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A NONSTANDARD PROOF OF THE
JORDAN CURVE THEOREM

Abstract

We give a nonstandard variant of Jordan’s proof of the Jordan curve
theorem which is free of the defects his contemporaries criticized and
avoids the epsilontic burden of the classical proof. The proof is self-
contained, except that the Jordan theorem for polygons is taken for
granted.

Introduction

The Jordan curve theorem [5] (often abbreviated as JCT in the literature) was
one of the starting points in the modern development of topology (originally
called Analysis Situs). This result is considered difficult to prove, at least
compared to its intuitive evidence.

C. Jordan [5] considered the assertion to be evident for simple polygons
and reduced the case of a simple closed continuous curve to that of a polygon
by approximating the curve by a sequence of suitable simple polygons.

Although the idea appears natural to an analyst it is not so easy to carry
through. Jordan’s proof did not satisfy mathematicians of his time. On the
one hand it was felt that the case of polygons also needed a proof based on
clearly stated geometrical principles, on the other hand his proof was consid-
ered incomplete. (See the criticisms formulated in [12] and in [9].)
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If one is willing to assume slightly more than mere continuity of the curve,
then much simpler proofs (including the case of polygons) are available (see
Ames [1] and Bliss [3] under restrictive hypotheses).

O. Veblen [12] is considered the first to have given a rigorous proof which,
in fact, makes no use of metrical properties, or, in the words of Veblen: We
accordingly assume nothing about analytic geometry, the parallel axiom, con-
gruence relations, nor the existence of points outside a plane. His proof is
based on the incidence and order axioms for the plane and the natural topol-
ogy defined by the basis consisting of nondegenerate triangles. He also defines
simple curves intrinsically as specific sets without parametrizations by inter-
vals of the real line. He finally discusses how the introduction of one additional
axiom, existence of a point outside the plane, allows him to reduce his result to
the context Jordan was working in. Veblen also gave a specific proof for poly-
gons based on the incidence and order axioms exclusively (see [11]) which was
later criticized as inconclusive by H. Hahn [4] who published his own version of
a proof based on Veblen’s incidence and order axioms of the plane (which, by
the way, are equivalent to the incidence and order axioms of Hilbert’s system).

Jordan’s proof in his Cours d’ analyse of 1893 is elementary as to the tools
employed. Nevertheless the proof extends over nine pages and, as mentioned
above, cannot be considered complete. We are interested here in this proof.
It depends on some facts for polygons and an approximation argument. It
is, therefore, a natural idea to use nonstandard arguments to eliminate the
epsilontic burden of the approximation. There is an article by L. Narens [7]
in which this point of view is adopted. Unfortunately, some part of this proof
has been criticized recently as inconclusive and, in any case, the reasoning is
not essentially shorter than, or as elementary as, Jordan’s proof.

It is certainly true that not all classical arguments can be replaced in some
useful or reasonable way by simpler nonstandard arguments. But as we shall
show it is possible to simplify the approximation argument specific to Jordan’s
proof. We shall follow the proof quite closely but take a somewhat different
approach when proving path-connectedness. That nonstandard analysis can
even give some additional insight into the geometric problem is manifest from
the proof by N. Bertoglio and R. Chuaqui [2] which avoids polygons and ap-
proximations entirely by looking at a nonstandard discretization of the plane
and reducing the problem to a combinatorial version of the JCT proved by L.
N. Stout [10]. This reduction of the problem to a (formally) discrete one is
interesting and leads to a proof which establishes a link to a context totally
different from Jordan’s.

As a curiosity we note in passing that Jordan speaks of infinitesimals in
his proof but it is only a figure of speech for a number which may be chosen
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as small as one wishes or for a function which tends to zero.

For reference we state the JCT.

The Jordan Curve Theorem. A simple closed continuous curve K in the
plane separates its complement into two open sets of which it is the common
boundary ; one of them is called the outer (or exterior) region Kext which is
an open, unbounded, path-connected set and another set called the inner (or
interior) region Kint which is an open, simply path-connected, bounded set.

Notation

By simple (polygon, curve) we shall always mean one having no self-intersec-
tions. A broken line will be a curve consisting of finitely (or hyperfinitely – in
a nonstandard domain) many nonzero segments.

The reader is assumed to have a basic knowledge of nonstandard analysis. 1

In what follows we shall always identify reals and points from the standard
domain with their “asterisk” images in the nonstandard domain (although
the standard curve K will be distinguished from ∗K ). We shall understand
the words point, polygon, real, curve etc. as meaning internal objects in the
nonstandard domain unless otherwise specified, for instance by the adjective
“standard”. Hopefully this way of exposition will be equally understandable
by both IST followers and those who prefer the model–theoretic version of
nonstandard analysis (although the latter should understand as hyperreals,
hyperpoints etc. what we will call reals, points etc.).

Plan of the Proof

Starting the proof of the Jordan theorem, we consider a standard simple closed
curve K = {K(t) : 0 ≤ t < 1} where K : R→ R2 is a (standard) continuous
1-periodic function which is injective modulo 1 (i. e. K(t) = K(t′) implies
t− t′ ≡ 0 mod 1 ). From K(t) ≈ K(t′) it follows then that t ≈ t′ mod 1 .

Section 1. Working in a fixed nonstandard domain, we infinitesimally
approximate K by a simple (nonstandard) polygon Π, using a construction,
essentially due to Jordan, of consecutively cutting off loops from an originally
self-intersecting approximation.

Section 2. We define the interior region Kint as the open set of all standard
points which belong to Πint but do not belong to the monad of Π. (The Jordan

1 We refer to Lindstrøm [6] and Nelson [8].
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theorem for polygons is taken for granted; this attaches definite meaning to
Πint and Πext in the nonstandard domain.) Kext is defined accordingly.

Section 3. We prove that any point of K is a limit point for both Kint

and Kext ; this also implies the non-emptiness of the regions.

Section 4. To prove that Kint is path-connected we define a simple non-
standard polygon Π′ which lies entirely within Πint, does not intersect K,
and contains all (standard) points of Kint. This easily implies the path-
connectedness.

1 Approximation by a Simple Polygon

We say that a polygon Π = P1P2 . . . PnP1 (n may be infinitely large) ap-
proximates K if there is an internal sequence of (perhaps nonstandard) reals
0 ≤ t1 < t2 < . . . < tn < 1 such that

(†) Pi = K(ti) for 1 ≤ i < n, and

(‡) tn − t1 ≥ 1
2 and ti+1 − ti ≤ 1

2 for all 1 ≤ i < n .

We say that Π approximates K infinitesimally if in addition ∆(Π) ≈ 0,
where ∆(Π) = max1≤k≤n |PkPk+1| . (It is understood that Pn+1 = P1 .)

Lemma 1. Let Π = P1 . . . PnP1 approximate K infinitesimally. Then

(i) n is infinitely large, ti+1 ≈ ti for all 1 ≤ i < n, t1 ≈ 0, and tn ≈ 1 ,

(ii) there is an infinitesimal ε > 0 such that ∗K is in the ε-neighborhood
of Π and Π is in the ε-neighborhood of ∗K and

(iii) if P ≈ Q are on Π , then precisely one of the two arcs Π is decomposed
into by these points must be included in the monad of P .

Proof.(i) The requirement (‡) does not allow the hyperreals tk to collapse
into a sort of infinitesimal “cluster” or into a pair of them around 0 and 1,
which are compatible with ∆(Π) ≈ 0 alone. (Note that the injectivity modulo
1 of ∗K is used in the proof that t1 ≈ 0 and tn ≈ 1 .)

(ii) δi = maxti≤t≤ti+1
|K(t)−K(ti)| is infinitesimal for each 1 ≤ i ≤ n

and therefore ε = 2 max1≤i≤n δi is infinitesimal and proves the assertion.

(iii) Since all edges of Π are infinitesimal by (i), we may assume that P
and Q are vertices, say P = Pi and Q = Pj . Then either ti ≈ tj or ti ≈ 0
while tj ≈ 1. (Indeed otherwise ∗K would have a self-intersection.) Consider
the first case. The arc determined by ti ≤ t ≤ tj is clearly within the monad
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of P. To see that the other arc is not included in the monad consider any
tk which is 6≈ any of ti, 0, 1. Then Pk 6≈ P as otherwise K would have a
self-intersection.

Lemma 2. There is a simple polygon which infinitesimally approximates K .

Proof.Taking ti = i
n for some infinitely large n results in a polygon which

infinitesimally approximates K . But it may have self-intersections.
Assume two non-adjacent sides intersect, i. e. PiPi+1 intersects PjPj+1

for some 1 ≤ i < j − 1 < n. By the triangle inequality the shorter of the
segments PiPj and Pi+1Pj+1 is not longer than the longer of the segments
PiPi+1 and PjPj+1 which is bounded in length by ∆(Π) .

Let us assume that |PiPj | ≤ |Pi+1Pj+1| . We now replace in P1 . . . PnP1

the arc Pi . . . Pj by a new side PiPj if tj − ti ≤ 1
2 which ensures that (‡) is

satisfied for the new polygon. If tj− ti > 1
2 we replace the complementary arc

Pj . . . PnP1 . . . Pi by a new side PjPi such that again (‡) is satisfied. The
case |PiPj | > |Pi+1Pj+1| is treated in the same way. (The dots . . . indicate
that all indices in between are involved.)

In all the cases the resulting polygon Πnew still infinitesimally approxi-
mates K because (†) and (‡) are satisfied (for the accordingly reduced system
of parameter values ti ) and ∆(Πnew) ≤ ∆(Π) .

This (internal) procedure does not necessarily reduce the number of self-
intersections because for the one which is removed there may be others ap-
pearing on the newly introduced side of the reduced polygon Πnew. But the
number of vertices of Πnew is strictly less than that of Π. Therefore the in-
ternal sequence of polygons arising from Π by iterated applications of this
reduction procedure eventually ends with a simple polygon Π′ which approx-
imates K infinitesimally.

2 Definition of the Interior and Exterior Region

Let us fix for the remainder a simple (nonstandard) polygon Π = P1P2 . . . PnP1

which approximates K infinitesimally.
Let Kint be the open standard set of all standard points A ∈ Πint which

have a non-infinitesimal distance from Π. We call this the interior region of
the curve K. In the same way we define the open standard set Kext of all
standard points from Πext which have non-infinitesimal distance from Π and
call this the exterior region of the curve K .

Omitting rather elementary proofs that Kint is bounded, Kext is un-
bounded, and the complement of the union of both sets equals the curve K,
let us prove that for A ∈ Kint and B ∈ Kext any standard continuous arc
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α from A to B intersects K. Indeed ∗α must intersect Π in some point P
because it starts in Πint and ends in Πext. (The JCT, transferred to the non-
standard domain, is applied.) By Lemma 1, and the fact that K is compact,
there is a (standard) point P ′ ∈ K infinitesimally close to P ∈ Π. As K and
the arc are standard and closed, P ′ is in K ∩ α .

3 The Curve is the common Boundary

We prove that each (standard) point of K is a limit point for both the interior
region Kint and the exterior region Kext ; this clearly implies that the interior
region is not empty (that the exterior region is not empty is trivial).

By the choice of Π and the definition of Kint and Kext, it suffices to prove
the following: given a vertex A on Π, , then for any square S with center in
A and non-infinitesimal (possibly nonstandard) size the domain Sint contains
points in both Πint and Πext which have non-infinitesimal distance from Π.
We prove this assertion for Πint only; the proof for the exterior region is
similar.

Let B be another vertex of Π chosen such that the distance |AB| is non-
infinitesimal. We can assume that B lies in Sext and has non-infinitesimal
distance from S, and in addition S itself does not contain any vertex of Π.
Let α and β be the simple broken lines – connecting A with B – into which
Π is partitioned by the vertices A and B .

The interior region Πint is decomposed by S into a number of polygonal
domains. Let Π′ be the polygon which bounds that domain among them the
boundary of which contains A. Then Π′ consists of parts of the broken lines
α and β and connected parts of S. Since A is the only common point of α
and β except for B (which is far away from S ), going around Π′ we find a
connected “interval” C1C2 of S (which may occasionally contain one or more
of the four vertices of S ) such that the points C1 and C2 belong to different
curves among α, β. Since C1C2 is also a part of Π′, any inner point E of
C1C2 belongs to Πint .

Consider a point E in C1C2 which has equal distance d = d(E,α) −
d(E, β) from both α and β. Note that d is not infinitesimal. Indeed other-
wise there are points A′ ∈ α and B′ ∈ β such that A′ ≈ E ≈ B′, which is
impossible by Lemma 1(iii) as S has non-infinitesimal distance from both A
and B . Thus E ∈ Πint has a non-infinitesimal distance from Π, as required.



Jordan Curve Theorem 167

4 Path-Connectedness

Let A and B be two (standard) points in Kint . We have to prove that there
is a (standard) broken line joining A with B and not intersecting K. This is
based on the following lemma.

Lemma 3. There exists a simple polygon Π′ lying entirely within Πint, con-
taining no point of ∗K in Π′int, and containing every standard point of Kint

in Π′int .

The lemma clearly implies the result: indeed, by the JCT for polygons, A
can be connected to B by a broken line which lies within Π′int therefore does
not intersect ∗K. By Transfer we get a standard broken line which connects
A and B and does not intersect K, as required.

Moreover, the lemma implies the simple path-connectedness of Kint. In-
deed we have to prove that every standard simple closed curve K1 lying en-
tirely within Kint can be appropriately contracted into a point. To see this
note that ∗K1 is evidently situated within Π′int, which is the interior of a
simple polygon, so that ∗K1 has the required property in the nonstandard
domain by the JCT for polygons. It remains to apply Transfer.

As for the path-connectedness of the exterior region Kext, we choose a
point in Kint and apply an inversion with center in this point. The interior
region becomes a neighborhood of ∞ and the exterior region becomes the
interior region of the image of the curve. To this we apply the result above.

Proof of Lemma 3. Let an infinitesimal ε > 0 be defined as in Lemma 1(ii),
so that K and ∗K are included in the ε-neighborhood of Π .

Note that each side of Π is infinitesimal by definition. For any side PQ
of Π we draw a rectangle of the size (|PQ|+ 4ε)× (4ε) so that the side PQ
lies within the rectangle at equal distance 2ε from each of the four sides of
the rectangle.

Let us say that a point E is the inner intersection of two straight segments
σ and σ′ iff E is an inner point of both σ and σ′, and σ ∩ σ′ = {E}. For
any point C ∈ Πint which is either a vertex of some of the rectangles above,
or an inner intersection of sides of two different rectangles in this family let
CC ′ be a shortest straight segment which connects C with a point C ′ on
Π ; obviously each CC ′ is infinitesimal.

Let us fix a standard point A in Kint . The parts of the rectangles lying
within Π and the segments CC ′ decompose the interior region Πint into a
(possibly hyperfinite) number of polygonal domains. Let the polygon Π′ be
the boundary of the domain containing A. (Note that all the lines involved
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lie in the monad of Π, hence none of them contains A .) It remains to prove
that Π′int also contains any other standard point B of Kint .

Note that each side of Π′ is a part of either a side of one of the rectangles
covering Π or of a segment of the form CC ′ — therefore it is infinitesimal.

Let Π′ = C1C2 . . . Cn. We observe that by construction, for any k =
1, ..., n, there is a shortest segment σk = CkC

′
k, connecting Ck with a point

C ′k in Π which does not intersect Π′int . Moreover, by the triangle equality,
the segments σk have no inner intersections. Therefore any two of them
intersect each other only in such a manner that either the only intersection
point is the common endpoint C ′k = C ′l or one of them is an end-part the
other one. Then the segments σk decompose the ring-like polygonal region
R between Π and Π′ into n open domains Dk (k = 1, ..., n) defined as
follows.

If σk and σk+1 are disjoint ( σn+1 equals σ1 ), then the border of Dk

consists of σk, σk+1, the side CkCk+1 of Π′, and that arc Ĉ ′kC
′
k+1 of Π

which does not contain any of the points C ′l as an inner point.
If σk and σk+1 have the common endpoint Ck = Ck+1 and no more

common points, then the border shrinks to σk, σk+1, and CkCk+1. If, finally,
one of the segments is included in the other, then Dk is empty.

If now B ∈ Π′ext , then B belongs to one of the domains Dk. If this is
a domain of the first type, then the infinitesimal simple arc C ′kCkCk+1C

′
k+1

separates A from B within Π, which easily implies, by Lemma 1(iii), that
either A or B belongs to the monad of Π, which contradicts the choice of
the points. If Dk is a domain of second type, then the barrier accordingly
shrinks, leading to the same contradiction.
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