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GIVEN PATTERNS

Abstract

We construct a d Hausdorff dimensional compact set in Rd that does
not contain the vertices of any parallelogram. We also prove that for
any given triangle (3 given points in the plane) there exists a compact
set in R2 of Hausdorff dimension 2 that does not contain any similar
copy of the triangle. On the other hand, we show that the set of the
3-point patterns of a 1-dimensional compact set of R is dense.

1 Introduction.

Assume that a compact set A is given in Rd and we would like to measure
it from a geometrical point of view: considering the patterns (the similarity
classes of all sets) that are contained by A.

Of course, the concepts of measure and dimension theory are also available.
Are there connections between the measure and dimension theoretic size and
the above-mentioned geometric size of the sets? A still open conjecture of
Erdős [1] states that for any infinite set P there exists a set A ⊆ R of positive
Lebesgue measure such that A does not contain any similar copy of P .

On the other hand, by a well known easy consequence of the Lebesgue Den-
sity Theorem, if a set is of positive Lebesgue measure in Rd, then it contains
some similar copy of every finite set. Does the conclusion also hold for sets
of Hausdorff dimension d (from now on, these sets are said to be full dimen-
sional)? We will prove that the answer is ’no.’ First, we show that there exists
a compact set of Hausdorff dimension d that does not contain the vertices of
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any parallelogram. Then we prove that for any given triangle, there exists a
compact set of dimension 2 on the plane that does not contain the vertices
of any triangle similar to the given one. These results are connected to and
motivated by Keleti’s theorems [5], [6], which refer to the real line.

However, I. Laba and M. Pramanik [7] showed that a full dimensional
compact set A ⊆ R that satisfies certain conditions on the Fourier transform
of a probabilistic measure supported by A must contain a nontrivial arithmetic
progression of length 3.

Of course, a full dimensional compact set contains numerous patterns (since
its cardinality is continuum). We will show that the set of the 3-point patterns
of a full dimensional subset of R is dense in a very natural space of the 3-point
patterns.

The whole area is somewhat connected to some very famous discrete prob-
lems and theorems. Denote by rk(n) the maximal number of elements that can
be selected from the set {1, 2, . . . , n} without containing a nontrivial arithmetic
progression of length k. There are many classical results on the magnitude of
rk(n) (see [11], [12], [13]), but there are recent research as well (see [3], [4]).

First, we define what we mean by containing a pattern.

Definition 1.1. We say that ϕ : Rd → Rd is a similarity map, if there exists
some c > 0 such that for all x, y ∈ Rd, |ϕ(x)−ϕ(y)| = c|x−y|). Let A,P ⊆ Rd.
We say that A contains the pattern P (or contains P as a pattern), if there
exists a similarity map ϕ on Rd such that ϕ(P ) ⊆ A.

2 Avoiding parallelograms and triangles.

Definition 2.1. We say that [x1, x2, x3, x4] is a parallelogram, if there are at
least 3 different points among x1, x2, x3, x4 ∈ Rd and x2 − x1 = x4 − x3.

Our main tool to guarantee the full Hausdorff dimension will be Lemma 2.2,
which is the higher dimensional version of K. Falconer’s lemma [2, Example
4.6]. First, we need a technical lemma.

Lemma 2.1. Let U ⊆ Rd be bounded, l > 0 and let B ⊆ U be a finite set. If
|B| > (2diam(U)

√
d/l + 1)d, then there exist two points of B such that their

distance is less than l (where |B| denotes the cardinality of B).

Proof. Let l′ < l such that |B| > (2diam(U)
√
d/l′ + 1)d. We can cover U

with (2diam(U)
√
d/l′+1)d cubes of sidelength l′/(2

√
d). There are two points

of B that are in the same cube, their distance is at most l′ < l.
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Lemma 2.2. Let F = ∩∞k=1Ek ⊆ Rd, where every Ek is a compact set that
consists of d dimensional cubes, E0 is a single cube. Assume that the following
holds for all k ≥ 1: Ek ⊆ Ek−1 and each cube of Ek−1 contains at least md

k

cubes of Ek. Assume that for any two cubes of Ek, their distance is at least
εk, where 0 < εk < εk−1 and limk→∞ εk = 0. Assume that mkεk < 1. Then

dimH(F ) ≥ lim inf
k→∞

d log(m1 · . . . ·mk−1)

− log(mkεk)
.

Proof (cf. [2, Example 4.6] ). We can assume that each cube of Ek−1
contains exactly md

k cubes of Ek. Let µ be the following probability measure
(supported on F ): for each cube C of Ek, let µ(C) = (m1 · . . . ·mk)−d. Let
U be an arbitrary set of diameter less than ε1. We estimate µ(U). Let k be
such that εk ≤ diam(U) < εk−1.

Then U intersects at most one cube of Ek−1, therefore at most md
k cubes of

Ek. By the previous lemma, it cannot intersect more than (2diam(U)
√
d/εk+

1)d ≤ (4diam(U)
√
d/εk)d cubes of Ek. Hence,

µ(U) ≤ (m1 · . . . ·mk)−d min{(4diam(U)
√
d/εk)d,md

k}

≤ (m1 · . . . ·mk)−d((4diam(U)
√
d/εk)smd−s

k )

holds for all 0 ≤ s ≤ d. Let s < lim infk→∞
d log(m1·...·mk−1)
− log(mkεk)

.

Then
µ(U)

(diam(U))s
≤ (4

√
d)s

(m1 · . . . ·mk−1)dms
kε
s
k

,

which is bounded from above by some K > 0.
Therefore (diam(U))s ≥ µ(U)/K for all U which is of diameter less than

ε1. Suppose that we cover F with a countable collection of sets U1, U2, . . .,
each Un is of diameter less than ε1. Then

∞∑
n=1

(diam(Un))s ≥
∞∑
n=1

µ(Un)/K ≥ µ(F )/K = 1/K,

which shows that dimH(F ) ≥ s.

In the following theorem, we generalize a construction of Keleti [5], who
proved the theorem in R. Then we discover that if d = 2, then our set has an
other interesting property. This other property will be the starting point of
some more observations.

Theorem 2.3. For any d = 1, 2, . . ., there exists a full dimensional compact
set A ⊆ Rd such that A does not contain the vertices of any parallelogram.
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Proof. Let δm = 1/(6m−1m!). We define the compact sets A1, A2, . . . by
induction. The sets Am will consist of pairwise disjoint, closed cubes:

Am =
⋃

1≤ik≤k

d∏
j=1

[n
(j)
i1,...,im

δm, (n
(j)
i1,...,im

+ 1)δm],

where
∏

denotes the Cartesian product and the integers n
(j)
i1,...,im

are cho-

sen later. Therefore, Am is compact and it consists of (m!)d cubes. Denote
the cubes of Am by Im1 , . . . , I

m
(m!)d (in an arbitrary order), and let the se-

quence (J1, J2, . . .) be the sequence of all cubes that occur: (J1, J2, . . .) =
(I11 , . . . , I

m−1
((m−1)!)d , I

m
1 , . . . , I

m
(m!)d , I

m+1
1 , . . .).

Let n
(1)
1 = . . . = n

(d)
1 = 0. Then A1 = [0, 1]d. Suppose that A1, . . . , Am

are already defined. We construct Am+1.

If (n
(1)
i1,...,im

δm, . . . , n
(d)
i1,...,im

δm) /∈ Jm, then for all 1 ≤ i ≤ m+1, 1 ≤ j ≤ d,
let

n
(j)
i1,...,im,i

= 6(m+ 1)n
(j)
i1,...,im

+ 6i− 6.

If (n
(1)
i1,...,im

δm, . . . , n
(d)
i1,...,im

δm) ∈ Jm, then for all 1 ≤ i ≤ m+1, 1 ≤ j ≤ d,
let

n
(j)
i1,...,im,i

= 6(m+ 1)n
(j)
i1,...,im

+ 6i− 3.

Let A = ∩∞m=1Am.

Claim 2.4. A is compact and does not contain any parallelogram.

Proof. The compactness is clear.
Suppose that there are three different elements among x1, x2, x3, x4 ∈ A.

We need to show that x2 − x1 6= x4 − x3. Assume that x1 is different from
each other, all the other cases are essentially the same. Choose m and j such
that x1 ∈ Imj = JM , x2, x3, x4 /∈ Imj = JM . By definition, the first coordinate
of x1 is (6N1 + 3)δM + ε1, while the first coordinate of xi (i = 2, 3, 4) is
6NiδM + εi, where N1, N2, N3, N4 are integers and 0 ≤ ε1, ε2, ε3, ε4 ≤ δM .
Hence, x2 − x1 6= x4 − x3.

Claim 2.5. dimH(A) = d.

Proof. Using the notations of Lemma 2.2, we have Ek−1 = Ak, mk = k+ 1.
In the kth step we divide the cubes of Ak into smaller cubes and we choose
some of them to give Ak+1. The minimal distance can be estimated from
below by εk+1 = δk/(

5
6 (k + 1)), because the sidelength of the cubes of Ak is

δk, we divide the cubes to (6(k + 1))d smaller cubes and then choose every
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6th of them (in each coordinate), so we leave a space of length δk/(
5
6 (k + 1)).

Lemma 2.2 gives

dimH(A) ≥ lim inf
k→∞

d · log(k!)

− log
(
k
5
6k
· 1
6k−2(k−1)!

) = d,

while dimH(A) ≤ d is clear.
This completes the proof of Theorem 2.3.

The set constructed in Theorem 2.3 has an other interesting property, if
d = 2.

Proposition 2.6. If d = 2, then the above constructed A does not contain a
rectangular isosceles triangle.

Proof. We prove by contradiction. Suppose that (x1, y1), (x2, y2), (x3, y3) ∈
A (throughout this proof, x1, x2, x3 denote the first, y1, y2, y3 denote the sec-
ond coordinate of the vertices of the triangle) is a rectangular isosceles triangle,
in which the right angle is at (x2, y2) and we get the point (x1, y1) by rotating
(x3, y3) around (x2, y2) by angle π

2 . Choose M such that (x1, y1) ∈ Imj = JM ,
(x2, y2), (x3, y3) /∈ Imj = JM . Then x1 = (6Nx

1 + 3)δM + εx1 ,y1 = (6Ny
1 +

3)δM + εy1, while for (j = 2, 3), xj = 6Nx
j δM + εxj ,yj = 6Ny

j δM + εyj , where
0 ≤ εx1 , ε

y
1ε
x
j , ε

y
j ≤ δM and Nx

1 , N
y
1 , N

x
j , N

y
j are integers.

Then (x3, y3) − (x2, y3) = (6(Nx
3 − Nx

2 )δM + cx3 , 6(Ny
3 − Ny

2 )δM + cy3),
where −δM ≤ cx3 , c

y
3 ≤ δM . Then, on the one hand, (x1, y1) − (x2, y2) equals

(−6Ny
3 − c

y
3, 6N

x
3 + cx3) (since (x1, y1) is the rotated image of (x3, y3) around

(x2, y2) by angle π
2 ). On the other hand, it is ((6(Nx

1 −Nx
2 )+3)δM+cx1 , (6(Ny

1−
Ny

2 ) + 3)δM + cy1), where −δM ≤ cx1 , c
y
1 ≤ δM , and this is a contradiction.

Proposition 2.6 says that we can construct a compact set of dimension
2 on the plane that does not contain the rectangular isosceles triangle as a
pattern. Can we avoid any other 3-point pattern on the plane? Keleti [6] gave
affirmative answer on the real line. In the following, we prove that the same
holds in R2, which is also considered as the complex plane C from now on.

Lemma 2.7. Let α 6= 0 complex, for which |α| < 1
12 . Then there exists an

axisparallel square containing at least 1
18|α|2 Gaussian integer j = j1 + j2i ∈

Z + iZ such that αj ∈ [0, 1]× [0, 1].

Proof. If α > 0 real, then take the axisparallel square Q of sidelength 1
3 and

centered at ( 1
2 ,

1
2 ). This square contains at least ( 1

3α − 1)2 > 1
9α2 − 2

3α >
1

18α2

complex numbers c such that 1
αc is a Gaussian integer (and these Gaussian
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integers are in a square lattice). Now let α = |α|eiθ, where 0 ≤ θ < 2π.
Rotate the above defined Q around

(
1
2 ,

1
2

)
by angle θ, denote it by Qθ. In Qθ,

take the elements of the form jα = j|α|eiθ, where j is a Gaussian integer. As
in the real case, there are at least 1

18|α|2 of them in a square lattice. Since

Qθ ⊂ [0, 1]× [0, 1], the claim follows.

Theorem 2.8. Let P = (p1, p2, p3) ⊆ R2 triangle, that is, p1, p2, p3 are dis-
tinct. Then there exists a compact A ⊆ R2 such that dimH(A) = 2 and A does
not contain a subset that is similar to P .

Proof. Let p1, p2, p3 be complex numbers as well.
Let M be a fixed even number. Let α = p3−p1

p2−p1 ∈ C. It is clear that

α 6= 0, 1. Let L > 0 real and let δk = 1
Lkm1·...·mk

. We will determine the
numbers M,L,mk later.

Our idea is the following. We start out from the unit square I = [0, 1] ×
[0, 1], our list in the beginning is (I, I, I). In the kth step, we have a list that
consists of triples and we consider a certain triple of our list: (S1, S2, S3), where
S1, S2, S3 are sets that consist of many squares. We take a correction step:
we replace S1, S2, S3 with S′1, S

′
2, S
′
3 with the following properties. 1) S′i ⊆ Si

for i = 1, 2, 3. 2) Each of S′1, S
′
2, S
′
3 consist of m2

k small, axisparallel squares.
3) The triple (S′1, S

′
2, S
′
3) is correct, that is, if s1 ∈ S′1, s2 ∈ S′2, s3 ∈ S′3, then

(s1, s2, s3) is not similar to P with the same orientation. 4) The sidelength
of the small squares are δk. 5) The distance between two small squares is at
least δk. Every other square X (other than S1, S2, S3) is also replaced with
X ′ that satisfies 1), 2), 4), 5). Then we write all triples that consist of the
small squares to the end of our list, in an arbitrary order. Hence, we get a
decreasing sequence of compact sets, let the intersection be A. If

lim
k→∞

2 log(m1 · . . . ·mk−1)

− log(mkδk)
= 2

holds for the sequence (mk), then dimH(A) = 2 by Lemma 2.2. The choice
mk = max(k, 3) is appropriate.

Let the squares X,Y, Z be given. In each of them, there are squares of
sidelength δk−1 and we want to take the correction step. We want to define
X ′, Y ′, Z ′ such that if x ∈ X ′, y ∈ Y ′, z ∈ Z ′, then y−z

x−z 6= α.
Correction in the squares of Y : in every square of Y , take all the small

squares of the form δk(Mαjy + [0, 1]× [0, 1]), where jy is a Gaussian integer.
These small squares are pairwise disjoint and their distance is at least δk, if
M |α| > 2

√
2 + 1, that is, M > My for some My. The number of these values

jy is at least 1/18(M |α| δkδk−1
)2 > 18m2

k, if L > Ly (the conditions of Lemma
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2.7 are also in condition L > Ly; this Ly can depend on M) and these points
are in a square lattice. From these lattice points, we can choose those that
are not on the perimeter and from the chosen lattice points, we can take the
squares of sidelength δk([0, 1]× [0, 1]). Hence, we are able to choose m2

k small
squares (the number of non-perimeter points is at least m2

k, since mk ≥ 3).
Correction in the squares of X: in each square, take the following small

squares: δk(Mjx + [0, 1] × [0, 1]). If M > Mx, L > Lx, we can take this step
as before.

Correction in the squares of Z: in each square, take the following small
squares: δk(M α

α−1jz + M
2

α
α−1 + [0, 1] × [0, 1]). If M > Mx, L > Lx, we can

take this step as before.
In those squares that are not inX,Y or Z, take the small squares arbitrarily

(taking care of the sidelength and distance δk).
Let M > Mx,My,Mz, L > Lx, Ly, Lz. Furthermore, let M |α|/2 > 4|α|+4,

it can happen that this condition enlarges L again.
Take the correction step for each k. We claim that the intersection does not

contain P as a pattern (with the same orientation). We prove by contradiction.
Suppose that for some x, y, z ∈ A, y−z

x−z = α. Choose k such that x, y, z
are in distinct squares of the inductive definition of sidelength δk. Let these
squares be X,Y, Z. What happens when we correct (X,Y, Z)? For some
0 ≤ ε1x, ε2x, ε1y, ε2y, ε1z, ε2z ≤ 1:

Mαjy+(ε1y, ε
2
y) = α(Mjx+(ε1x, ε

2
x))−(α−1)

(
M

α

α− 1

(
jz +

1

2

)
+ (ε1z, ε

2
z)

)
,

hence,

Mα(jy − jx + jz) +
Mα

2
= α(ε1x, ε

2
x)− (α− 1)(ε1z, ε

2
z)− (ε1y, ε

2
y).

The absolute value of the left-hand side is at least M |α|/2, the absolute value
of the right-hand side is at most 4|α|+ 4, which is a contradiction.

In each step, after correcting (X,Y, Z) with respect to α, correct it with
respect to α. Therefore, the constructed set A does not contain any subset
similar to P , either with the same orientation, or with the other.

3 Avoiding “too many” patterns.

In fact, using the method seen in the previous section, a full dimensional
compact set can avoid countably many patterns. In this section, we show that
the patterns contained in a full dimensional set are dense in a sense.
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Definition 3.1. Let A ⊆ R (or R2 = C) compact. Let

T (A) =

{
z − x
y − x

: x, y, z ∈ A, x 6= y

}
.

Notation. Let 0 < a, b < 1 real numbers. Then let

h(a, b) = s, if as + bs = 1.

It can be easily seen that h is well-defined and positive, since at + bt is a
continuous and strictly decreasing function of t and a0 + b0 = 2, limt→∞ at +
bt = 0.

Theorem 3.1. Let 0 < a < b < 1, A ⊆ R compact such that T (A)∩(a, b) = ∅.
Then

dimH(A) ≤ h(a, 1− b) < 1.

Corollary 3.2. If A ⊆ R compact and dimH(A) = 1, then T (A) is dense in
R.

Proof of Theorem 3.1. It is clear that h(a, 1− b) < 1.
We can assume that min(A) = 0, max(A) = 1. Let s = h(a, 1 − b), δ > 0

be given. We will give the closed intervals I1, . . . , Im such that their union
covers A, the length of each interval is at most δ and

∑m
i=1 λ(Ii)

s ≤ 1 (where
λ denotes the Lebesgue measure and the length of the interval). On level 0,
take the interval [0, 1]. On level 1, take the covering A ⊆ [0, a] ∪ [b, 1]. On
level 2, construct the following covering: let a′ = max(A∩ [0, a]) ≤ a and take
A∩ [0, a′] ⊆ [0, aa′]∪ [(1− b)a′], then cover A∩ [(1− b), 1] the same way. The
length of the covering intervals are at most a2, a(1− b), (1− b)a, (1− b)2.

Continue this method. Suppose that S is a covering interval of a certain
level. Let m = min(A∩S), M = max(A∩S). Take the interval [m,M ], throw
out the open interval (a(M −m) +m, (1− b)(M −m) +m), and cover A ∩ S
with the remaining two intervals.

Choose a level k such that ak, (1 − b)k ≤ δ. On this level, the length of
each interval (used in the covering) is at most δ and the sum of the sth power
of the length of the intervals is at most

k∑
l=0

(
k

l

)
(al(1− b)k−l)s = (as + (1− b)s)k = 1,

which completes the proof.

Our next aim is to prove a weak converse.
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Theorem 3.3. Let 0 < a < b < 1. Then there exists a compact A ⊆ R such
that T (A) ∩ (a, b) = ∅ and

dimH(A) = h

(
ab

1− a+ ab
, 1− b

1− a+ ab

)
.

Proof. Let a′ = ab
1−a+ab , b

′ = b
1−a+ab . Take the self-similar set defined by the

similarity maps f1(x) = a′x, f2(x) = (1− b′)x+ (1− b′). Since a′ < b′ holds,
f1(A) and f2(A) are disjoint, hence we can apply the well-known theorem on
the dimension of self-similar sets, we obtain dimH(A) = h(a′, 1− b′).

The self-similar set A can be constructed as a limit of a decreasing sequence
of sets: we start out from [0, 1] and in each step, we throw out from each
interval [t, t+ t1] a smaller open interval (t+ t1a

′, t+ t1b
′).

It is easy to calculate that if I1, I2 are the two remaining parts of I, then
for all x ∈ I1, z ∈ I2, y ∈ I1 ∪ I2, x < y < z: y−x

z−x /∈ (a, b).

Corollary 3.4. If s < log 2
log 3 , then there exists a compact A ⊆ R, for which

dimH(A) ≥ s and T (A) is not dense in R.

Proof. For each a < 1
2 , b = 1 − a, take the compact set A given by the

previous theorem, for which T (A) ∩ (a, b) = ∅. It is easy to calculate that
dimH(A) tends to log 2

log 3 as a tends to 1
2 .

Problem 1. What can we say about the sets of dimension at least log 2
log 3?

How can we estimate the dimension of T (A) from above? Using classical
results about the dimension of product sets (see [8, Theorem 8.10]), the fol-
lowing statements can be easily shown. In the statements, dimP denotes the
packing dimension.

Proposition 3.5. Let A ⊆ R compact. Then dimH(T (A)) ≤ dimH(A) +
2dimP(A).

Corollary 3.6. Let A ⊆ R compact. If dimH(A) + 2dimP(A) < 1, then
T (A) 6= R.

Next, we examine T (A) in the complex case. The following is an immediate
consequence of [8, Theorem 10.11] (proved in [9]).

Lemma 3.7. If A ⊆ Rn compact, then for µs-almost every x ∈ A, γn,n−m-
almost every W ∈ G(n, n−m):

dimH(A ∩ (W + x)) ≥ s−m.



88 Péter Maga

(Here, G(n, n−m) denotes the Grassmann manifold consisting of the (n−m)-
dimensional subspaces of the linear space Rn, while γn,n−m is the natural mea-
sure on this manifold, which is preserved under the actions of the orthogonal
group.)

Theorem 3.8. Let 0 < a < b < 1 and let A ⊆ C compact such that T (A) ∩
(a, b) = ∅. Then

dimH(A) ≤ 1 + h(a, 1− b) < 2.

Proof. It is clear that 1 + h(a, 1− b) < 2.
Assume that dimH(A) > 1 + h(a, 1 − b). Choose s such that dimH(A) >

s > 1 + h(a, 1 − b). Thus µs(A) > 0. By Lemma 3.7, for some x ∈ A and L
line that passes through the origin, dimH(A ∩ (L + x)) = s− 1 > h(a, 1− b).
Then by Theorem 3.1, for some x, y, z ∈ L ∩A, z−x

y−x ∈ (a, b).

Corollary 3.9. If A ⊆ C compact and dimH(A) = 2, then T (A)∩R is dense
in R.

Problem 2. Is it true that if A ⊆ C compact and dimH(A) = 2, then T (A)
is dense in C? Is it true that if A ⊆ C compact and dimH(A) > 1, then T (A)
is dense in C?

The condition dimH(A) > 1 is obviously necessary: if A is a real set of
dimension 1, then T (A) is real as well, therefore nowhere dense in C.

Proposition 3.5 and Corollary 3.6 can be easily modified:

Proposition 3.10. Let A ⊆ C compact. Then dimH(T (A)) ≤ dimH(A) +
2dimP(A).

Corollary 3.11. Let A ⊆ C compact. If dimH(A) + 2dimP(A) < 2, then
T (A) 6= C.

Earlier we proved that even in a full dimensional compact set on the plane
we cannot guarantee any single triangle as a pattern. Then we saw that we
cannot avoid ”too many” patterns. One can ask if there are geometrically
defined sets of patterns that we cannot avoid simultaneously.

Proposition 3.12 (Mattila [10]). Let A ⊆ C compact. If µs(A) > 0 and
s > 1, then A contains the vertices of a rectangular triangle.

Proof. Apply Lemma 3.7. We have that for µs-almost every x ∈ A and for
almost every L ∈ G(2, 1), dimH(A ∩ (L+ x)) ≥ s− 1. Choose an x ∈ A with
the property that for almost every L ∈ G(2, 1), A ∩ (L + x) contains points
other than x. Then there are two lines L1, L2 ∈ G(2, 1) such that they are
perpendicular and A∩ (L1 + x), A∩ (L2 + x) contain points other than x.
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There are still several open problems. One more example:

Problem 3. Is it true that if A ⊆ C compact and dimH(A) = 2, then A
contains the vertices of an isosceles triangle?

Acknowledgement. I am grateful to my supervisor, Tamás Keleti for propos-
ing the problems and for his valuable comments, advice and remarks.
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