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YET A SHORTER PROOF OF AN
INEQUALITY OF CUTLER AND OLSEN

Abstract

A very short proof of an inequality due to Cutler and Olsen is pre-
sented.

For E ⊆ Rd, let dimE denote the Hausdorff dimension of E. Let P(E)
denote the family of Borel probability measures on E. For µ ∈ P(E) and
δ > 0 write

hδ(µ) = inf
{
−
∑
i∈N

µEi logµEi : {Ei} is a disjoint δ–cover of E
}
.

The lower Rényi dimension of µ is defined by R(µ) = limδ→0
hδ(µ)
| log δ| . Cutler and

Olsen [1] proved and Olsen [3] reproved (with a shorter proof) the following.

Theorem. If E ⊆ Rd is a Borel set, then dimE 6 supµ∈P (E)R(µ).

We present a remarkably shorter proof utilizing the full strength of the
following well–known Frostman’s Lemma as it appears in [2, Theorem 5.6].
The point is that we use a version better than that in [3] and thus we do
not have to state Lemma 1 of [3] and we can avoid the use of potentials and
energies thus skipping completely the proof on page 659 of [3] and reducing
the entire proof to less than five lines.

For x ∈ Rd and r > 0, B(x, r) denotes the closed ball of radius r centered
at x.

Frostman Lemma. Let E ⊆ Rd be a Borel set. If 0 < s < dimE, then there
is a measure µ ∈ P(E) and a constant b such that µB(x, r) 6 brs for each
r > 0 and x ∈ E.
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Proof. [Proof of the Theorem] Let 0 < s < dimE and let µ be the measure
of the Frostman Lemma. Let δ > 0 and let {Ei} be a disjoint δ–cover of E.
Each Ei is contained in a ball of radius δ and thus µEi 6 bδs. It follows that
−
∑
i∈N µEi logµEi > − log(bδs)

∑
i∈N µEi = − log(bδs). Therefore hδ(µ) >

− log(bδs). Taking the limits yields R(µ) > limδ→0
log(bδs)

log δ = s.
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