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SOME MODIFICATIONS OF THE CORE
TOPOLOGY ON THE PLANE

Abstract

In this paper we introduce some modifications of the core topology
on the plane. Here the role of the Euclidean topology on the real line
on every or almost every direction is played by the density topology or
the Hashimoto topology connected with the σ-ideal of null sets and the
σ-ideal of meager sets. We demonstrate the proper inclusions between
these families, we investigate the separation axioms and functions con-
tinuous with respect to these topologies.

1 Introduction

The aim of this paper is to introduce some modifications of the core topology
on the plane. The core topology was considered earlier by M. Kuczma and his
students ([K], [KK]). The topologies presented here are modifications of this
topology, similar to the d-crosswise topology (cf. [LMZ], p. 98).

Generally speaking, a point is an interior point of a set A ⊂ R2 if and only
if it is an interior point of the set A in a certain topology on the line in every
or I-almost every direction, where I is a certain σ-ideal. Investigations of the
topologies of this kind ([WBW], [LS]) can lead one to answers to interesting
questions connected with the behavior of real-valued functions on R2 in dif-
ferent directions. The problem of connections between the partial derivatives
and directional derivatives was considered by Bruckner and Rosenfeld in [BR].

The comparison of the topologies defined here and already known density
topologies seems to be interesting, especially when one considers the open
question of the coarsest topology for which strongly approximately continuous

Key Words: Density topologies, core topology, comparison of topologies
Mathematical Reviews subject classification: 54A10 and 28A05
Received by the editors May 9, 1997

185
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functions are continuous; i.e. of the complete regularity of the topologies and
an analogue of the Lusin-Menchoff Theorem ([GNN]).

Recall the notion of the core topology, which is denoted here by T ′-core.
Let A ⊂ R2. A point x ∈ A is said to be an algebraically interior point of A
if and only if, for each y ∈ R2, there exists ε > 0 such that x + ty ∈ A for
t ∈ (−ε, ε); i.e., A contains an open segment centered at the point x on each
line passing through x.

The set of all points which are algebraically interior to A is denoted by core
A. A set A ⊂ R2 is called algebraically open if A = core A. The family

T ′-core = {A ⊂ R2 : A = core A}

forms a topology in R2, called the core topology.
There are at least two kinds of natural modifications of this definition;

changing the set of directions on which we have a neighborhood in some topol-
ogy, and changing the topology on the line.

This paper consists of two sections. In the first one we introduce several
topologies analogous to the core topology on the plane, using the σ-ideal of
null sets. Here the role of the Euclidean topology on the real line on every
or almost every direction is played by the Hashimoto topology or the density
topology on the real line. We demonstrate the proper inclusions between these
families and compare them with the density topologies and the Hashimoto
topology on the plane. We investigate the separation axioms and prove that
functions continuous with respect to these topologies are of Baire class 1.

In the second section we consider analogous problems for Baire category.
We obtain a similar diagram for the core topologies connected with the ideal
of meager sets. Only the results of the comparison with the ordinary I-density
topology on the plane and separation axioms are a little bit different. We prove
that functions continuous with respect to these topologies are of Baire class at
most 2.

For the terminology and definitions of density point, I-density point, den-
sity and I-density topologies on the line and on the plane (d, dI , d2, dI2 , ds2,
dsI2), see [CW], [GNN], [PWW], [W], [WB].

Let mk denote Lebesgue measure on Rk, k = 1, 2, Lk — the family of all
measurable sets on Rk, k = 1, 2, Bk — the family of all sets having the Baire
property on Rk, k = 1, 2.

The ball (circle) centered at a point (x, y) with radius r is denoted by
K((x, y), r) (S((x, y), r)). Let sec(α, β) denote an angular domain determined
by the lines forming angles α and β with the x-axis. Let pΘ (pΘ(x)), Θ ∈ 〈0, π),
denote the line running through the origin (the point x) and forming an angle
Θ with the x-axis. Let p+Θ (p+Θ(x)), Θ ∈ 〈0, 2π), denote the analogous half-line.
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We denote by χ
A

the characteristic function of a set A and by B1, Baire
class 1.

2 Core Topologies Defined with Null Sets

Definition 2.1. A set A ⊂ R2 is Hash-core (ap-core) open if and only if,
for each point x ∈ A and for each Θ ∈ 〈0, π), the set pΘ(x) ∩ A contains a
neighborhood of x in the Hashimoto topology (density topology) on the line
pΘ(x); i.e., a set of the form G \N where G is open in the Euclidean topology,
N is a null set and x ∈ G \N . (In other words, pΘ(x) ∩ A contains a linearly
measurable set B such that d1(B, x) = 1 and x ∈ B.)

Let T ′-Hash-core (T ′-ap-core) denote the family of all Hash-core (ap-core)
open sets.

Definition 2.2. A set A ⊂ R2 is core-a.e. (Hash-core-a.e., ap-core-a.e.) open
if and only if, for each point x ∈ A, there exists a linear set H ⊂ 〈0, π) such
that m1(H) = π and, for all Θ ∈ H, the set pΘ(x)∩A contains a neighborhood
of x in the Euclidean topology (Hashimoto topology, density topology) on the
line pΘ(x).

Let T ′-core-a.e. (T ′-Hash-core-a.e., T ′-ap-core-a.e.) denote the family of
all core-a.e. (Hash-core-a.e., ap-core-a.e.) open sets.

It is easy to see that the families of sets we have just defined form topologies.
They also contain non-measurable sets (see [WBW]).

Theorem 2.3. The following proper inclusions hold.

T ′-core-a.e.
∪ 1)

⊂
2)
T ′-Hash-core-a.e.

∪ 1)
⊂
3)
T ′-ap-core-a.e.

∪ 1)

T ′-core ⊂
2)

T ′-Hash-core ⊂
3)

T ′-ap-core

Proof. It suffices to construct three sets. Let

A = R2 \ {(x, y) ∈ R2 : x 6= 0, y = 0}.

Then A ∈ T ′-core-a.e. \ T ′-ap-core. This shows that the inclusions denoted by

1) are proper. LetB = R2 \
(⋃

n∈N S
(
(0, 0), 1

n

))
. ThenB ∈ T ′-Hash-core \ T ′-core-a.e.

This shows that the inclusions denoted by 2) are proper.
Let E =

⋃
n∈N(an, bn) where limn→∞ bn = 0, 0 < an+1 < bn+1 < an and 0

is a point of right-hand density of E. Let

C = {(r,Θ) : r ∈ E, Θ ∈ 〈0, 2π)}
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where (r,Θ) denotes the polar coordinates. Then C ∈ T ′-ap-core \ T ′-Hash-core-a.e.
This shows that the inclusions denoted by 3) are proper.

To compare the topologies considered with the density topologies on the
plane, we assume open sets to be measurable. Thus we define the following
families of sets.

T -core = T ′-core ∩ L2,

T -core-a.e. = T ′-core-a.e. ∩ L2,

T -Hash-core = T ′-Hash-core ∩ L2,

T -Hash-core-a.e. = T ′-Hash-core-a.e. ∩ L2,

T -ap-core = T ′-ap-core ∩ L2,

T -ap-core-a.e. = T ′-ap-core-a.e. ∩ L2.

It is easily seen that there are proper inclusions between these families
because the sets A, B, C from Theorem 2.3 are measurable.

So we have

T -core-a.e. ⊂ T -Hash-core-a.e. ⊂ T -ap-core-a.e.

∪ ∪ ∪ (1)

T -core ⊂ T -Hash-core ⊂ T -ap-core.

Theorem 2.4. All the families of sets from (1) are contained in the density
topology on the plane.

The proof is analogous to that of Theorem 2.4 in [WBW].

Corollary 2.5. Each of the families from (1) forms a topology.

The families from (1) are called core topologies connected with the σ-ideal
of null sets.

Now, we compare them with the Euclidean topology, the Hashimoto topol-
ogy and the density topologies on the plane.

It is easy to see ([S]) that the Euclidean topology is essentially weaker than
each of the core topologies connected with the σ-ideal of null sets.

Theorem 2.6. The strong density topology on the plane is not contained in
any of the core topologies connected with the σ-ideal of null sets.
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Proof. It suffices to prove that ds2 6⊂ T -ap-core-a.e. Let {an}n∈N be a de-

creasing sequence of positive numbers tending to 0 such that
an+1

an
−−−−→
n→∞ 0.

We construct a set A which is a union of parts of ring-shaped domains with

radii an and 2an. Let α =
π

4
. Put

A(k,l)
n =

{
(r,Θ) : r ∈ 〈a(2n−n−1)+(2k−1−1)+l2a(2n−n−1)+(2k−1−1)+l〉,

Θ ∈
〈 1

n+ 2− k
α+

(l − 1)
(

1
n+1−k −

1
n+2−k

)
α

2k−1

1

n+ 2− k
α+

l
(

1
n+1−k −

1
n+2−k

)
α

2k−1

〉}
for n ∈ N, k ∈ {1, . . . , n}, l ∈ {1, . . . , 2k−1} and

A0 =

∞⋃
n=1

n⋃
k=1

2k−1⋃
l=1

A(k,l)
n .

We arrange the sets A
(k,l)
n in a sequence {Cm}m∈N in the following way.

A
(k1,l1)
n1 precedes A

(k2,l2)
n2 in this sequence if and only if n1 < n2 or n1 = n2 and

k1 < k2 or n1 = n2, k1 = k2 and l1 < l2. So the set Cm is a part of the ring
with radii am and 2am. Angles which form the lines marking the set Cm with
the x-axis are denoted by αm and βm, 0 < αm < βm < π

4 . Let ωm = βm−αm,
m ∈ N. From the construction it follows that the sequence {ωm}m∈N tends to
zero.

Put

A1 = {(x, y) : (y, x) ∈ A0}
A = {(x, y) : (x, y) ∈ A0 ∪A1 or (−x, y) ∈ A0 ∪A1

or (x,−y) ∈ A0 ∪A1 or (−x,−y) ∈ A0 ∪A1}

and B = R2 \A.
Observe that B is not open in the T -ap-core-a.e. topology. Indeed, for each

Θ ∈ 〈0, π), the set pΘ ∩B does not contain a neighborhood of the point (0, 0)
in the density topology on the line because, on the line pΘ, there are intervals
of the form (am, 2am) arbitrarily close to (0, 0) and contained in A.

We shall show that B is open in the strong density topology on the plane.
It suffices to prove that ds2(B, (0, 0)) = 1; i.e., for each pair of sequences of
positive numbers {tn}n∈N ↘ 0 and {hn}n∈N ↘ 0, we have

dn =
m2(B ∩ (〈−tn, tn〉 × 〈−hn, hn〉))

4tnhn
−−−−→
n→∞ 1.
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We need only show that any subsequence of {dn}n∈N includes a subsequence
tending to 1. Let us take an arbitrary subsequence {nm}m∈N of the sequence
of positive integers. There are three cases.

10 The sequence
{ tnm
hnm

}
m∈N includes a subsequence

{ tnmp
hnmp

}
p∈N converging

to a number a, 0 < a < ∞. Then there exists a number α such that 0 < α <
tnmp
hnmp

< 1
α < ∞ for sufficiently large p ∈ N. Hence the sequence of rectangles

Enmp = 〈−tnmp tnmp 〉 × 〈−hnmphnmp 〉, p ∈ N, is regular. Consequently, we
only need to consider the limit

lim
r→0+

m2(A ∩K((0, 0), r))

πr2
.

Fix r ∈ 〈an, an−1). Then m2(Cn) = 3
2a

2
nωn and

m2(A ∩K((0, 0), r))

πr2
≤

8 3
2a

2
nωn + π(2an+1)2

πr2

≤ 12

π
ωn +

4a2n+1

a2n
.

So
m2(A ∩K((0, 0), r))

πr2
−−−−→
r→0+

0.

20 The sequence
{ tnm
hnm

}
m∈N includes a subsequence

{ tnmp
hnmp

}
p∈N tending to

∞ and 10 does not hold.
Fix tnmp ∈ 〈akpakp−1). Then, after elementary calculations, we obtain

m2(A ∩ (〈−tnmp tnmp 〉 × 〈−hnmphnmp 〉))
4tnmphnmp

≤
4 · 2akp+1hnmp + 4m2(Ckp ∩ (〈−tnmp tnmp 〉 × 〈−hnmphnmp 〉))

4tnmphnmp

=
2akp+1

tnmp
+
m2(Ckp ∩ (〈−tnmp tnmp 〉 × 〈−hnmphnmp 〉))

tnmphnmp
;

so,
m2(A ∩ (〈−tnmp tnmp 〉 × 〈−hnmphnmp 〉))

4tnmphnmp

−−−−→
p→∞ 0.

30 The sequence
{ tnm
hnm

}
m∈N includes a subsequence

{ tnmp
hnmp

}
p∈N converging

to 0 and neither 10 nor 20 holds.
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Similar to 20, we have

m2(A ∩ (〈−tnmp tnmp 〉 × 〈−hnmphnmp 〉))
4tnmphnmp

−−−−→
p→∞ 0.

So, we have proved that B ∈ ds2 \ T ap-core-a.e.

Corollary 2.7. The density topology on the plane is not contained in any of
the core topologies connected with the σ-ideal of null sets.

Theorem 2.8. None of the core topologies connected with the σ-ideal of null
sets is contained in the strong density topology on the plane.

Proof. It is sufficient to show that T -core 6⊂ ds2. Let

A = R2 \ {(x, y) ∈ R2 : x > 0, x4 ≤ y ≤ x2}.

We have

m2

(
A′ ∩

(
〈− 1

n ,
1
n 〉 × 〈−

1
n4

1
n4 〉
))

m2

(
〈− 1

n ,
1
n 〉 × 〈−

1
n4

1
n4 〉
) =

12n− 10

15n · 4
.

Consequently, ds2(A′, (0, 0)) > 0; so A /∈ ds2. Obviously, A ∈ T -core. Hence
A ∈ T -core \ ds2.

Corollary 2.9. None of the core topologies connected with the σ-ideal of null
sets are contained in d× d.

Proof. We have d× d ⊂ ds2 (see [WB]); so the proof is obvious.

Corollary 2.10. The core topologies connected with the σ-ideal of null sets
and the strong density topology are incomparable.

It is known ([WBW], Th. 2.4) that the topology d× d is weaker than the
T -ap-core topology.

Corollary 2.11. The topology d×d is weaker than the T -ap-core-a.e. topology.

Theorem 2.12. The topology d× d is contained in neither the T -Hash-core-
a.e. topology nor the T -core, T -core-a.e., T -Hash-core.

Proof. It is sufficient to show that d × d 6⊂ T -Hash-core-a.e. Let E =⋃
n∈N(an, bn)∪(−∞; 0〉 where

⋃
n∈N(an, bn) is an interval set such that d(E, 0) =

1. Put A = E × R. Then A ∈ d× d \ T -Hash-core-a.e.

Theorem 2.13. None of the core topologies connected with the σ-ideal of null
sets is contained in the Hashimoto topology on the plane (O∗).
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Proof. It follows from Theorem 2.8 because O∗ ⊂ ds2.

Theorem 2.14. The Hashimoto topology on the plane is weaker than the T -
Hash-core-a.e. and the T -ap-core-a.e. topologies.

Proof. It is sufficient to show that O∗ ⊂ T -Hash-core-a.e. Let A ∈ O∗ and
(x0, y0) ∈ A. We may assume that x0 = y0 = 0. We prove that (0, 0) is an
interior point of A in the T -Hash-core-a.e. topology. Since A ∈ O∗, there exist
sets G,N ⊂ R2 such that A = G \N , G is open in the Euclidean topology on
the plane and m2(N) = 0. By Fubini’s theorem for polar coordinates, there
exists a set H ⊂ 〈0, π) such that m1(H) = 0 and, for Θ ∈ 〈0, π) \H, the set
NΘ = N ∩ pΘ is a null set on the line pΘ. Consequently, we can choose an
open interval (aΘ, bΘ) ⊂ G∩ pΘ such that (0, 0) ∈ (aΘ, bΘ) \NΘ ⊂ pΘ ∩A and
m1(NΘ) = 0 for almost all Θ ∈ 〈0, π). Thus (0, 0) belongs to the interior of A
in the T -Hash-core-a.e. topology.

Theorem 2.15. The Hashimoto topology on the plane is not contained in any
of the topologies: T -core, T -core-a.e., T -Hash-core, T -ap-core.

Proof. It is sufficient to show that O∗ 6⊂ T -core-a.e. and O∗ 6⊂ T -ap-core.
The set B from Theorem 2.3 is open in O∗ and is not open in the T -core-a.e.
topology. The set A from the same theorem is open in O∗ and is not open in
the T -ap-core topology.

The results of Theorems and Corollaries 2.4–2.15 are presented in the fol-
lowing scheme.

O
6∩
∗

T -core-a.e. ⊂
d×d
6∩

O
∩
∗

T -Hash-core-a.e. ⊂
ds2
6∩

T -ap-core-a.e. ⊂ d2
∪ ∪ ∪ (2)

O ⊂ T -core
6∩
ds2

6∩
O∗

⊂ T -Hash-core ⊂ T -ap-core.
∪
d×d

6∪
O∗

Theorem 2.16. The T -core topology is not regular.

Proof. We show that there exists a set F closed in the T -core topology,
which cannot be separated from the point (0, 0).

Consider a sequence of rectanglesQk,l where k ∈ N∪{0}, l ∈ {1, . . . , 2k} and
Qk,l =

(
l−1
2k

l
2k

)
×
(

1
2k+1

1
2k

)
. Form a sequence {Pn}n∈N by putting Pn = Qk,l

where n =
∑k−1
i=0 2i + l. Choose points pn ∈ Pn, n ∈ N, in such a way

that any three of them are not colinear. Let F = {pn : n ∈ N}. Then
F ′ = R2 \F ∈ T -core and (0, 0) /∈ F .
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Let G, G0 ∈ T -core, (0, 0) ∈ G0 and F ⊂ G. We shall show that G∩G0 6= ∅.
The set G0 is a neighborhood of (0, 0) in the T -core topology; so there exists a
number d ∈ (0, 1) such that 〈0, d)× {0} ⊂ G0. Similarly, G is a neighborhood
of the points pn = (xn, yn) in the T -core topology; so there exist δn ∈ (0, 1),
n ∈ N, such that ⋃

n∈N
(xn − δn, xn + δn)× {yn} ⊂ G.

Let

E = lim sup
n

(xn − δn, xn + δn) =

∞⋂
n=1

∞⋃
m=n

(xm − δm, xm + δm).

From the construction of F it follows that the set {xm, m ≥ n} is dense on
the interval (0, 1) for each n ∈ N. Consequently, E is residual on this interval.
Let x ∈ E ∩ (0, d). Since (x, 0) ∈ (0, d) × {0} ⊂ G0 and G0 ∈ T -core, there
exists a number h > 0 such that {x} × 〈0, h) ⊂ G0. Then

({x} × 〈0, h)) ∩ ((xn − δn, xn + δn)× {yn}) 6= ∅

for infinitely many n ∈ N (since x ∈ (xn − δn, xn + δn) and yn < h for almost
all n ∈ N because yn −−−−→n→∞ 0). Hence G0 ∩G 6= ∅.

Theorem 2.17. The T -Hash-core topology is not regular.

Proof. Let F =
⋃
w∈Q+

S((0, 0), w). Obviously, (0, 0) /∈ F and F is closed in
the T -Hash-core topology.

Let G, G0 ∈ T -Hash-core, (0, 0) ∈ G0 and F ⊂ G. We shall show that, for
each Θ ∈ 〈0, π), the intersection G0 ∩G ∩ pΘ is non-empty.

Indeed, for each Θ ∈ 〈0, π), the set G∩ pΘ includes, with each point of the
set F ∩ pΘ, a set of full measure on some interval. Since there are points of
the set F ∩ pΘ arbitrarily close to (0, 0), the set G0 ∩ pΘ, as a set containing a
neighborhood of (0, 0) in the Hashimoto topology on the line pΘ, is not disjoint
from G ∩ pΘ.

We shall show that the T -Hash-core-a.e. topology is not regular. We shall
use the following lemmas.

Lemma 2.18. If G ∈ T -Hash-core-a.e. and (0, 0) ∈ G, then, for each r > 0,

Ar = {Θ ∈ 〈0, π) : m1(G ∩K((0, 0), r) ∩ pΘ) = 2r}

is measurable.
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The proof follows immediately from the theorem on integration by substi-
tution and Fubini’s theorem.

Lemma 2.19. If G ∈ T -Hash-core-a.e. and (0, 0) ∈ G, then there exists a
number n0 ∈ N such that m1

(
A 1
n0

)
> 0, where the sets Ar are as above.

Theorem 2.20. The T -Hash-core-a.e. topology is not regular.

Proof. Put F =
⋃
n∈N S

(
(0, 0), 1

n

)
. Obviously, (0, 0) /∈ F and F is closed in

the T -Hash-core-a.e. topology. Let G, G0 ∈ T -Hash-core-a.e., (0, 0) ∈ G0 and
F ⊂ G. We assume that G ∩G0 = ∅. By Lemma 2.19, there exists a number
n0 ∈ N such that

A 1
n0

=
{
Θ ∈ 〈0, π) : m1

(
G0 ∩K

(
(0, 0),

1

n0

)
∩ pΘ

)
=

2

n0

}
has positive linear Lebesgue measure. Let Θ0 be a density point of A 1

n0

. Let

us consider S
(
(0, 0), 1

n1

)
where n1 > n0. Let (x0, y0) be one of the points of

the intersection S
(
(0, 0), 1

n1

)
∩ pΘ0 . We can assume that x0, y0 > 0. In the

other cases the proof is analogous. Obviously, (x0, y0) ∈ G. We shall show
that (x0, y0) is not a dispersion point of G0, which is a contradiction.

We shall show that there exists α > 0 such that
m2(K ∩G0)

m2(K)
> α for all

the balls K with center at the point (x0, y0) and radius sufficiently small, which
means that d2(G0, (x0, y0)) > 0.

Let 0 < a < 1
n0n1

. We denote by (x′′, y′′) the point of intersection of

the circle S
(
(0, 0), 1

n1
+ a

2

)
and the half-line p+Θ0

, by (x2, y2), the point of

intersection of the circle S
(
(x0, y0), a

)
and the half-line p+π

2 +Θ0
(x′′, y′′). Let δ

denote an angle between the half-line p+Θ0
and the half-line running from the

point (0, 0) through the point (x2, y2). Then

tan δ =

√
3
2 a

1
n1

+ a
2

. (3)

Thus lima→0 δ = 0. Put r2 =
√
x22 + y22 . Denote by (x′, y′) the point of intersec-

tion of the circle S
(
(0, 0), 1

n1
− a

2

)
and the half-line p+Θ0

, by (x1, y1), the point

of intersection of the half-lines p+Θ0+δ
and p+Θ0+

π
2

(x′, y′). Put r1 =
√
x21 + y21 .

Then cos δ =
1
n1
− a

2

r1
=

1
n1

+ a
2

r2
. Let

A = (r1, r2)×
(
A 1
n0

∩ (Θ0 − δ, Θ0 + δ)
)
,

U = (r1, r2)× (Θ0 − δ, Θ0 + δ).
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Obviously, A ⊂ U .

Let f(r,Θ) = (r cosΘ, r sinΘ), (r,Θ) ∈ U . Put K = K((x0, y0), a). Then
f(U) ⊂ K and

m2(f(U))

m2(K)
=

(r22 − r21)δ

πa2
=

2
n1
δ

πa cos2 δ
.

Since f(U) ⊃ f(A) and m2(f(A)) = m2(f(A) ∩ G0) + m2(f(A) \G0), it
follows that

m2(K ∩G0)

m2(K)
≥ m2(f(A))−m2(f(A) \G0)

m2(K)
.

We have

m2(f(A)) =

∫
f(U)

χ
f(A)

(p)dp =

∫
U

χ
f(A)

(f(r,Θ)) r drdΘ

=

∫ Θ0+δ

Θ0−δ

∫ r2

r1

χ
f(A)

(f(r,Θ)) r drdΘ ≥
∫
A 1
n0

∩(Θ0−δ, Θ0+δ)

r22 − r21
2

dΘ

=
r22 − r21

2
m1

(
A 1
n0

∩ (Θ0 − δ, Θ0 + δ)
)

and

m2(f(A) \G0) =

∫
f(U)

χ
f(A) \G0

(p)dp =

∫
U

χ
f(A) \G0

(f(r,Θ)) r drdΘ

=

∫ Θ0+δ

Θ0−δ

∫ r2

r1

χ
f(A) \G0

(f(r,Θ)) r drdΘ

=

∫
(Θ0−δ, Θ0+δ)∩A 1

n0

∫ r2

r1

0 r drdΘ

+

∫
(Θ0−δ, Θ0+δ) \A 1

n0

∫ r2

r1

r drdΘ

≤r
2
2 − r21

2
m1

(
(Θ0 − δ, Θ0 + δ) \A 1

n0

)
.
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Thus

m2(K ∩G0)

m2(K)
≥ m2(f(A))−m2(f(A) \G0)

m2(f(U))

m2(f(U)

m2(K)

≥

(
m1

(
(Θ0 − δ, Θ0 + δ) ∩A 1

n0

)
−m1

(
(Θ0 − δ, Θ0 + δ) \A 1

n0

))
(r22 − r21)δ

×
r22−r

2
1

2
2
n1
δ

πa cos2 δ

=
[m1

(
(Θ0 − δ, Θ0 + δ) ∩A 1

n0

)
2δ

−
m1

(
(Θ0 − δ, Θ0 + δ) \A 1

n0

)
2δ

]
×

2
n1

π cos2 δ

δ

tg δ

√
3

2
n1

+ a

by (3).
Since d

(
A 1
n0

, Θ0

)
= 1, it follows that

lim
a→0

[m1

(
(Θ0 − δ, Θ0 + δ) ∩A 1

n0

)
2δ

−
m1

(
(Θ0 − δ, Θ0 + δ) \A 1

n0

)
2δ

]
×

2
n1

π cos2 δ

δ

tg δ

√
3

2
n1

+ a
=

√
3

π

so m2(G0∩K)
m2(K) ≥

√
3

2π for sufficiently small a.

Denote by CT the family of all continuous functions from the plane with
a topology T to the real line with the Euclidean topology. The following
inclusions hold.

CT -core-a.e. ⊂ CT -Hash-core-a.e. ⊂ CT -ap-core-a.e. ⊂ Cd2
∪ ∪ ∪

CO ⊂ CT -core ⊂ CT -Hash-core ⊂ CT -ap-core

Since approximately continuous functions are of Baire class 1, all the func-
tions from the last diagram are also of this class.

Theorem 2.21. The T -core-a.e., T -ap-core and T -ap-core-a.e. topologies are
not normal.

Proof. Let A, B be two disjoint countable subsets of 〈0, 1〉 × {0} which are
dense in the Euclidean topology on 〈0, 1〉 × {0}. Then A and B are closed in
the T -core-a.e. (T -ap-core, T -ap-core-a.e.) topology.
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We suppose the space to be normal. Then there exists f ∈ CT -core-a.e.

(CT -ap-core, CT -ap-core-a.e.) such that f(A) = {1} and f(B) = {0}. Conse-
quently, f is discontinuous everywhere on 〈0, 1〉 × {0}. but this is impossible
because f is of Baire class 1.

3 Core Topologies Defined with Meager Sets

Analogous to the topologies defined in the previous section we can define the
topologies connected with the σ-ideal of meager sets.

Definition 3.1. A set A ⊂ R2 is I-Hash-core (I-ap-core) open if and only if,
for each point x ∈ A and for each Θ ∈ 〈0, π), the set pΘ(x) ∩ A contains a
neighborhood of x in the I-Hashimoto topology (I-density topology) on the
line pΘ(x); i.e. a set of the form G \P where G is open in the Euclidean
topology, P is a linear meager set and x ∈ G \P . (In other words pΘ(x) ∩ A
contains a set B having the Baire property, such that dI(B, x) = 1 and x ∈ B.)

Let T ′-I-Hash-core (T ′-I-ap-core) denote the family of all I-Hash-core (I-
ap-core) open sets.

Definition 3.2. A set A ⊂ R2 is core-I-a.e. (I-Hash-core-I-a.e., I-ap-core-I-
a.e.) open if and only if, for each x ∈ A, there exists a linear set H ⊂ 〈0, π)
residual on 〈0, π) such that, for all Θ ∈ H, the set pΘ(x) ∩ A contains a
neighborhood of x in the Euclidean topology (I-Hashimoto topology, I-density
topology) on the line pΘ(x).

Let T ′-core-I-a.e. (T ′-I-Hash-core-I-a.e., T ′-I-ap-core-I-a.e.) denote the
family of all core-I-a.e. (I-Hash-core-I-a.e., I-ap-core-I-a.e.) open sets.

It is easy to see that the families of sets we have just defined form topologies.
They also contain some sets without the Baire property (see [WBW]).

Theorem 3.3. The following proper inclusions hold:

T ′-core-I-a.e.
∪ 1)

⊂
2)
T ′-I-Hash-core-I-a.e.

∪ 1)
⊂
3)
T ′-I-ap-core-I-a.e.

∪ 1)

T ′-core ⊂
2)

T ′-I-Hash-core ⊂
3)

T ′-I-ap-core

The proof is analogous to that of Theorem 2.3. Only in the last part we
take the set E =

⋃∞
n=N(an, bn) where 0 < an+1 < bn+1 < an, limn→∞ bn = 0

and 0 is a point of right I-density of E.
To compare the topologies considered here with the I-density topologies on

the plane, we assume open sets have the Baire property. Thus we define the
following families of sets.
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TI -core = T ′-core ∩ B2,

T -core-I-a.e. = T ′-core-I-a.e. ∩ B2,

T -I-Hash-core = T ′-I-Hash-core ∩ B2,

T -I-Hash-core-I-a.e. = T ′-I-Hash-core-I-a.e. ∩ B2,

T -I-ap-core = T ′-I-ap-core ∩ B2,

T -I-ap-core-I-a.e. = T ′-I-ap-core-I-a.e. ∩ B2.

It is easily seen that there are proper inclusions between these families
because the sets A, B, C from Theorem 3.3 have the Baire property.

T -core-I-a.e. ⊂ T -I-Hash-core-I-a.e. ⊂ T -I-ap-core-I-a.e.

∪ ∪ ∪ (4)

TI -core ⊂ T -I-Hash-core ⊂ T -I-ap-core.

Remark 3.4. Each of the families from (4) forms a topology.

The proof is analogous to those of Lemma 2.2 and Theorem 2.3 in [WBW]
for the T -I-ap-core family.

The families from (4) will be called core topologies connected with the σ-
ideal of meager sets. Now, we compare them with the Euclidean topology,
the I-Hashimoto topology and the I-density topologies on the plane. It is
easy to see that the Euclidean topology is essentially weaker than each of the
topologies considered here.

Theorem 3.5. The strong I-density topology is not contained in any of the
core topologies connected with the σ-ideal of meager sets.

Proof. It suffices to prove that dsI2 6⊂ T -I-ap-core-I-a.e. Consider the set B
from Theorem 2.6. It is not open in the T -I-ap-core-I-a.e. topology. We shall
show that B is open in the strong I-density topology on the plane. It suffices
to prove that dsI2(A0, (0, 0)) = 0; i.e., for each pair of sequences of positive

integers {n′m}
↗
m∈N, {n′′m}

↗
m∈N, there exists a subsequence {mp}↗p∈N such that

lim sup
p

((n′mp , n
′′
mp)A0) ∩ 〈0, 1〉2 ∈ I2.

Let us take any sequence of positive integers {n′m}
↗
m∈N and {n′′m}

↗
m∈N and

fix m ∈ N. Let jm denote the smallest positive integer for which

Cjm ∩
(〈

0,
1

n′m

〉
×
〈
0,

1

n′′m

〉)
6= ∅.
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Then ((n′m, n
′′
m)Cjm) ∩ 〈0, 1〉2 6= ∅ and ajm ≤

√
2

n′m
. Let

γm = arc tg
(n′′m
n′m

tgαjm

)
, δm = arc tg

(n′′m
n′m

tg βjm

)
.

Then (n′m, n
′′
m)Cjm ⊂ sec(γm, δm). We shall show that δm − γm −−−−→m→∞ 0.

For an arbitrarily fixed m ∈ N, let a denote the length of the segment
joining the points of intersection of the line x = n′m with the x-axis and the
line pγm . Then

am = n′′m(tg βjm − tgαjm), bm = n′′m tgαjm .

By the law of sines, sin(δm − γm) =
a cos γm sin δm

a+ b
. Since

βm
αm

−−−−→
m→∞ 1, αm −−−−→m→∞ 0, βm −−−−→m→∞ 0,

we have
am
bm
−−−−→
m→∞ 0; so sin(δm − γm) −−−−→m→∞ 0.

Since 0 < δm < π
2 for each m ∈ N, we can choose a convergent subsequence

{δmp}p∈N. Let δ0 = limp→∞ δmp . Thus δ0 ∈
〈
0, π2

〉
and

lim sup
p

sec(γmpδmp) ⊂ pδ0 . (5)

Since

(n′mp , n
′′
mp)A0 ∩ 〈0, 1〉2 ⊂ (〈0, 2ajmp+1

n′mp〉 × 〈0, 1〉) ∪ sec(γmpδmp),

it follows that

lim sup
p

(n′mp , n
′′
mp)A0 ∩ 〈0, 1〉2 ⊂ lim sup

p
(〈0, 2ajmp+1

n′mp〉 × 〈0, 1〉)

∪ lim sup
p

sec(γmpδmp).

From ajmpn
′
mp ≤

√
2 and

ajmp+1

ajmp

−−−−→
p→∞ 0 we have 2ajmp+1

n′mp
−−−−→
p→∞ 0; so

the set lim supp(〈0, 2ajmp+1
n′mp〉×〈0, 1〉) is included in the segment {0}×〈0, 1〉.

Consequently, by (5), lim supp((n
′
mp , n

′′
mp)A0) ∩ 〈0, 1〉2 ∈ I2.

Corollary 3.6. The I-density topology on the plane is not contained in any
of the core topologies connected with the σ-ideal of meager sets.
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Theorem 3.7. None of the core topologies connected with the σ-ideal of meager
sets is contained in the strong I-density topology on the plane.

Proof. It is sufficient to show that TI -core 6⊂ dsI2 . The set A from Theo-
rem 2.8 is not open in the strong I-density topology, more precisely, (0, 0) is
not a strong I-density point of A. For the sequences {n}n∈N and {n3}n∈N
and any subsequences {nk}k∈N and {n3k}k∈N, we have

⋂
k∈N

⋃
l>k[(nl, n

3
l )A
′]∩

〈−1, 1〉2 ⊃ (0, 1〉2. This means that lim supk[(nkn
3
k)A′] ∩ 〈−1, 1〉2 /∈ I2. Hence

A ∈ TI -core \ dsI2 .

Corollary 3.8. None of the core topologies connected with the σ-ideal of mea-
ger sets is contained in dI × dI .

Proof. We have dI × dI ⊂ dsI2 (see [WB]); so the proof is obvious.

Corollary 3.9. The core topologies connected with the σ-ideal of meager sets
and the strong I-density topology are incomparable.

It is known (see [WBW], Th. 2.3) that the topology dI ×dI is weaker than
the T -I-ap-core topology. Consequently the topology dI × dI is weaker than
the T -I-ap-core-I-a.e. topology.

Theorem 3.10. The topology dI × dI is contained in neither the T -I-Hash-
core-I-a.e. nor the TI-core, T -core-I-a.e., T -I-Hash-core.

Proof. It is sufficient to show that dI×dI 6⊂ T -I-Hash-core-I-a.e. Change the
set from Theorem 2.13. Let E =

⋃
n∈N(an, bn) ∪ (−∞, 0〉 where

⋃
n∈N(an, bn)

is an interval set such that dI(E, 0) = 1. Put A = E × R. Then

A ∈ dI × dI \ T -I-Hash-core-I-a.e.

It is also known (see [WBW], Cor. 2.5) that the T -I-ap-core topology
is not contained in the I-density topology on the plane. Consequently, the
T -I-ap-core-I-a.e. is not contained in the I-density topology on the plane.

Theorem 3.11. The I-density topology on the plane is stronger than the T -
I-Hash-core-I-a.e., T -core-I-a.e. and TI-core topologies.

Proof. It is sufficient to show that T -I-Hash-core-I-a.e. ⊂ dI2 . Assume there
exists a set A such that A ∈ T -I-Hash-core-I-a.e. and there exists a point
(x0, y0) ∈ A such that dI2(A, (x0, y0)) 6= 1. We can assume that x0 = y0 =

0. Then there exists a sequence {nk}↗k∈N of positive integers such that, for

any of its subsequences {nkm}
↗
m∈N, we have B =

⋂∞
l=1

⋃∞
m=l(nkmnkm)A′ ∩
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〈−1, 1〉2 /∈ I2. Obviously, B has the Baire property; so it is residual on some
ball K((x, y), δ). We can assume that (0, 0) /∈ K((x, y), δ) and y > 0.

Let pΘ1
, pΘ2

, where Θ1 < Θ2, are lines tangent to the ball K((x, y), δ)
passing through the point (0, 0). By the Kuratowski-Ulam theorem ([O], p.56),
there exists a set H1 ⊂ (Θ1, Θ2) residual on this interval and such that, for Θ ∈
H1, the set BΘ = K((x, y), δ)∩B∩pΘ is residual on the interval K((x, y), δ)∩
pΘ. We shall denote this interval by (aΘ, bΘ). Since A ∈ T -I-Hash-core-I-a.e.
and (0, 0) ∈ A, there exists a set H2 ∈ 〈0, π) residual on this interval and such
that, for Θ ∈ H2, there exist εΘ > 0 and a set KΘ ⊂ pΘ which is meager on
this line and such that (−εΘ, εΘ) \KΘ ⊂ A ∩ pΘ.

Let now Θ ∈ H1∩H2. We notice that there exists n0 ∈ N such that nεΘ >
bΘ for any n > n0. Since (−εΘ, εΘ) \KΘ ⊂ A, we have (aΘ, bΘ) \nKΘ ⊂ nA
for n > n0. Let p ∈ (aΘ, bΘ) ∩B \nKΘ. Then p ∈ (aΘ, bΘ) ∩B = BΘ; so p ∈
(nkm , nkm)A′ for infinitely many m ∈ N, which means that

(
1

nkm
, 1
nkm

)
p /∈ A

for infinitely many m ∈ N.

On the other hand, p ∈ (aΘ, bΘ) \nKΘ ⊂ nA for n > n0. Thus
(
1
n ,

1
n

)
p ∈ A

for each n > n0. This contradiction ends the proof.

Theorem 3.12. None of the core topologies connected with the σ-ideal of
meager sets is contained in the I-Hashimoto topology on the plane (O∗I ).

The proof follows from Theorem 3.7 because O∗I ⊂ dsI2 .

Theorem 3.13. The I-Hashimoto topology on the plane is weaker than the
T -I-Hash-core-I-a.e. and the T -I-ap-core-I-a.e. topologies.

Proof. As in the proof of Theorem 2.15, O∗I ⊂ T -I-Hash-core-I-a.e. by using
the Kuratowski-Ulam theorem for the polar coordinates.

Theorem 3.14. The I-Hashimoto topology on the plane is not contained in
any of the topologies: TI-core, T -core-I-a.e., T -I-Hash-core, T -I-ap-core.

Proof. It is enough to show that O∗I 6⊂ T -core-I-a.e. and O∗I 6⊂ T -I-ap-core.
The set B from Theorem 2.3 is open in O∗I and is not open in the T -core-I-
a.e. The set A from the same theorem is open in O∗I and is not open in the
T -I-ap-core topology.

The results of Theorems and Corollaries 3.5–3.14 are presented in the fol-



202 Grażyna Horbaczewska

lowing scheme.

O
6∩
∗

I

T -core-I-a.e. ⊂
dI×dI
6∩

O
∩
∗

I
dI2
∪

T -I-Hash-core-I-a.e. ⊂
dsI2
∩

T -I-ap-core-I-a.e.

∪ ∪ ∪
TI -core
6∩
dsI2

6∩
O∗I

⊂ T -I-Hash-core ⊂ T -I-ap-core.
∪

dI×dI
6∪
O∗
I

6∩
dI2

We can see that only the results of the comparison of the I-density topologies
with the core topologies connected with the σ-ideal of meager sets differ from
the analogous ones obtained in the previous section.

Now, we present theorems on the regularity of the core topologies connected
with the σ-ideal of meager sets.

Theorem 3.15. The TI-core topology is not regular.

The proof is analogous to that of Theorem 2.17.

Theorem 3.16. The T -core-I-a.e. topology is not regular.

Proof. Consider a sequence of sets Qk,l where k ∈ N ∪ {0}, l ∈ {1, . . . , 2k}
and Qk,l =

{
(r,Θ) : r ∈

(
1

2k+1
1
2k

)
, Θ ∈

(
l−1
2k

π
2

l
2k

π
2

)}
. Let us form a sequence

{Kn}n∈N by puttingKn = Qk,l where n =
∑k−1
i=0 2i+l. Choose points pn ∈ Kn,

n ∈ N, in such a way that any three of them are not colinear. Let F = {pn :
n ∈ N}. Then F ′ = R2 \F ∈ T -core-I-a.e. and (0, 0) /∈ F .

Let G,G0 ∈ T -core-I-a.e., (0, 0) ∈ G0 and F ⊂ G. We shall show that
G0 ∩G 6= ∅. Let rp, Θp denote the polar coordinates of p. Put p̂n = (1, Θpn)
for n ∈ N. From the construction of F it follows that the set {p̂k : k ≥ n} is

dense on the arc L =
{

(r,Θ) : r = 1, Θ ∈
(
0, π2

)}
. Hence, for each n ∈ N, the

set {Θpk : k ≥ n} is dense on
(
0, π2

)
.

Let Ĝ = {(1, Θp) : p ∈ G}. Since G ∈ T -core-I-a.e., it contains, with every
point pn, a neighborhood An of pn in the T -core-I-a.e. topology (we may

assume that An ⊂ Kn). Then Ĝ contains, with every point p̂n, an open arc

containing p̂n. We denote that arc by Ân. Then
⋃
k≥n Âk is residual on L for

every n ∈ N and so is Â = lim supn Ân. Thus the set U = {Θ : (1, Θ) ∈ Â} is
residual on

〈
0, π2

)
.

Since G0 is a neighborhood of (0, 0) in the T -core-I-a.e. topology, G0

contains neighborhoods of (0, 0) in the Euclidean topology on each direction
from

(
0, π2

)
\P where P is some set of the first category.
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Let Θ ∈ U \P . The set G0 contains a segment IΘ with center (0, 0),
IΘ ⊂ pΘ. Since Θ ∈ U , the line pΘ intersects infinitely many sets An. Si-
multaneously, the segment IΘ is disjoint from a finite quantity of the rings{

(r,Θ) : r ∈
(

1
2k+1

1
2k

)
, Θ ∈ 〈0, 2π)

}
; so IΘ intersects infinitely many sets An.

Hence G0 ∩G 6= ∅ because IΘ ⊂ G0 and An ⊂ G for each n ∈ N.

Theorem 3.17. The T -I-Hash-core, T -I-Hash-core-I-a.e., T -I-ap-core and
T -I-ap-core-I-a.e. topologies are not regular.

Proof. First consider the T -I-Hash-core topology. Let F =
⋃
w∈Q+

S((0, 0), w).

Then F is closed in the T -I-Hash-core topology, and (0, 0) /∈ F .
Let G0, G ∈ T -I-Hash-core. Then they have the Baire property and they

are of the second category on the plane. We assume that (0, 0) ∈ G0 and
F ⊂ G. We shall show that G ∩ G0 6= ∅. The set G0 is residual on a certain
ball K. This ball has common points with F and contains their neighborhoods
in the T -I-Hash-core topology, included in G and of the second category on
the plane. Thus G ∩G0 6= ∅.

This proof also shows that the T -I-Hash-core-I-a.e., T -I-ap-core and T -I-
ap-core-I-a.e. topologies are not regular. (F is closed in these topologies and
non-empty open sets have the Baire property and are of the second category
on the plane.)

We can consider the families of continuous functions with respect to the
core topologies connected with the σ-ideal of meager sets.

The following inclusions hold.

CdI2
∪

CT -core-I-a.e. ⊂ CT -I-Hash-core-I-a.e. ⊂ CT -I-ap-core-I-a.e.

∪ ∪ ∪
CTI -core ⊂ CT -I-Hash-core ⊂ CT -I-ap-core

Since CdI2 ⊂ B1 (see [PWW]), the functions belonging to CTI -core, CT -core-I-a.e.,
CT -I-Hash-core, CT -I-Hash-core-I-a.e. are of Baire class 1. The functions belong-
ing to CT -I-ap-core are separate I-approximately continuous. By Theorem 3.1
[BLW], they are at most of Baire class 2.
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logue of the density topology , Fund. Math. , 125, (1985), 167–173.
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