Ch. Rini Indrati, Department of Mathematics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia. email: rinii@ugm.ac.id or ch.rini_indrati@yahoo.com

TWO-NORM CONVERGENCE IN THE L_p SPACES

Abstract

In this paper we consider L_p , $1 \le p \le \infty$, as a two-norm space and prove a representation for two-norm continuous functionals defined on L_p , $1 \le p \le \infty$. Hence we have provided a unified approach for the scale of the L_p space, including the case when $p = \infty$

1 Introduction.

The Banach dual of C[0,1] is BV[0,1], where C[0,1] and BV[0,1] denote the space of all continuous functions on [0,1] and the space of all functions of bounded variation on [0,1], respectively. However, the Banach dual of BV[0,1] is not C[0,1] if we endorse BV[0,1] with its usual norm, namely, |f(0)| + V(f;[0,1]) where V(f;[0,1]) denotes the total variation of f on [0,1]. Since BV[0,1] is not separable, then the usual technique of proving such a representation theorem no longer applies. More precisely, the proof often contains the following two steps. First, we prove the representation for some elementary functions, for example, step functions. Second, we approximate a general function by a sequence of elementary functions. Thus the representation for general functions follows from a convergence theorem for the integral. If the space is non-separable, the second step does not work. Hildebrandt [1] and Khaing ([2], [3]) proved a representation theorem for BV[0,1] by regarding BV[0,1] as a two-norm space [7].

For $1 \le p < \infty$, $L_p[0,1]$ is a space of all measurable functions f such that $\int_0^1 |f(x)|^p dx < \infty$ and $L_\infty[0,1]$ is a space of all functions f with ess $\sup |f| < \infty$

Mathematical Reviews subject classification: Primary: 26A39 Key words: two-norm, representation, L_p , $1 \le p \le \infty$

 $p_{p} = p_{p}$

Received by the editors September 17, 2009 Communicated by: Paul D. Humke

 ∞ , where ess sup $|f| = \inf\{M : |f(x)| \leq M$ a.e. on $[0,1]\}$. As we know, the Riesz representation theorem is well-known. If p and q are two real numbers, $1 < p, q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$, the Banach dual of $L_p[0,1]$ is $L_q[0,1]$. We also have that the Banach dual of $L_1[0,1]$ which is $L_{\infty}[0,1]$. However, the Banach dual of L_{∞} is not L_1 if we endorse $L_{\infty}[0,1]$ with the usual norm, ess sup |f|.

In this paper, we consider L_p , $1 \le p \le \infty$, as a two-norm space and prove a representation theorem for two-norm continuous linear functionals on L_p , $1 \le p \le \infty$. Furthermore, we give a unified approach to the dual of L_p , $1 \le p \le \infty$.

2 Two-norm convergence in L_{∞} .

Let L_{∞} denote the space of all essentially bounded functions on [0, 1]. A function f is **essentially bounded** if it is bounded almost everywhere. The two norms defined on L_{∞} , as suggested by Orlicz [7], are the essential bound $||f||_{\infty}$ and $\int_{0}^{1} |f(x)| dx$.

In what follows, when we say **absolutely integrable** we mean **Lebesgue** integrable. A sequence $\{f_n\}$ of functions is said to be two-norm convergent in L_{∞} , if there is M > 0 such that $||f_n||_{\infty} \leq M$ for all n and

$$\lim_{n \to \infty} \int_0^1 f_n(x) g(x) \, dx \text{ exists,}$$

for every absolutely integrable function g on [0, 1].

We shall prove the completeness in Theorem 2. However, we need the big Sandwich Lemma and the concept of an absolutely continuous function. We state without proof the Big Sandwich Lemma [5].

Lemma 1. If $0 \le a_n \le b_{kn}$ for all n, k and

$$\lim_{k\to\infty}\lim_{n\to\infty}b_{kn}=0$$

then $\lim_{n\to\infty} a_n = 0.$

A function G defined on [0, 1] is said to be **absolutely continuous** if for every $\epsilon > 0$ there is $\delta > 0$ such that

$$|(\mathcal{D})\sum\{G(v)-G(u)\}|<\epsilon$$

whenever $(\mathcal{D}) \sum |v - u| < \delta$, where $\mathcal{D} = \{[u, v]\}$ denotes a partial division of [0, 1] in which [u, v] stands for a typical interval in the partial division. We

are using the notation of the Henstock integral [6, 4].

Theorem 2. If $\{f_n\}$ is two-norm convergent in L_{∞} , then there exists a function $f \in L_{\infty}$, such that

$$\int_0^1 f_n g \to \int_0^1 fg, \text{ as } n \to \infty,$$

for every absolutely integrable function g on [0, 1].

PROOF. Let $x \in [0, 1]$ and define

$$g(t) = \begin{cases} 1 & \text{for } 1 \le t < x \\ 0 & \text{otherwise.} \end{cases}$$

Let $F(x) = \lim_{n \to \infty} \int_0^x f_n$, for $x \in [0, 1]$. Since,

$$|\int_{u}^{v} f_{n}| \le ||f_{n}||_{\infty}|v-u| \le M(v-u)$$

By taking $n \to \infty$, we have

$$|F(v) - F(u)| \le M|v - u|.$$

Therefore F is absolutely continuous. As a corollary, F' exists almost everywhere. Put f = F' almost everywhere. Moreover,

$$|\frac{F(v) - F(u)}{v - u}| \le M.$$

That means, $|f(x)| \leq M$ almost everywhere in [0, 1]. For any step function g,

1

$$\lim_{n \to \infty} \int_0^1 f_n g = \lim_{n \to \infty} \int_0^1 f g.$$

For $g \in L_1$, there exists a sequence of step function $\{g_k\}$ such that $\int_0^1 |g_k - g| \to 0$, as $k \to \infty$. Applying the Big Sandwich Lemma, we have

$$\begin{aligned} |\int_{0}^{1} f_{n}g - \int_{0}^{1} fg| &\leq |\int_{0}^{1} f_{n}g - \int_{0}^{1} f_{n}g_{k}| \\ &+ |\int_{0}^{1} f_{n}g_{k} - \int_{0}^{1} fg_{k}| + |\int_{0}^{1} fg_{k} - \int_{0}^{1} fg| \\ &\leq 2M \int_{0}^{1} |g_{k} - g| + |\int_{0}^{1} f_{n}g_{k} - \int_{0}^{1} fg_{k}| \to 0 \text{ as } n \to \infty \end{aligned}$$

That means, there is a function $f \in L_{\infty}$ such that for every $g \in L_1$,

$$\lim_{n \to \infty} \int_0^1 f_n g = \int_0^1 f g.$$

It is clear from the definition, if g is absolutely integrable on [0, 1] and $\{f_n\}$ is two-norm convergent to f in L_{∞} then

$$\lim_{n \to \infty} \int_0^1 f_n(x)g(x)dx = \int_0^1 f(x)g(x)dx.$$

We shall define two-norm continuous functional and shall prove Theorem 3, and finally the representation theorem in Theorem 5.

A functional F defined on L_{∞} is said to be **two-norm continuous** in L_{∞} , if

 $F(f_n) \to F(f)$ as $n \to \infty$

whenever $\{f_n\}$ is two-norm convergent to f in L_{∞} .

Theorem 3. If g is absolutely integrable on [0, 1] and

$$F(f) = \int_0^1 f(x)g(x)dx \text{ for } f \in L_\infty,$$

then F defines a two-norm continuous linear functional on L_{∞} .

PROOF. The linearity of F comes from the properties of the integral. The continuity of F comes from the definition of two-norm convergence in L_{∞} .

In the following lemma, we define

$$\gamma_t(x) = \begin{cases} 1 & \text{for } 0 \le x < t \\ 0 & \text{for } t \le x \le 1 \end{cases}$$

Lemma 4. Let F be a two-norm continuous linear functional on L_{∞} . If $G(t) = F(\gamma_t)$ for $t \in [0, 1]$ then G is absolutely continuous.

PROOF. Suppose G is not absolutely continuous on [0, 1]. Then there is $\epsilon > 0$ such that for every δ there exists a partial division $\mathcal{D} = \{[u, v]\}$ satisfying

$$(\mathcal{D})\sum |v-u| < \delta \text{ and } |(\mathcal{D})\sum \{G(v) - G(u)\}| \ge \epsilon$$

For each n, take $\delta = \frac{1}{n}$ and $\mathcal{D} = \mathcal{D}_n$. For every $x \in [0, 1]$, put

$$f_n(x) = (\mathcal{D}_n) \sum |\gamma_v - \gamma_u|.$$

Then $||f_n||_{\infty} \leq 1$ for all n and for every integrable function g on [0, 1]

$$\int_0^1 |f_n(x)g(x)| dx = (\mathcal{D}_n) \sum M |v-u| \downarrow 0 \text{ as } n \to \infty,$$

where M is the essentially bound of g on [0, 1]. That is, $\{f_n\}$ is two-norm convergent to zero function in L_{∞} . Yet we have

$$F(f_n) = |(\mathcal{D}_n) \sum \{G(v) - G(u)\}| \ge \epsilon \text{ for all } n.$$

It contradicts the fact that F is two-norm continuous. Hence G is absolutely continuous on [0, 1].

Theorem 5. If F is a two-norm continuous linear functional on L_{∞} then there is an absolutely integrable function g such that

$$F(f) = \int_0^1 f(x)g(x)dx \text{ for } f \in L_\infty.$$

PROOF. In view of Lemma 4 and using the notation introduced there, we obtain

$$F(\gamma_t) = G(t) = \int_0^t g = \int_0^1 \gamma_t g,$$

where g = G' almost everywhere on [0, 1]. Since F is linear,

$$F(f) = \int_0^1 fg$$

for any step function f. Take $f \in L_{\infty}$, there is a sequence $\{f_n\}$ of step functions two-norm convergent to $f \in L_{\infty}$. Hence the general case of the theorem follows from the definition of two-norm continuity of F and the Dominated Convergence Theorem.

We remark that the representation theorem (Theorem 5) remains valid if the two-norm convergence in L_{∞} , as defined above, is replaced by boundedness in $||f||_{\infty}$ and convergence in $\int_0^1 |f|$ as given by Orlicz [7]. The proof follows the same argument as above.

3 A unified approach for L_p , $1 \le p \le \infty$.

For $1 \leq p < \infty$, L_p denotes the space of all measurable functions such that $\int_0^1 |f|^p < \infty$ and

$$||f||_p = \left[\int_0^1 |f|^p\right]^{\frac{1}{p}}.$$

We restate the norm convergence in L_p and the norm continuous functional on L_p , $1 \le p \le \infty$. A sequence $\{f_n\}$ of functions in L_p , $1 \le p \le \infty$, is said to be **norm convergent** to $f \in L_p$ if $||f_n - f||_p \to 0$ as $n \to \infty$.

In this section we regard L_p , $1 \le p \le \infty$, as a two-norm space based on the result of Section 2.

A sequence $\{f_n\}$ of functions is said to be **two-norm convergent** to f in L_p , $1 \le p \le \infty$ if there is M > 0 such that $||f_n||_p \le M$ for all n and

$$\lim_{n \to \infty} \int_0^1 f_n(x) g(x) \, dx \text{ exists,}$$

for every $g \in L_q$, $\frac{1}{p} + \frac{1}{q} = 1$.

The completeness will be proved in Theorem 7 using Lemma 6.

Lemma 6. A function $f \in L_p$, 1 , if and only if if

$$\sup_{\mathcal{D}} (\mathcal{D}) \sum \frac{|F(v) - F(u)|^p}{|v - u|^{p-1}} < \infty,$$

where the supremum is taken over all of divisions $\mathcal{D} = \{[u, v]\}$ of [0, 1], in which [u, v] stands for a typical interval in the division.

For a proof, see Riesz [8]. \Box

Theorem 7. If $\{f_n\}$ is two-norm convergent in L_p , $1 \le p \le \infty$, then there exists a function $f \in L_p$, such that

$$\int_0^1 f_n g \to \int_0^1 fg, \text{ as } n \to \infty,$$

for every $g \in L_q$, $\frac{1}{p} + \frac{1}{q} = 1$.

PROOF. The case when $p = \infty$ follows from Theorem 2. For $1 \le p < \infty$. Take $F(x) = \lim_{n \to \infty} \int_0^x f_n$ for $x \in [0, 1]$. Since

$$|\int_{u}^{v} f_{n}| \leq (\int_{u}^{v} |f_{n}|^{p})^{\frac{1}{p}} (v-u)^{\frac{1}{q}},$$

then

$$\frac{|F_n(v) - F_n(u)|^p}{|v - u|^{p-1}} \le \int_u^v |f_n|^p.$$

Therefore, for every partition \mathcal{D} of [0, 1], we have

$$(\mathcal{D})\sum \frac{|F_n(v) - F_n(u)|^p}{|v - u|^{p-1}} \le (\mathcal{D})\sum \int_u^v |f_n|^p = \int_0^1 |f_n|^p \le M^p.$$

By taking $n \to \infty$,

$$(\mathcal{D})\sum \frac{|F(v) - F(u)|^p}{|v - u|^{p-1}} \le M^p.$$

Hence $f \in L_p$ by Lemma 6.

$$\begin{aligned} |\int_{0}^{1} f_{n}g - \int_{0}^{1} fg| &\leq |\int_{0}^{1} f_{n}g - \int_{0}^{1} f_{n}g_{k}| \\ &+ |\int_{0}^{1} f_{n}g_{k} - \int_{0}^{1} fg_{k}| + |\int_{0}^{1} fg_{k} - \int_{0}^{1} fg| \\ &\leq 2M ||g_{k} - g||_{q} + |\int_{0}^{1} f_{n}g_{k} - \int_{0}^{1} fg_{k}| \to 0 \text{ as } n, k \to \infty. \end{aligned}$$

That means, there is a function $f \in L_p$, $1 \le p < \infty$, such that

$$\lim_{n \to \infty} \int_0^1 f_n g = \int_0^1 f g$$

As a result, there is a function $f \in L_p$, $1 \le p \le \infty$, such that

$$\lim_{n \to \infty} \int_0^1 f_n g = \int_0^1 f g.$$

From the definition of two-norm convergence in L_p , if $g \in L_q$, $1 \le q \le \infty$ and $\{f_n\}$ is two-norm convergent to f in L_p then

$$\lim_{n \to \infty} \int_0^1 f_n(x)g(x)dx = \int_0^1 f(x)g(x)dx.$$

The connection between the two-norm convergence and norm convergence is given in Theorem 8 below.

Theorem 8. Let $1 \le p \le \infty$. If $\{f_n\}$ is norm convergent to f in L_p , then $\{f_n\}$ is two-norm convergent to f in L_p .

PROOF. For every $g \in L_q$, we have $f_n g, fg \in L_1$. There exists a positive integer n_o such that for every positive integer $n \ge n_o$, $||f_n - f||_p < 1$. Therefore, for $n \ge n_o$,

$$||f_n||_p \le ||f_n - f||_p + ||f||_p < 1 + ||f||_p$$

Take $M = \sup\{\|f_1\|_p, \|f_2\|_p, \dots, \|f_{n_o-1}\|_p, 1 + \|f\|_p\}$, then

$$\sup \|f_n\|_p \leq M$$
, for every n .

Moreover,

$$|\int_{0}^{1} f_{n}g - \int_{0}^{1} fg| \le ||f_{n} - f||_{p} ||g||_{q} \to 0, \text{ as } n \to \infty.$$

Due to the two-norm convergence we define above, we need to define the concept of two-norm continuity.

A functional F defined on L_p is said to be **two-norm continuous** in L_p , $1 \le p < \infty$, if

$$F(f_n) \to F(f) \text{ as } n \to \infty$$

whenever $\{f_n\}$ is two-norm convergent to f in L_p , $1 \le p < \infty$.

Theorem 9. If $g \in L_q$, $1 \le q \le \infty$, and

$$F(f) = \int_0^1 f(x)g(x)dx$$
 for $f \in L_p$

then F defines a two-norm continuous linear functional on L_p .

The proof is similar to that of Theorem 3.

As a result of Theorem 8, we can derive a connection between norm continuous and two norm continuous a functional on L_p , $1 \le p \le \infty$. We restate the definition of norm continuous functionals as follows.

A functional F defined on L_p , $1 \le p \le \infty$, is said to be a **norm continuous** functional on L_p , if for every sequence $\{f_n\}$ that is norm convergent to f in L_p then $\{F(f_n)\}$ converges to F(f).

Theorem 10. Let $1 \le p \le \infty$. If F is two-norm continuous functional on L_p , then F is norm continuous functional on L_p .

PROOF. Let $\{f_n\}$ be norm convergent to f in L_p . By Theorem 8, $\{f_n\}$ is two-norm convergent to f in L_p . Since F is two-norm continuous on L_p , we have

$$F(f) = \lim_{n \to \infty} F(f_n).$$

That is, F is norm continuous on L_p .

In L_p space, $1 \leq p < \infty$, the Riesz Representation Theorem says that every norm continuous linear functional on L_p determines a function $g \in L_q$, $\frac{1}{p} + \frac{1}{q} = 1$, such that

$$F(f) = \int_0^1 fg$$
, for every $f \in L_p$

Finally, we derive the representation theorem of two-norm functional on L_p , $1 \le p \le \infty$ in Theorem 11.

Theorem 11. Let $1 \le p \le \infty$. If F is two-norm continuous linear functional on L_p , then there exists a function $g \in L_q$, $\frac{1}{p} + \frac{1}{q} = 1$, such that

$$F(f) = \int_0^1 fg$$
, for every $f \in L_p$

PROOF. The proof follows from Theorem 5, Theorem 10, and the Riesz Representation Theorem. $\hfill \Box$

Corollary 12. Let $1 \leq p < \infty$. A linear functional on L_p is two-norm continuous if and only if it is norm continuous.

The corollary does not hold for $p = \infty$. Indeed, the two-norm convergence in L_{∞} does not imply the norm convergence as shown in the following example.

Example 13. Let $\{I_k\}$ be a collection of pairwise disjoint open intervals in [0,1] with the union is not of measure 1, in other words, the set $X = [0,1] \setminus \bigcup_{n=1}^{\infty} I_n$ is not measure zero. Furthermore, $|I_{n+1} \cup I_{n+2} \cup I_{n+3} \cup \ldots| \to 0$ as $n \to \infty$. Let

$$f_n(x) = \begin{cases} 0, & x \in \bigcup_{k=1}^n I_k \\ 1, & otherwise, \end{cases}$$

and

$$f(x) = \begin{cases} 1, & x \in X \\ 0, & otherwise. \end{cases}$$

Since $||f_n - f||_{\infty} = 1$ and will not tend to 0, then f_n is not norm-convergent. On the other hand, $||f_n||_{\infty} \leq 1$ for all n, and

$$\lim_{n \to \infty} \int_0^1 f_n g = \int_0^1 f g,$$

for every $g \in L_1$. Thus, $\{f_n\}$ is two-norm convergent to f.

In conclusion, we have proved completeness theorem and the representation theorem for two-norm continuous linear functionals in L_p , $1 \le p \le \infty$.

Acknowledgment. The author would like to express her deep gratitude to Prof. Lee Peng Yee for his valuable suggestions for this paper.

References

- T.H. Hildebrandt, Linear Continuous Functionals on the Space (BV) with weak topologies, Proc. Amer. Math. Soc. 17 (1966), 658 - 664.
- [2] K.Y. Khaing, *The Duals of Some Banach Spaces*, Ph.D Thesis, Nanyang Technological University, Singapore, 2002.
- [3] K.Y. Khaing and P.Y. Lee, Orthogonally Additive Functionals on BV, Math. Bohemica 129 (2004), 411 - 419.
- [4] P.Y. Lee P.Y., Lanzhou Lectures on Henstock Integration, World Scientific, Singapore, (1989).
- [5] P.Y. Lee, *Teaching Calculus without* $\epsilon\delta$, Matimýas Matematika **21(3)** (1998), 34 39.
- [6] P.Y. Lee and R. Výborný, Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press, (2000).
- [7] W. Orlicz, W. Linear Functional Analysis, World Scientific, Singapore, (1992).
- [8] F. Riesz, and B. Sz-Nagy, Leçons D'Analyse Fonctionelle, Gauthier-Villars, Paris (1968).