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C∞(X) AND RELATED IDEALS

Abstract

We have characterized the spaces X for which the smallest z-ideal
containing C∞(X) is prime. It turns out that C∞(X) is a z-ideal in
C(X) if and only if every zero-set contained in an open locally compact
σ-compact set is compact. Some interesting ideals related to C∞(X)
are introduced and corresponding to the relations between these ideals
and C∞(X), topological spaces X are characterized. Some compactness
concepts are explicitly stated in terms of ideals related to C∞(X). Fi-
nally we have shown that a σ-compact space X is Baire if and only if
every ideal containing C∞(X) is essential.

1 Introduction.

In this article we denote by C(X) (C∗(X)) the ring of all (bounded) real valued
continuous functions on a completely regular Hausdorff space X. For every
f ∈ C(X), the zero-set Z(f) is the zeros of f and an ideal I in C(X) is said
to be a z-ideal if Z(f) = Z(g), where f ∈ C(X) and g ∈ I, implies that f ∈ I.
An ideal I in C(X) is called free if

⋂
Z[I] =

⋂
f∈I Z(f) = ∅, otherwise fixed.

Fixed maximal ideals of C(X) are the sets Mp = {f ∈ C(X) : f(p) = 0},
for p ∈ X. More generally, the maximal ideals of C(X) free or fixed, are
the sets Mp = {f ∈ C(X) : p ∈ clβXZ(f)}, where p ∈ βX and βX is the
Stone-Čech compactification of X. The maximal ideals of C∗(X) are precisely
the sets M∗p = {f ∈ C∗(X) : fβ(p) = 0}, where p ∈ βX and fβ is the
extension of f to βX, see [8] for more details. The intersection of all free
maximal ideals in C∗(X), i.e.,

⋂
p∈βX\XM

∗p is denoted by C∞(X) which
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precisely consists of all continuous functions f in C(X) vanishing at infinity,
i.e., {x ∈ X : |f(x)| ≥ 1

n} is compact, for all n ∈ N, see [8]. C∞(X) is
investigated as a ring in [2] and as an ideal of C(X) in [5]. If we denote
CR(X) =

⋂
p∈νX\XM

p, where νX is the realcompactification of X, then

clearly CR(X) is a z-ideal and C∞(X) =
⋂
p∈βX\XM

∗p ⊆
⋂
p∈νX\XM

∗p =⋂
p∈νX\XM

p∩C∗(X) = CR(X)∩C∗(X) ⊆ CR(X). (note that Mp∩C∗(X) =

M∗p if and only if p ∈ νX, see 7.9 in [8]). In [2], it is shown that for a locally
compact space X, C∞(X) = CR(X) if and only if X is a pseudocompact
space. The smallest z-ideal containing C∞(X) is the ideal C

lσ
(X) = {f ∈

C(X) : X \ Z(f) is locally compact σ-compact}, see [2]. The set C
K

(X) of
all functions in C(X) with compact support is the intersection of all free
ideals in C(X) and of all free ideals in C∗(X), see [8]. So C

K
(X) ⊆ C∞(X) ⊆

C
lσ

(X) ⊆ CR(X). Topological spacesX for which C
K

(X) and C∞(X) and also
CR(X) and C∞(X) coincide, are characterized in [5] and [2] respectively. In
this article we characterize topological spaces X for which C

lσ
(X) = C∞(X).

In [11], Mandelker has shown that Cψ(X) consisting of all functions with
pseudocompact support is an ideal in C(X). It is easy to see that C

K
(X) ⊆

Cψ(X). Whenever C
K

(X) = Cψ(X), then the space X is called ψ-compact,
see [11] and [9] for more details. In [5], it is shown that C∞(X) ⊆ Cψ(X) if and
only if C∞(X) is an ideal of C(X) and for a locally compact Hausdorff space X,
C∞(X) = Cψ(X) if and only if X is compact. Another ideal related to C∞(X)
is the intersection of all free maximal ideals of C(X) which we denote by I(X),
see also [11]. For any space X, we have C

K
(X) ⊆ I(X) ⊆ Cψ(X). When

C
K

(X) = I(X) or I(X) = Cψ(X) it is said that X is µ-compact or η-compact
respectively. In Theorem 3.2 in [11] it is shown that I(X) = Cψ(X)∩C∞(X).
We show that C∞(X) = Cψ(X) if and only if X is η-compact and every open
locally compact subset of X is relatively pseudocompact. We will introduce
some other interesting ideals in C(X) and C∗(X) related to C∞(X) and we
give some topological characterizations corresponding to the relations between
these ideals and C∞(X).

We need the following lemma which is proved in [5].

Lemma 1.1. Let A be an open subset of X. Then A = X \ Z(f) for some
f ∈ C∞(X) if and only if A is a locally compact σ-compact subset of X.

By X we always mean a completely regular Hausdorff space, and the reader
is referred to [8] and [12] for undefined terms and notations.

2 Ideals related to C∞(X).

Lemma 2.1. For any space X consider the following sets:
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(a). C
l
(X) = {f ∈ C(X) : X \ Z(f) is locally compact}.

(b). C
l
(X) = {f ∈ C(X) : cl(X \ Z(f)) is locally compact}.

(c). C
σ
(X) = {f ∈ C(X) : X \ Z(f) is σ-compact}.

(d). Cσ (X) = {f ∈ C(X) : cl(X \ Z(f)) is σ-compact}.

(e). I
lσ

(X) = {f ∈ C(X) : cl (X \ Z(f)) is contained in an open locally
compact σ-compact set}.

(f). C
lσ

(X) = {f ∈ C(X) : cl(X \ Z(f)), is locally compact σ-compact}.

(g). C∗
lσ

(X) = {f ∈ C∗(X) : X \ Z(f) is locally compact σ-compact}.

Then C∗
lσ

(X) is an ideal of C∗(X) and the others are z-ideals in C(X).

Proof. We note that the union of two open (or closed) locally compact
subsets of X is locally compact. Moreover, if X \ Z(f) ⊆ A and A is σ-
compact, then clearly X \ Z(f) is also σ-compact for it is an Fσ-set. Now
X \Z(f − g) ⊆ (X \Z(f))∪ (X \Z(g)) and X \Z(fg) ⊆ X \Z(f) imply that
C
l
(X) and C

l
(X) are ideals in C(X). On the other hand, since every closed

subset of a σ-compact set is a σ-compact, C
σ
(X), C

σ
(X), I

lσ
(X), C

lσ
(X) and

C∗
lσ

(X) are also ideals. It is clear that, these ideals are z-ideals.

Lemma 2.2.

1. I
lσ

(X) ⊆ C
lσ

(X) ⊆ C
lσ

(X) ⊆ C
l
(X).

2. I
lσ

(X) ⊆ C∞(X)C(X) ⊆ C
lσ

(X).

3. C
K

(X) = C
σ
(X) ∩ Cψ(X).

4. C
lσ

(X) = C
l
(X) ∩ C

σ
(X) ⊆ C

l
(X) ∩ CR(X).

5. C
K

(X) ⊆ C
l
(X) ⊆ C

l
(X).

Proof. If f ∈ I
lσ

(X), then clX(X \ Z(f)) ⊆ A, where A is an open locally
compact σ-compact set. Then A = X \ Z(g), for some g ∈ C∞(X), by
Lemma 1.1 and hence Z(g) ⊆ intXZ(f) implies that f is a multiple of g, i.e.,
f ∈ C∞(X)C(X). The proof of other inclusions of parts 1 and 2 are easy.
To prove part (3), let f ∈ Cσ (X) ∩ Cψ(X), then clX(X \ Z(f)) is σ-compact
pseudocompact which is compact. C

K
(X) ⊆ Cσ (X) ∩ Cψ(X) and part 4 and

5 are obvious.
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In part (2), whenever X is locally compact σ-compact, then we have
C∞(X)C(X) = C

lσ
(X) = C(X). If X is neither locally compact nor σ-

compact, the equality C∞(X)C(X) = C
lσ

(X) may also happens. For example
let X = (0, 1) ∪ Y , where Y = {r ∈ R : r > 1 is irrational}. If f ∈ C

lσ
(X),

since X \Z(f) is an open locally compact subset of X, X \Z(f) ⊆ L = (0, 1).
Now consider g ∈ C(X), such that g((0, 1)) = {1} and g(Y ) = {0}. Since
X \ Z(g) is locally compact σ-compact, by Lemma 1.1, X \ Z(g) = X \ Z(h),
for some h ∈ C∞(X). Therefore Z(g) = Z(h) and g is a multiple of h, for
Z(g) = Z(h) is open. Thus, for every f ∈ C

lσ
(X), we have Z(h) = Z(g) ⊆

Z(f) which implies that f is a multiple of h, i.e., f ∈ C∞(X)C(X) and hence
C∞(X)C(X) = C

lσ
(X).

Proposition 2.3.

1. I(X) = Cσ (X) if and only if X is µ-compact.

2. Cψ(X) ⊆ C∞(X) if and only if X is η-compact. Hence Cψ(X) = C∞(X)
if and only if X is η-compact and every open locally compact set is rel-
atively pseuodocompact.

3. Cψ(X) ⊆ Cσ (X) if and only if X is ψ-compact.

Proof. 1. I(X) = C∞(X)∩Cψ(X) = C
σ
(X) if and only if C∞(X)∩Cψ(X) =

C
σ
(X) ∩ Cψ(X) = C

K
(X) if and only if I(X) = C

K
(X) which means that X

is µ-compact.
2. Cψ(X) ⊆ C∞(X) implies that I(X) = C∞(X) ∩ Cψ(X) ⊇ Cψ(X), i.e,
X is η-compact. Conversely, if X is η-compact, then C∞(X) ∩ Cψ(X) =
I(X) = Cψ(X) implies that Cψ(X) ⊆ C∞(X). Second part of (2) is obvious
by Theorem 1.3 and Proposition 2.4 in [5].
3. It follows by part (3) of Lemma 2.2.

In the following theorem we characterize spaces X for which the smallest
z-ideal containing C∞(X) is a prime ideal. We call a point x ∈ X an l-point
if x has a compact neighborhood, clearly the set of all l-points of X is open.

Theorem 2.4. C
lσ

(X) is a prime ideal if and only if X has at most one
non-l-point x∗ ∈ X and for any two disjoint cozerosets, one which does not
contain the non-l-point, is locally compact σ-compact.

Proof. Let C
lσ

(X) be a prime ideal and x∗, y∗ be two different points in X
with no compact neighborhood. Suppose U and V are two disjoint open sets
containing x∗ and y∗ respectively. Define f, g ∈ C(X) such that f(x∗) = 1,
f(X \ U) = {0} and g(y∗) = 1, g(X \ V ) = {0}. Then X \ Z(f) ⊆ U ,
X \ Z(g) ⊆ V and hence these two cozerosets are not locally compact, i.e.,
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f /∈ C
lσ

(X), g /∈ C
lσ

(X), but fg = 0 ∈ C
lσ

(X). This shows that C
lσ

(X)
is not prime, a contradiction. Thus there exists at most one x∗ ∈ X which
has no compact neighborhood. Now let (X \ Z(f)) ∩ (X \ Z(g)) = ∅. Hence
fg = 0 implies that f ∈ C

lσ
(X) or g ∈ C

lσ
(X), i.e., either X \ Z(f) or

X \ Z(g) is locally compact σ-compact. Clearly x∗ does not belong to that
one which is locally compact σ-compact. Conversely, let fg = 0. Hence
(X \Z(f))∩ (X \Z(g)) = ∅, and consequently one of these cozerosets does not
contain any non-l-point, say X \Z(f). Therefore X \Z(f) is locally compact
σ-compact, i.e., f ∈ C

lσ
(X). Since C

lσ
(X) is a z-ideal, then it is a prime ideal,

by Theorem 2.9 in [8].

Example 2.5. Let S be an uncountable space in which all points are isolated
points except for a distinguished point s∗, a neighborhood of s∗ being any set
containing s∗ whose complement is countable. The only point of S with no
compact neighborhood is s∗ and if (X \Z(f))∩ (X \Z(g)) = ∅, then s∗ is not
contained in one of these two cozerosets, say X \ Z(g). Thus g(s∗) = 0 and
since Z(g) is a Gδ-set, then X \ Z(g) is countable and hence it is σ-compact.
Now by Theorem 2.4, C

lσ
(S) is a prime ideal.

Proposition 2.6. C∗
lσ

(X) = C∞(X) if and only if every zero-set contained
in an open locally compact σ-compact subset of X is compact.

Proof. Let G be an open locally compact σ-compact subset of X, and Z =
Z(g) ⊆ G, for some g ∈ C(X). By Lemma 1.2, there exists f ∈ C∞(X) such
that X \ Z(f) = G. Hence Z(f) and Z(g) are completely separated, and
therefore there exists h ∈ C∗(X) such that h(Z(g)) = 1 and h(Z(f)) = 0.
Now Z(f) ⊆ Z(h) implies that Z(fh) = Z(h). Since fh ∈ C∞(X) ⊆ C∗

lσ
(X),

X \Z(fh) is locally compact σ-compact and consequently X \Z(h) is locally
compact σ-compact. Therefore h ∈ C∗

lσ
(X) = C∞(X). Since Z(g) ⊆ {x ∈

X : |h(x)| ≥ 1} and {x ∈ X : |h(x)| ≥ 1} is compact, Z(g) is also compact.
Conversely, suppose that every zero-set contained in an open locally compact
σ-compact subset of X is compact and let f ∈ C∗

lσ
(X). Then {x ∈ X :

|f(x)| ≥ 1
n} ⊆ X \ Z(f). Now X \ Z(f) is locally compact σ-compact and

{x ∈ X : |f(x)| ≥ 1
n} is a zero-set. This implies that {x ∈ X : |f(x)| ≥ 1

n} is
compact, i.e., f ∈ C∞(X). Hence C∞(X) = C∗

lσ
(X).

By a similar proof, we have the following result.

Corollary 2.7. C∞(X) = C
lσ

(X), i.e., C∞(X) is a z-ideal in C(X), if and
only if every zero-set contained in an open locally compact σ-compact subset
of X is compact.
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The following theorem shows that for some spaces such as X = Q ∪ [0, 1],
we have I(X) = C

lσ
(X).

Theorem 2.8. I(X) = C
lσ

(X) if and only if for every open locally compact
σ-compact subset A of X, clXA is pseudocompact and every zero-set in A is
compact.

Proof. Let I(X) = C
lσ

(X). Hence C
lσ

(X) = I(X) ⊆ C∞(X) ∩ Cψ(X) ⊆
C
lσ

(X)∩Cψ(X). Therefore C
lσ

(X) ⊆ Cψ(X), i.e., every open locally compact
σ-compact subset of X has a pseudocompact closure. On the other hand
I(X) = C

lσ
(X) implies that C

lσ
(X) = C∞(X), i.e., every zero-set contained

in an open locally compact σ-compact subset of X is compact. Conversely the
first condition implies that C

lσ
(X) ⊆ Cψ(X). Now by the second condition

we have C∞(X) = C
lσ

(X). Hence I(X) = C
lσ

(X).

Corollary 2.9. Let X be a realcompact space. Then every open locally com-
pact σ-compact subset of X has compact closure if and only if I(X) = C

lσ
(X).

Proof. IfX is realcompact, then C
K

(X) = I(X), see Theorem 8.19 in [8].

More generally, since I(X) = ∩p∈βX\XMp = Cψ(X) ∩ C∞(X), we have
the following result.

Proposition 2.10. A locally compact σ-compact open set G in X has pseu-
docompact closure if and only if βX \ X ⊆ clβX(X \ G). In particular,
βX \ X ⊆ clβXZ(f) if and only if X \ Z(f) is locally compact σ-compact
and clβX(X \ Z(f)) is pseudocompact.

Proof. If G is locally compact σ-compact with pseudocompact closure, then
G = X \ Z(f) for some f ∈ C∞(X), by Lemma 1.1. Moreover, f ∈ Cψ(X)
for clX(X \ Z(f)) is pseudocompact. Hence f ∈ C∞(X) ∩ Cψ(X) = I(X) =⋂
p∈βX\XM

p, i.e., βX \ X ⊆ clβXZ(f) = clβX(X \ G). Conversely, if G is

locally compact σ-compact and βX \X ⊆ clβX(X \ G), then G = X \ Z(f)
for some f ∈ C∞(X) by Lemma 1.1 and hence βX \ X ⊆ clβXZ(f) implies
that f ∈ I(X) ⊆ Cψ(X), i.e., clX(X \ Z(f)) is pseudocompact.

Given a topological space X, we will denote by L the set of all l-points
of X and we set N = X \ L. We note that L is open and locally compact.
Hence every open or closed subset of L is locally compact. Moreover every
open locally compact subspace of X is contained in L.

Proposition 2.11. C
l
(X) =

⋂
x∈N Mx = {f ∈ C(X) : f(x) = 0,∀x ∈ N}.
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Proof. Let f ∈ C
l
(X), X \ Z(f) is locally compact, since it is also open,

X\Z(f) ⊆ L, so N ⊆ Z(f), i.e., f(x) = 0, for all x ∈ N . Hence f ∈
⋂
x∈N Mx.

Conversely, if f ∈
⋂
x∈N Mx, then f(x) = 0, for all x ∈ N , i.e., N ⊆ Z(f).

Hence X \ Z(f) ⊆ L, i.e., X \ Z(f) is locally compact.

Proposition 2.12. If clX L = X \ intX N is locally compact (σ-compact),
then C

l
(X) = C

l
(X) (Cσ (X) = Cσ (X)).

Proof. If f ∈ C
l
(X) (f ∈ Cσ (X)), then X \ Z(f) ⊆ L and consequently,

clX(X \ Z(f)) ⊆ clX L. Since clX L is locally compact (σ-compact), clX(X \
Z(f)) is so. Hence f ∈ C

l
(X) (f ∈ C

σ
(X)).

Proposition 2.13.
(a) If L is σ-compact, then C

lσ
(X) = C

l
(X).

(b) If X is second countable and C
lσ

(X) = C
l
(X), then L is σ-compact.

Proof. (a) is evident. To prove (b), since L is open and X is second count-
able, L =

⋃
n∈N(X\Z(fn)), for fn ∈ C(X),∀n ∈ N. But X\Z(fn) ⊆ L implies

that fn ∈ Cl(X) = C
lσ

(X) and hence X \ Z(fn) is σ-compact, ∀n ∈ N. This
shows that L is also σ-compact.

Proposition 2.14.

1. X is locally compact if and only if C
l
(X) = C

l
(X) = C(X), if and only

if C
lσ

(X) is a free ideal, if and only if C
lσ

(X) = C
σ
(X).

2. X is σ-compact if and only if C
σ
(X) = C

σ
(X) = C(X).

3. X is locally compact σ-compact if and only if C
lσ

(X) = C∞(X)C(X) =
C
lσ

(X) = C(X).

Proof. The proofs of (2), the first and third parts of (1) are evident. For
second part of (1), let C

lσ
(X) is free, then ∀x ∈ X,∃f ∈ C

lσ
(X) such that

f(x) 6= 0. Hence x ∈ X \ Z(f) ⊆ X. Since X \ Z(f) is locally compact,
X is a locally compact space. Conversely, let X be a locally compact space
and x ∈ X. Thus there exists a compact set A in X such that x ∈ intX A.
Now define f ∈ C(X) with f(X \ intX A) = {0} and f(x) = 1. An = {x ∈
X : |f(x)| ≥ 1

n} ⊆ A implies that An is compact, for all n ∈ N. Now
X \ Z(f) = ∪∞n=1An and hence X \ Z(f) is σ-compact. Since X is locally
compact, X \ Z(f) is also locally compact and hence f ∈ C

lσ
(X). Now

f(x) 6= 0 shows that C
lσ

(X) is free.
For part (3) let X be a locally compact σ-compact space. By parts (1)

and (2), C
lσ

(X) = C
lσ

(X) = C(X). On the other hand, Since X is locally
compact σ-compact, by corollary 1.2 in [5], C∞(X) contains a unit of C(X),
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i.e., C∞(X)C(X) = C(X). Conversely, if C(X) = C
lσ

(X), then f = 1 ∈
C
lσ

(X) implies that X = X \ Z(f) is locally compact σ-compact.

Proposition 2.15. Let X be a locally compact σ-compact space. Then X is
perfectly normal if and only if every open subset of X is σ-compact.

Proof. Let A be an open subset of X. Since X is perfectly normal, there
exists f ∈ C(X) such that X \ Z(f) = A. Clearly A is locally compact σ-
compact, for A is an open Fσ. Conversely, if A is an open subset of X, then
A is locally compact σ-compact. By Lemma 1.1, there exists f ∈ C∞(X) such
that A = X \ Z(f). Hence X is perfectly normal.

In the following proposition, normal spaces in which the set of l-points is
closed are characterized, for which the equality, C

l
(X) = C

K
(X) holds.

Proposition 2.16. Let X be a normal space. If C
l
(X) = C

K
(X), then

every closed subset of X contained in L is compact. Whenever L is closed the
converse is also true, in fact if L is compact, then C

l
(X) = C

K
(X).

Proof. First suppose that C
l
(X) = C

K
(X) and A ⊆ L is closed. Since

N = X \ L is closed, A ∩ N = ∅ and X is normal, There exists f ∈ C(X)
such that f(A) = {1} and f(N) = {0}. Now A ⊆ {x ∈ X : f(x) > 1

3} and
{x ∈ X : f(x) > 1

3} is a cozero-set, say X \ Z(g). But clX(X \ Z(g)) ⊆ {x ∈
X : f(x) ≥ 1

3} ⊆ X \ Z(f) ⊆ X \N = L imply that clX(X \ Z(g)) is locally
compact, i.e., g ∈ C

l
(X). Since C

l
(X) = C

K
(X), clX(X \ Z(g)) is compact.

On the other hand A ⊆ clX(X \ Z(g)) implies that A is also compact. Next
suppose that every closed subset of L is compact, L is closed (compact) and
f ∈ C

l
(X). Then X \ Z(f) is locally compact and so X \ Z(f) ⊆ L, hence

clX(X \ Z(f)) ⊆ L. So clX(X \ Z(f)) is compact by our hypothesis and
therefore f ∈ C

K
(X). The inclusion C

K
(X) ⊆ C

l
(X) is shown in Lemma

2.2.

A topological space X is said to be Baire space, if the intersection of each
countable family of dense open sets in X is dense. A subset A of X is called
nowhere dense in X if intXclXA = ∅. A set A ⊆ X is first category in X if
A =

⋃∞
n=1An, where each An is nowhere dense in X. All other subsets of X

are called second category in X.
It is well-known that a σ-compact space is second category (Baire) if and

only if the set of l-points of X is nonempty (dense) in X. Moreover every
locally compact Hausdorff space is Baire, see [12] and [4].

A nonzero ideal in a commutative ring is said to be essential if it intersects
every nonzero ideal nontrivially. In [3], it is shown that a nonzero ideal E in
C(X) is an essential ideal if and only if

⋂
Z[E] =

⋂
f∈E Z(f) has an empty
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interior. In that article it is also shown that for a compact space X, every
countable intersection of essential ideals of C(X) is an essential ideal if and
only if every first category subset of X is nowhere dense in X.

We conclude this section with the following propositions.

Proposition 2.17. A σ-compact space X is a Baire space if and only if every
ideal in C(X) containing C∞(X) is an essential ideal.

Proof. Let I be an ideal and C∞(X) ⊆ I. Then
⋂
Z[I] ⊆

⋂
Z[C∞(X)] = N ,

where N is the set of all non-l-points of X. Now if X is a Baire space, the
set of l-points of X is dense and hence intX N = ∅. This implies that I is
essential. Conversely, let every ideal containing C∞(X) be essential. Since
C∞(X) ⊆ C

l
(X), C

l
(X) is also essential. Therefore

⋂
Z[C

l
(X)] = N has

empty interior and hence the set of l-points of X is dense, i.e., X is a Baire
space.

Proposition 2.18. A σ-compact space X is second category if and only if
C∞(X) 6= (0).

Proof. It is evident.
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