-splines were discovered
by Battle and Lemarié [2], [10].

Part II

Basics of the Spline-Wavelet
Analysis
In this part we establish some relations of the spline-wavelet analysis of the
functions of slow growth. Most of those formulas are related to corresponding
formulas for square integrable functions and splines [6]. However the integral
representation approach provides remarkably simple tools for deriving them.
It offers some advantages even for the L2 case.

First we should define wavelet spaces. Since we cannot use the conventional
definition of such spaces as the orthogonal complements of the sparse-grid
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spaces in the fine-grid ones, we introduce wavelet spaces by proceeding as
follows.

Definition 4.5. A function f from F satisfying the conditions∫ ∞
−∞

f(x) pBh(x− kh) dx = 0

with all integers k, is said to be weak orthogonal to the space pV
s
h.

Here pBh ∈ pV
s
h is the B-spline.

We point out that the space pV
s
2h is the subspace of pV

s
h. It is apparent

that if a spline Sh belongs to pV
s
h and S2h is its GP onto pV

s
2h then the spline

W2h := Sh − S2h (31)

is weak orthogonal to pV
s
2h. Therefore the space pV

s
h may be represented as

the direct sum

pV
s
h = pV

s
2h ⊕ pW

s
2h, pVh = pV2h ⊕ pW2h, (32)

where we have denoted by pW
s
2h the subspace of pV

s
h consisting of all splines

weak orthogonal to pV
s
2h. Correspondingly, we denote pW2h :=

⋃∞
s=−∞ pW

s
2h.

We may consider sums in (32) as weak orthogonal sums.

Definition 4.6. The subspace pW
s
2h

(
pW2h

)
we call the weak orthogonal

complement of pV
s
2h

(
pV2h

)
in pV

s
h

(
pVh

)
and refer to it as to the wavelet

space. The spline W2h ∈ pW
s
2h defined by (31) we call the GP of Sh onto

pW
s
2h.

5 Refinement Equation

We start with the so called refinement equation which is fundamental for any
wavelet construction as well as for subdivision schemes [7]. This equation links
basic splines of the spaces pVh and pV2h.

The term mν(v, x) will stand for pmν(v, x) and u(v) for 2pu(v). The fol-
lowing theorem relates the exponential splines mν(v, x).

Theorem 5.1. The following refinement equation holds.

m2h(v, x) = b(v)mh

(v
2
, x
)

+ b(v + 1)mh

(v + 1

2
, x
)
, (33)

where b(v) = 2−p(1 + e−πiv)p.
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Proof. Let us rewrite Eq. (12) in such a manner

mh(v, x) = e2πivx/h

[
1− e−2πiv

2πi

]p∑
n

e−2πinx/h

(v − n)p
.

Then, putting t = v/2, we transform the sparse-grid spline as follows:

m2h(v, x) = e2πitx/h

[
1− e−4πit

2πi

]p∑
n

e−πinx/h

(2t− n)p

=

(
1 + e2πit

2

)p
e2πitx/h

[
1− e−2πit

2πi

]p∑
n

e−2πinx/h

(t− n)p

+

(
1 + e2πi(t+1/2)

2

)p
e2πi(t+1/2)x/h

[
1− e−2πi(t+1/2)

2πi

]p∑
n

e−2πinx/h

(t+ 1/2− n)p

=

(
1 + e2πit

2

)p
mh(t, x) +

(
1 + e2πi(t+1/2)

2

)p
mh(t+ 1/2, x).

The relation (33) implies a useful identity.

Corollary 5.2. The following identity holds.

u(v) = |b(v)|2 u
(v

2

)
+ |b(v + 1)|2 u

(v + 1

2

)
. (34)

Proof. Let us rewrite (33) for the splines of the order 2p and put x = 2hp.
Then we have

u(v) =2pm2h(v, 2hp) = 4−p
(

1 + e−πiv
)2p

2pmh

(v
2
, 2hp

)
+4−p

(
1− e−πiv

)2p

2pmh

(v + 1

2
, 2hp

)
.

But since

2pmh

(v
2
, 2hp

)
= eπivp2pmh

(v
2
, hp
)

= eπivpu
(v

2

)
,

we get

u(v) = 4−peπivp
[
(1 + e−πiv)2pu

(v
2

)
+ (−1)p

(
1− e−πiv

)2p

u
(v + 1

2

)]
.

Hence (34) follows.
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Corollary 5.3. For the sparse-grid B−splines the following integral represen-
tation holds.

B2h(x) =
1

h

∫ 1

0

b(2v)mh(v, x) dv =
2−p

h

∫ 1

0

(
1 + e−2πiv

)p
mh(v, x) dv (35)

Proof. Due to (11) we may write

B2h(x) =
1

2h

∫ 1

0

m2h(v, x) dv

=
1

2h

∫ 1

0

(
b(v)mh

(v
2
, x
)

+ b(v + 1)mh

(v + 1

2
, x
))

dv

=
1

h

∫ 1/2

0

b(2v)mh(v, x) dv +
1

h

∫ 1

1/2

b(2v)mh(v, x) dv.

The following simple assertion will enable us to construct basic elements
for the integral representation of elements of wavelet spaces.

Proposition 5.4. The GP of the spline mh(v, ·) onto the subspace pV2h is
the spline

m̃2h(v, x) :=
b(2v)u(v)

u(2v)
m2h(2v, x). (36)

Proof. Let us consider the integral Ik :=
∫∞
−∞ mh(v, x)B2h(x−k2h) dx. Due

to (18) we may write mh(v, x) =
∫ 1

0
δ(v− ξ) ·mh(ξ, x) dξ. Further we apply to

our integral the “Parseval identity” (19). Then we have

Ik =

∫ 1

0

δ(v − ξ) · e2πiξ2kb(2ξ)u(ξ) dξ = e2πiv2k b(2v)u(v).

On the other hand, we may write this integral as in (15).∫ ∞
−∞

m2h(2v, x)B2h(x− k2h) dx = e2πi2vk u(2v).

6 Exponential Wavelets

Now we are in a position to construct some splines in the wavelet space

pW2h ⊂ pVh which are related to the exponential splines m2h. To start
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with, we find the difference w̃2h := mh − m̃2h between the exponential spline
mh and its GP onto the space pV2h. So,

w̃2h(v, x)

=mh(v, x)− b(2v)u(v)

u(2v)

[
b(2v)mh(v, x) + b(2v + 1)mh(v + 1/2, x)

]
=
mh(v, x)

(
u(2v)− |b(2v)|2 u(v)

)
−mh(v + 1/2, x)b(2v) b(2v + 1)u(v)

u(2v)
.

Eq. (34) leads us to the following representation.

w̃2h(v, x)

=
mh(v, x) |b(2v + 1)|2 u(v + 1/2)−mh(v + 1/2, x)b(2v) b(2v + 1)u(v)

u(2v)

=
b(2v + 1)

u(2v)

(
mh(v, x) b(2v + 1)u(v + 1/2)−mh(v + 1/2, x)b(2v)u(v)

)
.

We want to write the spline w̃2h(v, x) in a shape similar to (36). For this
purpose we denote

a(v) := eπivb(v + 1)u
(v + 1

2

)
= 2−peπiv (1− eπiv)p u

(v + 1

2

)
and introduce the spline w2h as follows.

w2h(v, x) := a(v)mh

(v
2
, x
)

+ a(v + 1)mh

(v + 1

2
, x
)
. (37)

We call the spline w2h the exponential wavelet because its properties are related
to those of the exponential splines m2h.

Note that, due to periodicity, b(2v+1+1) = b(2v), u(v+1/2+1/2) = u(v)
and define the function t by

t(v) := u
(v

2

)
u
(v + 1

2

)
u(v). (38)

This function belongs to C∞ and has no zeros on the real line. Then the

spline w̃2h may be written similarly to m̃2h. w̃2h(v, x) := a(2v)u(v)
t(2v) w2h(2v, x).

We mention some properties of the splines w2h.
Properties of Exponential Wavelets

1. The splines w2h as well as w̃2h belong to the wavelet space pW2h ⊂ pVh.
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2. With any fixed x, w2h(·, x) ∈ C∞.

3. The splines w2h are eigenvectors of the shift operator

w2h(v, x+ l2h) = e2πivlw2h(v, x). (39)

This fact stems from the corresponding property (14) of the splines mh.

4. The exponential wavelet is a derivative of a combination of the exponen-
tial splines. Namely,

pw2h(v, x) =

(
−h
2

)p
dp

dxp

[
2pu
(v + 1

2

)
2pmh

(v
2
, x+ (1 + p)h

)
+ 2pu

(v
2

)
2pmh

(v + 1

2
, x+ (1 + p)h

)]
.

(40)

This relation is an immediate consequence of Proposition 3.3.

We proceed now to establishing the integral representation of elements of the
wavelet spaces.

Proposition 6.1. Any spline W ∈ pV
s
h which can be represented as the inte-

gral W (x) =
∫ 1

0
η(v) · w2h(v, x) dv with some 1−periodic distribution η ∈ Ds,

belongs to pW
s
2h.

Proof. Substituting w2h(v, x) from (37) into the integral, we obtain

W (x) =

∫ 1

0

η(v) ·

[
a(v)mh

(
v

2
, x

)
+ a(v + 1)mh

(
v + 1

2
, x

)]
dv.

Hence

W (x) = 2

∫ 1

0

η(2v) · a(2v)mh(v, x) dv. (41)

Invoking the ”Parseval identity” (19) and the integral representation (35) of
the B−spline, we find the integral

Jk :=

∫ ∞
−∞

W (x)B2h(x− k2h) dx =

∫ 1

0

χ(v) dv where

χ(v) :=η(2v) e4πikv a(2v)b(2v)u(v)

=η(2v) e2πi(2k+1)v b(2v + 1)b(2v)u(v + 1/2).

It is readily verified that χ(v + 1/2) = −χ(v). Therefore Jk = 0 for all k.
Hence we see that W ∈ pW

s
2h.
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Proposition 6.2. Let a spline S from Vs
2h be given by

S(x) =

∫ 1

0

ξ(v) ·m2h(v, x), dv.

Then, being regarded as an element of the space Vs
h, it can be represented by

S(x) = 2

∫ 1

0

ξ(2v) · b(2v)mh(v, x) dv. (42)

Eq. (42) is derived similarly to (41).
We emphasize that

mh(v, x) =m̃2h(v, x) + w̃2h(v, x)

=
b(2v)u(v)

u(2v)
m2h(2v, x) +

a(2v)u(v)

t(2v)
w2h(2v, x).

(43)

This equation will be used when proving the following theorem.

Theorem 6.3. Suppose that a spline Sh ∈ pV
s
h is given in integral form.

Sh(x) =

∫ 1

0

ξh(v) ·mh(v, x) dv.

Then this spline is equal to the sum

Sh(x) = S2h(x) +W2h(x) (44)

where the splines S2h, W2h are the GP of the spline Sh onto the subspaces

pV2h, pW2h, correspondingly. Moreover, the following representations hold.

S2h(x) =

∫ 1

0

ξ2h(v) ·m2h(v, x) dv, (45)

ξ2h(v) =

(
b(v)u

(v
2

)
ξh

(v
2

)
+ b(v + 1)u

(v + 1

2

)
ξh

(v + 1

2

))
u−1(v).

W2h(x) =

∫ 1

0

η2h(v) · w2h(v, x) dv, (46)

η2h(v) =

(
a(v)u

(v
2

)
ξh

(v
2

)
+ a(v + 1)u

(v + 1

2

)
ξh

(v + 1

2

))
t−1(v).

ξh(v) = 2
(
ξ2h(2v) b(2v) + η2h(2v) a(2v)

)
. (47)
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Proof. Eq. (43) implies that

Sh(x) =

∫ 1

0

ξh(v) · b(2v)u(v)

u(2v)
m2h(2v, x) dv

+

∫ 1

0

ξh(v) · a(2v)u(v)

t(2v)
w2h(2v, x) dv.

Let us consider, for example, the latter integral∫ 1

0

ξh(v) · a(2v)u(v)

t(2v)
w2h(2v, x) dv

=

∫ 1

0

(
a(v)u

(v
2

)
ξh

(v
2

)
+ a(v + 1)u

(v + 1

2

)
ξh

(v + 1

2

))
· w2h(v, x)

t(v)
dv.

Hence (46) follows. Eq. (45) is derived in the same manner. Since the spline
W2h is represented in the integral form (46), it belongs to the subspace pW2h,
due to Proposition 6.1. Similarly, S2h belongs to pS2h. Therefore the splines
S2h and W2h are GPs of Sh onto the corresponding subspaces. Eq. (47) results
immediately from (42), (41).

Proposition 6.1 together with Theorem 6.3 leads to the following assertion.

Corollary 6.4. A spline W ∈ pV
s
h belongs to pW

s
2h if and only if it can be

represented as the integral W (x) =
∫ 1

0
η(v) ·w2h(v, x) dvwith some 1−periodic

distribution η ∈ Ds.

We will now establish the “Parseval identity” in the wavelet space.

Theorem 6.5. Let splines W and Z belong to pW
s
2h, s ≥ 0, and pW

−s−4
2h ,

respectively, and the following representations hold.

W (x) =

∫ 1

0

η(v) · w2h(v, x) dv and Z(x) =

∫ 1

0

ζ(v)w2h(v, x) dv.

Then

I :=

∫ ∞
−∞

W (x)Z(x) dx = 2h

∫ 1

0

η(v) · ζ(v) t(v) dv. (48)

Proof. Eq. (41) enables us to represent the splines involved by

W (x) =2

∫ 1

0

η(2v) · a(2v)mh(v, x) dv,

Z(x) =2

∫ 1

0

ζ(2v) a(2v)mh(v, x) dv.
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Then invoking Theorem 3.6 to integrate the product, we get

I =4h

∫ 1

0

η(2v) · ζ(2v)|a(2v)|2 u(v) dv

=4h

∫ 1

0

η(2v) · ζ(2v)
[
|b(2v + 1)|2 u(v + 1/2)

][
u(v)u(v + 1/2)

]
dv

=2h

∫ 1

0

η(v) · ζ(v)
[
u(
v

2
)u(

v + 1

2
)
][
|b(v + 1/2)|2 u(

v + 1

2
) + |b(v)|2 u(

v

2
)
]
dv.

Due to (34) |b(v+ 1/2)|2 u(v+1
2 ) + |b(v)|2 u(v2 ) = u(v). To arrive at (48) suffice

it to recall the definition (38).

7 TB-Wavelets

7.1 Definition and Basic Properties

In this subsection we construct and study basic elements of the space pW2h

related to the TB-splines.

Definition 7.1. We call a spline ψ ∈ pW
−∞
2h ⊂ pV

−∞
h a wavelet of type B

(TB-wavelet) if its shifts
{
ψ(· − k2h)

}∞
−∞ form a basis of the space pW2h.

The notion of basis is understood here in the sense of Definition 4.1. We
stress that any spline ψ ∈ pW

−∞
2h can be represented as the integral

ψ(x) =

∫ 1

0

τ(v)w2h(v, x) dv, (49)

with some function τ(v) ∈ D−∞ = C∞.

Theorem 7.1. Let a spline ψ ∈ pW
−∞
2h be represented as in (49). Then it is

a TB-wavelet if and only if |τ(v)| is strictly positive for all real v. Moreover if
a spline W ∈ pW

s
2h is represented in the following ways

W (x) =
∑
k

Pk ψ(x− 2kh) = W (x) =

∫ 1

0

η(v) · w2h(v, x) dv.

Then η(v) = τ(v)
∑
k e
−2πikvPk, Pk =

∫ 1

0
η(v)
τ(v) e

2πivk dv.

Proof. Note first that τ belongs to C∞. Due to (39) we may write

ψ(x− 2kh) =

∫ 1

0

e−2πi2kvτ(v)w2h(v, x) dv. (50)
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Then, to prove the theorem, we repeat the considerations of Theorem 4.1.

We consider two TB-wavelets as dual to each other in the sense of Defini-
tion 4.3. The proof of the following theorems is quite similar to that of the
corresponding theorems for TB-splines. The difference is that Eqs. (48) and
(50) should be involved instead of Eqs. (19) and (23).

Theorem 7.2. Let a TB-wavelet ψ be represented by

ψ(x) =

∫ 1

0

τ(v)w2h(v, x) dv.

Then there exists a unique TB-wavelet ψ̃ dual to ψ.

ψ̃(x) =

∫ 1

0

τ̃(v)w2h(v, x) dv; τ̃(v) =
(
2h τ(v) t(v)

)−1
. (51)

Theorem 7.3. Let two TB-wavelets ψi, i = 1, 2, be represented by

ψi(x) =

∫ 1

0

τ i(v)w2h(v, x) dv,

and let a spline W ∈ pW2h be expanded with respect to the two bases

W (x) =
∑
k

P 1
k ψ

1(x− 2kh) = W (x) =
∑
k

P 2
k ψ

2(x− 2kh).

Then the coordinates are related by

P 2
k =

∑
l

a1,2
k−l P

1
l , where a1,2

r =

∫ 1

0

τ1(v)

τ2(v)
e2πivr dv.

In particular,

ψ1(x− 2lh) =
∑
k

a1,2
k−l ψ

2(x− 2kh). (52)

Any TB-wavelet is the derivative of a TB-spline. To be specific,

Proposition 7.4. Let a TB-wavelet pψ2h ∈ pW2h be represented by the in-

tegral pψ2h(x) =
∫ 1

0
τ(v) pw2h(v, x) dv, and the TB-spline 2pϕh ∈ 2pVh be

defined by

2pϕh(x) =
(−h

2

)p ∫ 1

0

τ(2v) 2pu
(
v +

1

2

)
2pmh(v, x) dv.

Then pψ2h(x) = dp

dxp 2pϕh(x+ (1 + p)h).
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Proof. This fact stems from Eq. (40). Namely,

pψ2h(x) =
(−h

2

)p dp
dxp

∫ 1

0

τ(v)

(
2pu
(v + 1

2

)
2pmh

(v
2
, x+ (1 + p)h

)
+ 2pu

(v
2

)
2pmh

(v + 1

2
), x+ (1 + p)h

))
dv

=2
(−h

2

)p dp
dxp

∫ 1

0

τ(2v) 2pu
(
v +

1

2

)
2pmh(v, x+ (1− p)h) dv.

In particular, this proposition implies that a number of moments of any
TB-wavelet vanish.

Corollary 7.5. Let Pp−1 be a polynomial of the degree p− 1 and pψ ∈ pW2h

be a TB-wavelet. Then the integral is
∫∞
−∞ Pp−1(x) pψ(x) dx = 0.

We consider now some examples of the TB-wavelets.

7.2 B-Wavelets

Let us put τ(v) ≡ (2h)−1 in (49) and define the following TB-wavelet ψb.

ψb(x) :=
1

2h

∫ 1

0

w2h(v, x) dv. (53)

Proposition 7.4 enables us to write ψb(x) = 1
h
dp

dxp 2pϕh(x + (1 + p)h), where

2pϕh(x) =
(
−h
2

)p ∫ 1

0
u
(
v + 1

2

)
2pmh(v, x) dv is a TB-spline. Recall that

u
(
v +

1

2

)
=

∞∑
s=−∞

e−2πi(v+ 1
2 )s

2pB1

(
p+ s

)
=

∞∑
s=−∞

(−1)s e−2πivs
2pB1

(
p+ s

)
.

Using this identity, we obtain

2pϕh(x) =
(−h

2

)p ∞∑
s=−∞

(−1)s2pB1

(
p+ s

) ∫ 1

0

e−2πivs
2pmh(v, x) dv.

Applying (11), the relation becomes

2pϕh(x) = h
(−h

2

)p ∞∑
s=−∞

(−1)s2pB1

(
p+ s

)
2pBh

(
x− sh

)
. (54)
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The expression for the wavelet ψb can be derived from (54) by means of (2).

ψb(x) =

∞∑
s=−∞

(−1)s+p

2
2pB1

(
p+ s

) p∑
l=0

(−1)l
(
p

l

)
pBh

(
x− (l + s− p− 1)h

)
=

p−2∑
k=−2p

Hk pBh
(
x− kh− h

)
, (55)

where Hk = (2)−p(−1)k
∑p
l=0

(
p
l

)
2pB1

(
2p+ 1 + k − l

)
. The finite sum in the

right hand side of (55) occurred because of

supp 2pBh = (0, 2ph). Therefore suppψb =
(

(−2p + 1)h, (2p − 1)h
)

. Due to

the symmetry of B-splines, the wavelet ψb is symmetric when p is even and
antisymmetric when p is odd. It is readily seen that the wavelet ψb is nothing
but the B -wavelet by Chui and Wang [6], (up to a shift). It is proven in [6]
that ψb is a unique TB-wavelet of minimal support.

Remark. Note that (35) implies the following well known refinement equation
for the B-splines. pB2h(x) =

∑p
k=0Gk pBh(x− kh) and Gk = 2−p

(
p
k

)
.

Proposition 7.6. Let ψb ∈ pW2h be the B-wavelet. Then for any spline
S ∈ pV2h the integrals are∫ ∞

−∞
S(x)ψb(x− 2lh) dx = 0 ∀l. (56)

Proof. To verify (56) one should write the spline S in the B-spline basis and
integrate the series obtained term by term. This is admissible because of the
compact support of the B- wavelet. But, since ψb belongs to pW2h,∫ ∞

−∞
ψb(x− 2lh)B2h(x− 2kh) dx = 0 ∀k, l.

7.3 Interpolatory TB-Wavelets

Let us consider the following TB-wavelet ψi ∈ pW2h:

ψi(x) =

∫ 1

0

τ(v) pw2h(v, x) dv with τ(v) =

(
u
(v

2

)
u
(v + 1

2

))−1

.

Proposition 7.4 implies that this wavelet is the derivative

ψi(x) =
(−h

2

)p dp
dxp

2pϕ
i
h(x+ (p+ 1)h), (57)
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where the spline

2pϕ
i
h(x) :=

∫ 1

0

τ(2v) 2pu
(
v +

1

2

)
2pmh(v, x) dv

=

∫ 1

0

2pmh(v, x)

2pu(v)
dv = 2pLh(x)

is the fundamental TB-spline from the space 2pVh (see (30)). TB-wavelets ψi

were presented by Chui and Wang [4] under the name interpolatory wavelets.

Proposition 7.7. Let a spline W be an element of the wavelet space pW2h,
and Pp−1 be any polynomial of degree p−1. Then W is the pth order derivative
of a spline from the space 2pVh interpolating the polynomial Pp−1 in the points

{(2k−p)h}. Conversely, let W̃ = 2pS̃
(p) be the pth order derivative of a spline

2pS̃ ∈ 2pVh interpolating a p− 1-degree polynomial in the points {(2k − p)h}.
Then W̃ belongs to the wavelet space pW2h.

Proof. Let us expand the spline W in terms of the interpolatory basic
wavelets. W (x) =

∑
kQk ψ

i(x− 2kh) and define the spline 2pS ∈ 2pVh by

2pS(x) := Pp−1(x) +
(−h

2

)p ∑
k

Qk 2pLh(x− (2k − 1− p)h).

It is readily seen that 2pS((2k − p)h) = Pp−1((2k − p)h). At the same time
(57) implies that W = 2pS

(p). The reciprocal assertion is apparent.

Note that the proposition includes Theorem 6.2 from [6] as a special case
when Pp−1(x) ≡ 0.

7.4 Selfdual TB-Wavelets

Theorem 7.2 immediately leads to the construction of the TB-wavelet

ψo(x) =

∫ 1

0

τ(v) pw2h(v, x) dv ∈ pW2h

which is dual to itself. To do , we should choose τ(v) =
(

2ht(v)
)− 1

2

. The

shifts
{
ψo(· − 2kh)

}∞
−∞ form an orthonormal (in the sense of L2) basis of the

space pW2h. These TB-wavelets are known as the Battle- Lemarié wavelets
[2], [10].
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7.5 Galerkin Projections and TB-Wavelets Dual to B-Wavelets

Now we are able to give a direct definition of the GP of a function onto a
wavelet space.

Definition 7.2. Let f be a function of slow growth. We call a spline
W (f, ·) ∈ pW2h a Galerkin projection (GP) of the function f onto the wavelet
space pW2h if for all integers k the integrals with B-wavelets ψb are∫ ∞

−∞
W (f, x)ψb(x− 2kh) dx =

∫ ∞
−∞

f(x)ψb(x− 2kh) dx := Ψk.

To reconcile this with the previous Definition 4.6 of the GP of a spline onto

pW2h, we prove the following assertion.

Proposition 7.8. Let a spline S(f, ·) be the GP of a function f onto the
spline space pVh and W (f, ·) be the GP of the spline S(f, ·) onto the wavelet
space pW2h in the sense of Definition 4.6. Then W (f, ·) is the GP of the
function f onto the space pW2h.

Proof. Let ψb be the B-wavelet and Bh – the B-spline. We point out first
that ∫ ∞

−∞
W (f, x)ψb(x− 2kh) dx =

∫ ∞
−∞

S(f, x)ψb(x− 2kh) dx.

This stems from (44), (53). Then, applying (55), we may write the integral as∫ ∞
−∞

f(x)ψb(x− 2kh) dx =

p−2∑
s=−2p

Hs

∫ ∞
−∞

f(x)Bh
(
x− (s+ 2k)h

)
dx

=

p−2∑
s=−2p

Hs

∫ ∞
−∞

S(f, x)Bh
(
x− (s+ 2k)h

)
dx

=

∫ ∞
−∞

S(f, x)ψb(x− 2kh) dx =

∫ ∞
−∞

W (f, x)ψb(x− k2h) dx.

In accordance with (51), the TB-wavelet ψd ∈ pW2h dual to the B-wavelet

ψb is defined by ψd(x) =
∫ 1

0
w2h(v,x)
t(v) dv. Once again let W (f, ·) be the GP of f

onto pW2h. We expand it in terms of the dual basis W (f, x) =
∑
k pk ψ

d(x−
k2h). Then the coordinates are

pk =

∫ ∞
−∞

f(x)ψb(x− k2h) dx =

∫ (2p−1)h

(−2p+1)h

f(x)ψ(x)b dx = Ψk. (58)

The following assertion results from (52).
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Proposition 7.9. Let ψ̌ ∈ pW2h be a TB-wavelet and a function f belongs
to Fs. Then a spline W ∈ pW

s
2h is the GP of the function onto the wavelet

space pW2h if and only if∫ ∞
−∞

W (x) ψ̌(x− k2h) dx =

∫ ∞
−∞

f(x) ψ̌(x− k2h) dx.

Theorem 7.10. Let f be a function of slow growth. Then there exists a
unique GP W (f, ·) of the function onto pW2h. Moreover, if f belongs to Fs

then the spline W (f, ·) belongs to pV
s
h ⊂ Fs.

Proof. The existence and growth property of the GP follow from Proposi-
tion 7.8, while the uniqueness follows from Eq. (58).

8 Wavelet Transformations

8.1 Decomposition and Reconstruction of Splines

By decomposition of a spline Sh ∈ pVh we mean its representation as the sum
Sh = S2h+W2h where S2h, W2h are GP of the spline Sh onto pV2h and pW2h

correspondingly. Reconstruction is the synthesis of a spline Sh ∈ pVh from
its GPs, W2h and S2h.

From a technical point of view, the procedures reduce to transformations of
coordinates of splines involved from one TB-spline(wavelet) basis to another.
We present formulas for arbitrary bases. These formulas stem from relations
established for exponential splines and wavelets.

Theorem 8.1. Let 1ϕh, 2ϕ2h be TB-splines from the spaces pVh, pV2h re-
spectively, and 3ψ2h be a TB-wavelet from the space pW2h.

1ϕh(x) =

∫ 1

0

1ρ(v)mh(v, x) dv,

2ϕ2h(x) =

∫ 1

0

2ρ(v)m2h(v, x) dv, 3ψ2h(x) =

∫ 1

0

2τ(v)w2h(v, x) dv.

Suppose that a spline Sh ∈ pV
s
h and its GPs S2h, W2h onto the subspaces

pV2h, pW2h respectively, are represented in terms the TB-splines (wavelets)

Sh(x) =
∑
k

1qk
1ϕh(x− kh)

S2h(x) =
∑
k

2qk
2ϕ2h(x− k2h), W2h(x) =

∑
k

3pk
3ψ2h(x− k2h).
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Then the coordinates are related by

2qk =
∑
l

1q2k−lrl, rl =

∫ 1

0

e2πilv

2ρ(2v)u(2v)
b(2v)u(v) 1ρ(v) dv. (59)

3pk =
∑
l

1q2k−lsl, sl =

∫ 1

0

e2πilv

3τ(2v) t(2v)
a(2v)u(v) 1ρ(v) dv, (60)

1qk = 2
(∑

l

Rk−2l
2ql +

∑
l

Sk−2l
3pl

)
, (61)

Rl =

∫ 1

0

e2πilv 2ρ(2v) b(2v)
1ρ(v)

dv, Sl =

∫ 1

0

e2πilv 3τ(2v) a(2v)
1ρ(v)

dv.

Proof. Let us write the splines in the integral form

Sh(x) =

∫ 1

0

1ξh(v) ·mh(v, x) dv,

S2h(x) =

∫ 1

0

2ξ2h(v) ·m2h(v, x) dv, W2h(x) =

∫ 1

0

3η2h(v) · w2h(v, x) dv,

where

1ξh(v) = 1ρ(v)F(1~q, v),
2ξ2h(v) = 2ρ(v)F(2~q, v), 3η2h(v) = 3τ(v)F(3~p, v).

Then (45) implies

F(2~q, v) =
b(v)u(v/2) 1ξh(v/2) + b(v + 1)u((v + 1)/2) 1ξh((v + 1)/2)

2ρ(v)u(v)
,

from which we come to

2qk =

∫ 1

0

e2πikv

2ρ(v)u(v)

(
b(v)u

(v
2

)
· 1ξh

(v
2

)
+ b(v + 1)u

(v + 1

2

)
· 1ξh

(v + 1

2

))
dv

=

∫ 1

0

e2πi2kv

2ρ(2v)u(2v)
b(2v)u(v) · 1ξh(v) dv.

Hence (59) follows. Eq. (60) is derived similarly from (46).
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Now we turn to Eq. (61). Just as in (47) we obtain

1ξh(v) = 2
(

2ξ2h(2v) b(2v) + 3η2h(2v) a(2v)
)
.

Hence it follows that

1qk = 2

∫ 1

0

e2πikv b(2v)
1ρ(v)

· 2ξ2h(2v) dv + 2

∫ 1

0

e2πikv a(2v)
1ρ(v)

· 3τ2h(2v) dv

The latter relation implies (61).
We stress that formulas established allow a spline given in any TB-spline

basis to be decomposed into splines in any TB-spline(wavelet) bases.

8.2 Wavelet Transformations of Signals

Under the wavelet transformation of a signal f ∈ F, we mean the computation
of the integrals

γΦ(f, k, ν) =

∫ ∞
−∞

f(x) γϕh2ν (x− kh2ν) dx

γΨ(f, k, ν) =

∫ ∞
−∞

f(x) γψh2ν (x− kh2ν) dx

with various T B-splines(wavelets) which are denoted by the parameter · γ , on
various scales which are indicated by the parameter · ν and concerned with
various translations associated with the parameter k.

Theorem 8.2. Let 1ϕh(x), 1ϕ2h(x), 3ψ2h(x) be the TB-splines(wavelets) de-
fined in Theorem 8.1. Suppose that a signal f belongs to F. Then

2Φ(f, k, ν + 1) =
∑
l

1Φ(f, 2k − l, ν)R−l,

3Ψ(f, k, ν + 1) =
∑
l

1Φ(f, 2k − l, ν)S−l,

1Φ(f, k, ν) = 2
(∑

l

r2l−k
2Φ(f, l, ν + 1) +

∑
l

s2l−k
3Ψ(f, l, ν + 1)

)
,

where the coefficients Rk, Sk, rk, sk are determined in Theorem 8.1.

Proof. The assertion is an immediate consequence of Theorem 8.1. To verify
this, it suffices to recall that in the case when a spline S ∈ pV

s
h2ν is the GP of
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a signal f ∈ F, its coordinates with respect to the TB-basis {γϕdh2ν (·−kh2ν)}
dual to a TB-spline basis {γϕh2ν (· − kh2ν)} are

γqk =

∫ ∞
−∞

f(x) γϕh2ν (x− kh2ν) dx.

a similar remark is true relative to the TB-wavelet coordinates γpk. To ac-
complish the proof one should apply (25) and (51).

It is readily observable that in this case decomposition and reconstruction
sequences are interchanged with those in the previous subsection.

Concluding Remark

We note that the approach developed for one-dimensional polynomial splines
can be applied to numerous classes of spline functions. We mention L-splines,
box splines, discrete splines and Hermite splines.

The set of problems solvable by means of the techniques established is
rather wide. These techniques are especially relevant for solving problems
concerned with the operators of convolution and differentiation because of
the intimate relationship of the exponential splines to these operators. In
particular, we intend to apply these techniques to solving convolution integral
equations by means of spline wavelet analysis.

Acknowledgment. The author is indebted to Professors Nira Dyn and Amos
Ron for useful discussion of the work.
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