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EXTENSION OF CONTINUOUS
FUNCTIONS TO BAIRE-ONE FUNCTIONS

Abstract

We introduce the notion of B1-retract and investigate the connection
between B1- and H1-retracts.

1 Introduction.

Recall that a function f : X → Y between topological spaces X and Y belongs
to the first Baire class or is a Baire-one function, if it is a pointwise limit of
a sequence of continuous functions. A function f belongs to the first Lebesgue
class or is a Lebesgue-one function if f−1(F ) is a Gδ-set in X for every closed
set F in Y . We shall denote by B1(X,Y ) (H1(X,Y )) the collection of all
functions of the first Baire (Lebesgue) class from X to Y .

K. Kuratowski [9, p. 445] proved that every continuous function f : E → R
on an arbitrary subset E of a metric space X can be extended to a Lebesgue-
one function on the whole space. According to Lebesgue-Hausdorff Theorem
[9, p. 402] the extension is also a Baire-one function.

O. Kalenda and J. Spurný [7] showed that if E is a Lindelöf hereditarily
Baire subspace or E is a Lindelöf Gδ-subspace of a completely regular space
X then every Baire-one function f : E → R can be extended to a Baire-one
function on the whole space.

It was proved in [13] that any Baire-one function with values in a σ-
metrizable space with some additional conditions and defined on a Lindelöf
Gδ-subspace of a normal space can be extended to a Baire-one function on the
whole space.
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The question about the extension of the class of range spaces of extendable
functions naturally arises. In [8] the notion of H1-retract was introduced. A
subset E of a topological space X is called an H1-retract if there exists a
Lebesgue-one function r : X → E such that r(x) = x for all x ∈ E. It was
shown in [8] that E is an H1-retract of X iff for any topological space Y and
for any continuous function f : E → Y there exists an extension g ∈ H1(X,Y )
of f . The following result was established in [8].

Theorem 1.1. [8, Corollary 3.3] A set E is an H1-retract of a completely
metrizable space X if and only if E is a Gδ-set in X.

In this paper we introduce the notion of B1-retract and prove several of its
properties. Further, using Theorem 1.1 and the generalization of Lebesgue-
Hausdorff Theorem, we find out that B1-retracts and H1-retracts are tightly
connected in many cases. And in the last section we give two examples which
show that even for subsets of the plane R2 the notions of retract, H1-retract
and B1-retract are different.

2 B1-retracts and their properties.

Recall [1] that a subset E of a topological space X is said to be a retract of
X if there exists a continuous function r : X → E such that r(x) = x for all
x ∈ E. The function r is called a retraction of X onto E. It is well-known
that a set E ⊆ X is a retract of X if and only if for any topological space Y
every continuous function f : E → Y can be extended to a continuous function
g : X → Y.

We call a subset E of a topological space X a B1-retract of X if there exists
a Baire-one function r : X → E such that r(x) = x for all x ∈ E. We call the
function r a B1-retraction of X onto E.

Note that a composition of a continuous function and a Baire-one function
is a Baire-one function. This fact and the definition of a B1-retract immedi-
ately imply the following proposition.

Proposition 2.1. Let X be a topological space. A set E ⊆ X is a B1-retract
of X if and only if for any topological space Y every continuous function
f : E → Y can be extended to a Baire-one function g : X → Y .

A subset A of a topological space X is called a regular Gδ-set [12] if there
exists a sequence (Gn)∞n=1 of open sets in X such that

A =

∞⋂
n=1

Gn =

∞⋂
n=1

Gn.



Extension of continuous functions 151

We say that a topological space X has a regular Gδ-diagonal if its diagonal
∆ = {(x, x) : x ∈ X} is a regular Gδ-set in X ×X.

Obviously, every regular Gδ-diagonal is closed Gδ-set in X×X. Note that
every space with a Gδ-diagonal is Hausdorff.

Proposition 2.2. Let X be a topological space with a regular Gδ-diagonal and
E be a B1-retract of X. Then E is a Gδ-set in X.

Proof. Since the diagonal ∆ is regular Gδ-set, it can be represented as ∆ =
∞⋂
n=1

Gn =
∞⋂
n=1

Gn, where (Gn)∞n=1 is a decreasing sequence of open sets in

X ×X. Let r : X → E be a B1-retraction of X onto E. Consider a function
h : X → X ×X, h(x) = (r(x), x). Then h ∈ B1(X,X ×X) and E = h−1(∆).
Let (hn)∞n=1 be a sequence of continuous functions such that hn(x)→ h(x) for
every x ∈ X. We claim that

h−1(∆) =

∞⋂
m=1

∞⋃
n=m

h−1n (Gm).

Indeed, let x ∈ h−1(∆) and m ∈ N. Then h(x) ∈ Gm. Since hn(x) → h(x),
there exists a number n ≥ m such that hn(x) ∈ Gm. Now let x belongs to
the right side of the equality. Then there exists a sequence (nm)∞m=1 such that
nm ≥ m and hnm

(x) ∈ Gm for every m ∈ N. Assume that h(x) 6∈ ∆. Then
there exists a number m0 such that h(x) 6∈ Gm0

. Since hn(x) → h(x), there
exists a number n0 ≥ m0 such that hn(x) 6∈ Gm0

for all n ≥ n0. In particular,
hnn0

(x) 6∈ Gm0
since nn0

≥ n0. Taking into account that Gn0
⊆ Gm0

, we
conclude hnn0

(x) 6∈ Gn0 , a contradiction. Hence, h(x) ∈ ∆.

Since Gm is an open set in X × X for every m and hn is continuous for
every n, the set E = h−1(∆) is Gδ in X.

Notice that a B1-retract, in general, is not a Gδ-set. For example, let
X be a space of all functions x : [0, 1] → [0, 1] equipped with a topology of
pointwise convergence, x be an arbitrary point from X and E = {x}. Since X
is compact and non-metrizable, the diagonal of X is not a Gδ-set [4, p. 264],
consequently, it is not a regular Gδ-set, and E is not a Gδ-set in X. But,
clearly, E is a retract (and, therefore, E is a B1-retract) of the space X.

In connection with the previous remark the following open question natu-
rally arises.

Question 2.3. Do there exist a Hausdorff space X with a Gδ-diagonal, but
without a regular Gδ-diagonal, and a B1-retract of X, which is not a Gδ-set?
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It is well-known that every retract of a connected topological space is also
a connected space. The following result states that the same is true for B1-
retracts.

Proposition 2.4. Let X be a connected topological space and E be a B1-
retract of X. Then E is a connected space.

Proof. Let r : X → E be a B1-retraction of X onto E and (rn)∞n=1 be a
sequence of continuous functions rn : X → E such that rn(x) → r(x) for
every x ∈ X.

Assume the contrary. Then E = E1 tE2, where E1 and E2 are open in E
non-empty sets. Since rn is a continuous function and X is a connected space,
the set Bn = rn(X) is connected for every n. Then Bn ⊆ E1 or Bn ⊆ E2 for
every n ∈ N. Choose any x ∈ E1. Then rn(x) → r(x) = x. Since E1 is an
open set in E, there exists a number n1 such that rn(x) ∈ E1 for all n ≥ n1.
Then rn(x) ∈ Bn∩E1, that is, Bn ⊆ E1 for all n ≥ n1. Analogously, it can be
shown that there exists a number n2 ∈ N such that Bn ⊆ E2 for all n ≥ n2.
Hence, Bn ⊆ E1 ∩ E2 for all n ≥ max{n1, n2}, a contradiction.

A topological space Y is called an equiconnected space [3] if there exists a
continuous function γ : Y × Y × [0, 1] → Y , which for every y′, y′′ ∈ Y and
t ∈ [0, 1] satisfies the following properties:

(i) γ(y′, y′′, 0) = y′,
(ii) γ(y′, y′′, 1) = y′′,
(iii) γ(y′, y′, t) = y′.
We need the following auxiliary fact from [13].

Lemma 2.5. [13, Lemma 2.1] Let X be a normal space, Y be an equicon-
nected space, (Fi)

n
i=1 be disjoint closed sets in X and gi : X → Y be a con-

tinuous function for every 1 ≤ i ≤ n. Then there exists a continuous function
g : X → Y such that g(x) = gi(x) on Fi for every 1 ≤ i ≤ n.

Proof. The proof is by induction on n. Let n = 2. Since F1 and F2 are
disjoint and closed, by Urysohn’s Lemma [4, p. 41] there exists a continuous
function ϕ : X → [0, 1] such that ϕ(x) = 0 on F1 and ϕ(x) = 1 on F2.
The space Y is equiconnected, therefore there exists a continuous function
γ : Y × Y × [0, 1]→ Y , which satisfies (i) – (iii). Let

g(x) = γ(g1(x), g2(x), ϕ(x))

for every x ∈ X. Clearly, g : X → Y is continuous. If x ∈ F1, then ϕ(x) = 0
and g(x) = g1(x). If x ∈ F2, then ϕ(x) = 1 and g(x) = g2(x).
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Assume the lemma is true for all 1 ≤ k < n. We will prove it for k = n.
According to the assumption, there exists a continuous function g̃ : X → Y

such that g̃|Fi
= gi for every 1 ≤ i < n. Since F =

n−1⋃
i=1

Fi and Fn are

disjoint and closed in X, by the assumption there exists such a continuous
function g : X → Y that g|F = g̃ and g|Fn

= gn. Then g|Fi
= gi for every

1 ≤ i ≤ n.

We call a subset A of a topological space X an ambiguous set if it is
simultaneously Fσ and Gδ in X. Recall that a topological space X is called
perfectly normal if it is normal and every closed subset of X is a Gδ-set.

Theorem 2.6. Let X be a perfectly normal space, E ⊆ X be an equiconnected

space, E =
∞⋃
n=1

En, and the following conditions hold:

(1) En ∩ Em = Ø if n 6= m;
(2) En is an ambiguous set in E for every n ∈ N;
(3) En is a B1-retract of X for every n ∈ N;
(4) E is a Gδ-set in X.
Then E is a B1-retract of X.

Proof. From the condition (2) and [9, p. 359] it follows that for every n ∈ N
there exists an ambiguous set Cn in X such that Cn ∩ E = En. Let D1 = C1

and Dn = Cn \
⋃
k<n

Ck if n ≥ 2. Then Dn is an ambiguous set for every n.

Moreover, Dn are disjoint sets and Dn ∩E = En for every n ∈ N. Since X \E
is an Fσ-set in X, there exists a sequence (Fn)∞n=1 of closed subsets of X such

that X \E =
∞⋃
n=1

Fn. Let X1 = F1∪D1, and Xn = (Fn∪Dn)\ (
⋃
k<n

(Fk∪Dk))

if n ≥ 2. Obviously, Xn is an ambiguous set in X for every n, Xn ∩Xm = Ø

if n 6= m, and X =
∞⋃
n=1

Xn.

We will show that Xn ∩ E = En for every n ∈ N. Indeed, if x ∈ Xn ∩ E,
then

x ∈ (Fn ∪Dn) ∩ E = (Fn ∩ E) ∪ (Dn ∩ E) = Dn ∩ E = En.

If x ∈ En, then x ∈ Dn∩E, therefore x ∈ Dn and x 6∈ Fm for all m. Moreover,
x 6∈ Dk for all k < n, since Dn ∩Dk = Ø if n 6= k. Hence, x ∈ Xn ∩ E.

According to (3), there exists a sequence of B1-retractions rn : X → En.
Let r(x) = rn(x) if x ∈ Xn. We will show that r ∈ B1(X,E).

For every n ∈ N there exists a sequence (rn,m)∞m=1 of continuous functions
rn,m : X → En such that lim

m→∞
rn,m(x) = rn(x) for every x ∈ X. Notice that
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lim
m→∞

rn,m(x) = r(x) on Xn. The set Xn is Fσ, therefore, for every n there

exists an increasing sequence (Bn,m)∞m=1 of closed subsets Bn,m of X such that

Xn =
∞⋃
m=1

Bn,m. Let An,m = Ø if n > m, and An,m = Bn,m if n ≤ m. Then

Lemma 2.5 implies that for every m ∈ N there exists a continuous function
gm : X → E such that gm|An,m

= rn,m since a family {An,m : n ∈ N} is finite
for every m ∈ N.

It remains to prove that gm(x) → r(x) on X. Fix x ∈ X. Then x ∈ Xn

for some n ∈ N. The sequence (An,m)∞m=1 is increasing, and, in consequence,
there exists m0 such that x ∈ An,m for every m ≥ m0. Then gm(x) = rn,m(x)
for all m ≥ m0. Hence, lim

m→∞
gm(x) = lim

m→∞
rn,m(x) = r(x). Therefore,

r ∈ B1(X,Y ).
It is easy to see that r(x) = x for all x ∈ E. Hence, r is a B1-retraction of

X onto E.

3 The connection between B1-retracts and H1-retracts.

Recall that a family A of subsets of a topological space X is discrete if every
point x ∈ X has a neighbourhood U that intersects at most one of the sets
A ∈ A. A family A = (Ai : i ∈ I) of subsets of a topological space X is said
to be strongly discrete [11] if there is a discrete family G = (Gi : i ∈ I) of open
sets in X such that Ai ⊆ Gi for any i ∈ I. A family A is σ-discrete (strongly
σ-discrete) if it can be represented as the union of countably many discrete
(strongly discrete) families in X.

A family B of subsets of topological space X is a base for a function
f : X → Y if for any open set V in Y there exists a subfamily BV ⊆ B such
that f−1(V ) =

⋃
BV . If B is (strongly) σ-discrete then it is called (strongly)

σ-discrete base for f and function f : X → Y with (strongly) σ-discrete base is
called (strongly) σ-discrete function. We shall denote by Σ(X,Y ) (Σ∗(X,Y ))
the set of all (strongly) σ-discrete functions from X to Y .

A topological space X is collectionwise normal if X is T1-space and for
each discrete family (Fi : i ∈ I) of closed sets there exists a discrete family
(Gi : i ∈ I) of open sets such that Fi ⊆ Gi for every i ∈ I. It is easy to see
that a space is collectionwise normal if and only if every discrete family of its
subsets is strongly discrete.

Note that any function with values in a second countable topological space
is strongly σ-discrete. R. Hansell [6] proved that every Lebesgue-one function
with a complete metric domain space and a metric range space is σ-discrete.
Taking into account that a complete metric space is collectionwise normal, we
obtain the strongly σ-discreteness of such a function.
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Recall that a topological space X is arcwise connected if for any two points
x and y from X there exists a continuous function f : [0, 1] → X such that
f(0) = x and f(1) = y. A space X is called locally arcwise connected if for
every x ∈ X and for any its neighbourhood U there exists a neighbourhood
V of x such that for each y ∈ V there is a continuous function f : [0, 1] → U
such that f(0) = x and f(1) = y.

We shall need the following results of L. Veselý [11] and M. Fosgerau [5]
concerning the equality between Baire and Lebesgue classes.

Theorem 3.1. [11, Theorem 3.7(i)] Let X be a normal space, Y be an arcwise
connected and locally arcwise connected metric space. Then

H1(X,Y ) ∩ Σ∗(X,Y ) = B1(X,Y ).

Theorem 3.2. [5, Theorem 2] Let Y be a complete metric space. Then the
following conditions are equivalent:

(i) Y is connected and locally connected;
(ii) H1(X,Y ) ∩ Σ(X,Y ) = B1(X,Y ) for any metric space X.

Theorem 3.3. Let X be a normal space and E be an arcwise connected and
locally arcwise connected metrizable ambiguous subspace of X. If one of the
following conditions holds

(i) E is separable, or
(ii) X is collectionwise normal,

then E is a B1-retract of X.

Proof. Fix any point x∗ ∈ E and define

r(x) =

{
x, if x ∈ E,
x∗, if x ∈ X \ E.

We claim that r is an H1-retraction of X onto E. Indeed, take an arbitrary
open set V in E. If x∗ 6∈ V , then r−1(V ) = V . Since E is metrizable, V is
an Fσ-set in E. Moreover, E is Fσ in X, therefore, V is Fσ in X. If x∗ ∈ V ,
then r−1(V ) = V ∪ (X \ E). Since V and X \ E are Fσ-sets in X, r−1(V ) is
also an Fσ-set in X.

(i) Since E is a second countable space, a function r is strongly σ-discrete.
According to Theorem 3.1, r ∈ B1(X,E).

(ii) We show that r : X → E is strongly σ-discrete. Since E is Fσ in X,
there exists an increasing sequence (Fn)∞n=1 of closed subsets of X such that

E =
∞⋃
n=1

Fn. Note that every metrizable space has a σ-discrete base according

to Bing’s Theorem [4, p. 282], therefore, for every n we can choose a σ-discrete
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base Un of Fn. Then Un =
∞⋃
m=1
Un,m, where (Un,m)∞m=1 is a sequence of discrete

families in Fn, n ∈ N. The set Fn is closed in X, and, consequently, Un,m is
discrete in X, n,m ∈ N. Since X is collectionwise normal, the family Un,m
is strongly discrete in X. Then the families Un and U =

∞⋃
n=1
Un are strongly

σ-discrete in X. Let B = U ∪ {X \E}. Then B is a strongly σ-discrete family
in X.

We prove that B is a base for r. Let U be an open set in E. Then

U =
∞⋃
n=1

(U ∩ Fn). Since U ∩ Fn is an open set in Fn for every n, there exists

a subfamily Un,U ⊆ Un such that U ∩Fn =
⋃
Un,U . If x∗ 6∈ U , then r−1(U) =

U =
∞⋃
n=1

⋃
Un,U . If x∗ ∈ U , then r−1(U) = U∪(X \E) =

∞⋃
n=1

⋃
Un,U ∪(X \E).

Therefore, B is a strongly σ-discrete base for r. Hence, r ∈ Σ∗(X,E).

By Theorem 3.1, r ∈ B1(X,E).

Theorem 3.4. Let X be a complete metric space and E ⊆ X be an arcwise
connected and locally arcwise connected Gδ-set. Then E is a B1-retract of X.

Proof. Theorem 1.1 implies that there exists an H1-retraction r : X → E
of X onto E. Since X is complete, Hansell’s Theorem [6, Theorem 3] implies
that r is strongly σ-discrete. According to Theorem 3.1, r ∈ B1(X,E) and,
therefore, r is a B1-retraction of X onto E.

4 Examples.

It is well-known that any retract of a locally connected space is also a locally
connected space, and any retract of an arcwise connected space is an arcwise
connected space too. We give an example which shows that for B1-retracts it
is not true.

We first prove the following auxiliary fact.

Lemma 4.1. Let A = [a, b] × [c, d], B1 = A \ ((a, b)× (c, d]) and B2 =
A \ ((a, b)× [c, d)). Then Bi is a retract of A for every i = 1, 2.

Proof. Let p1 =
(
a+b
2 , d+ 1

)
and p2 =

(
a+b
2 , c− 1

)
. For i = 1, 2 and (x, y) ∈

A denote by `i(x, y) the line which connects (x, y) and pi. Consider a function
ϕi : A→ Bi such that ϕi(x, y) is the point of the intersection of `i(x, y) with
Bi, i = 1, 2. It is easy to see that for every i = 1, 2 the function ϕi is a
retraction of A onto Bi.
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Example 4.2. There exists a connected closed B1-retract of [0, 1]2 which is
neither arcwise connected nor locally connected.

Proof. Let

E = ({0}×[0, 1])∪(

∞⋃
n=1

({ 1

n
}×[0, 1])∪([

1

2n
,

1

2n− 1
]×{1})∪([

1

2n+ 1
,

1

2n
]×{0})).

It is not difficult to check that E is a connected closed subset of [0, 1]2,
which is neither arcwise connected nor locally connected. We show that E is
a B1-retract of [0, 1]2.

Let
An =

[
1

n+1 ,
1
n

]
× [0, 1], Bn =

[
0, 1

n+1

]
× [0, 1], n ≥ 1,

En =
([

1
n+1 ,

1
n

]
× [0, 1]

)
\
((

1
n+1 ,

1
n

)
× [0, 1)

)
if n is an odd number,

En =
([

1
n+1 ,

1
n

]
× [0, 1]

)
\
((

1
n+1 ,

1
n

)
× (0, 1]

)
if n is an even number.

By Lemma 4.1, En is a retract of An for every n. Denote by ϕn a retraction
of An onto En, n ∈ N. Let ψn be a continuous function ψn : Bn → { 1

n+1} ×
[0, 1], ψn(x, y) = ( 1

n+1 , y).
For every n ≥ 1 and x, y ∈ [0, 1] define

rn(x, y) =

{
ϕk(x, y), (x, y) ∈ Ak, 1 ≤ k ≤ n,
ψn(x, y), (x, y) ∈ Bn.

The function rn : [0, 1]2 →
⋃
k≤n

Ek is correctly defined and continuous for every

n, since ϕk|Ak∩Ak+1
= ϕk+1|Ak∩Ak+1

, 1 ≤ k < n, and ϕn|An∩Bn
= ψn|An∩Bn

.
We show that (rn)∞n=1 is a pointwise convergent sequence on [0, 1]2. Fix

an arbitrary (x, y) ∈ [0, 1]2. If x 6= 0, then there exists n0 such that (x, y) ∈
An0 . Then rn(x, y) = ϕn0(x, y) for all n ≥ n0, that is rn(x, y) →

n→∞
ϕn0(x, y).

Note that if (x, y) ∈ E, then ϕn0(x, y) = (x, y). If x = 0, then rn(x, y) =
ψn(x, y) = ( 1

n+1 , y) →
n→∞

(0, y) = (x, y). Hence, there exists lim
n→∞

rn(x, y) for

each (x, y) ∈ [0, 1]2. We remark that lim
n→∞

rn(x, y) = (x, y) on E. Moreover,

since E is closed, lim
n→∞

rn(x, y) ∈ E for all (x, y) ∈ [0, 1]2.

Set r(x, y) = lim
n→∞

rn(x, y) for every (x, y) ∈ [0, 1]2. Then r : [0, 1]2 → E is

a B1-retraction of [0, 1]2 onto E.

Note that for the set E from the previous example there exists an H1-
retraction r : [0, 1]2 → E. Though E is a complete metric separable connected
space, we cannot apply Theorem 3.2 for r since E is not locally connected.
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Therefore, it is natural to ask: is every connected H1-retract of a complete
metric separable connected and locally connected space its B1-retract? The
following example shows that the answer to this question is negative.

Example 4.3. There exists a connected H1-retract of a complete metric sep-
arable connected and locally connected space which is not its B1-retract.

Proof. Let Q0 = Q ∩ [0, 1] = {qn : n ∈ N}. For every n ∈ N consider a
function fn : [0, 1]→ [−1, 1], fn(x) = sin 1

x−qn if x 6= qn, and fn(qn) = 0. For

every x ∈ [0, 1] define

f(x) =

∞∑
n=1

1

2n
fn(x),

X = [0, 1]× [−1, 1] and E = Gr(f) = {(x, y) ∈ X : y = f(x)}.

For every n the function fn : [0, 1] → [−1, 1] belongs to the first Baire
class, since it is discontinuous only in one point x = qn (see for instance [10,
p. 384]). Moreover, fn is a Darboux function (i.e. fn(A) is connected for every
connected set A ⊆ [0, 1]) [2, p. 13]. Then f is a Darboux Baire-one function,
as the sum of the uniform convergent series of Darboux Baire-one functions
[2, p. 13]. Therefore, the set E, as the graph of f , is connected [2, p. 9] and Gδ
[9, p. 393] in X. Hence, according to Theorem 1.1 the set E is an H1-retract
of X.

We prove that E is not a B1-retract of X. Assume that there exists a
function r ∈ B1(X,E) such that r(p) = p for all p ∈ E. Let (rn)∞n=1 be a
sequence of continuous functions rn : X → E, which is pointwise convergent
to r on X. Since X is compact and connected, En = rn(X) is also compact
and connected for every n. Note that at least one of En contains more than one
point. Indeed, assume that all the sets En consist of one point, i.e. En = {pn},
where pn ∈ E, n ∈ N. Choose two different points p′ and p′′ from E. Then
pn = rn(p′) →

n→∞
p′ and pn = rn(p′′) →

n→∞
p′′, a contradiction. Hence, there

exists a number n0 such that En0
contains at least two different points (to be

more precise, the cardinality of En0 is equal to c since En0 is a connected set).
Now fix p, q ∈ En0 . Since En0 ⊆ Gr(f), the points p and q are represented

as p = (a, f(a)) and q = (b, f(b)). Without loss of generality we can assume
that a < b. Note that (x, f(x)) ∈ En0

for any x ∈ (a, b). Indeed, if there
exists a point x0 ∈ (a, b) such that (x0, f(x0)) 6∈ En0

, then the line x = x0
does not intersect En0 . Then, since En0 is connected, it should be completely
contained either in the left hand half-plane, or in the right hand half-plane
with respect to the line x = x0. But this contradicts the fact that both p and
q belong to En0

.
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Since Q0 is dense in [0, 1], there exists a number k such that qk ∈ (a, b).
Note that f is discontinuous in every point of Q0, in particular, it is discon-
tinuous in qk. Then there exists a sequence (xn)∞n=1, xn ∈ (a, b), such that
lim
n→∞

xn = qk, but lim
n→∞

f(xn) 6= f(qk). Since (xn, f(xn)) ∈ En0
for every

n and En0
is closed, the point ( lim

n→∞
xn, lim

n→∞
f(xn)) = (qk, lim

n→∞
f(xn)) also

belongs to En0
. But then it must be equal to (qk, f(qk)), a contradiction.

Hence, E is not a B1-retract of X.
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