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MEASURE-PRESERVING MAPS OF Rn

Abstract

An elementary proof is given of the existence of a measure-preserving
bijection of Rn that maps a preassigned Borel set with Lebesgue mea-
sure 1 onto the unit cube. The proof requires the use of only the Vitali
Covering Theorem, translations and elementary properties of infinite
sets.

This short note provides an elementary, real analytic proof of the exis-
tence stated in the abstract. The statement is part of the folklore surrounding
measure-preserving bijections of Rn. It can be inferred from very general the-
orems on the isomorphisms of σ-algebras in complete separable metric spaces.
(See, for example, Chapter 15 of [3].) The present proof requires only the
use of the usual Vitali Covering Theorem. Lebesgue measure on Rn will be
denoted by λ.

Theorem 1. Let Q = [0, 1]n and let B be a Borel set in Rn with λ(B) = 1.
Then there exists a measure-preserving bijection H : Rn → Rn such that

λ(Q \H[B]) = 0

and H and H−1 are Borel measurable. Moreover, H may be chosen so that it
is the identity map on Rn \ (Q ∪B).

Sharper theorems will be discussed at the end of the note (see Theorems 4
and 6 below).

The next lemma is key to the proof of Theorem 1.

Lemma 2. Let ε > 0 and Q = [0, 1]n. If E and F are Borel sets in Rn such
that E ⊂ Q, Q∩F = ∅ and λ(E) = λ(F ), then there are Borel sets U and V
and there is a measure-preserving bijection

H : U ∪ V → U ∪ V
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such that

U ⊂ E, V ⊂ F, H[U ] = V, H[V ] = U, and λ(F \ V ) < ε.

Moreover, H and H−1 may be assumed to be Borel measurable.

Proof. As U = V = ∅ easily disposes the case λ(F ) < ε, the contrary case
will be assumed. The proof will use Vitali coverings consisting of cubes whose
side-lengths are 2−k, k = 1, 2, . . . , and that do not intersect the boundary
of Q. (The interior of a set A will be denoted by Ao.)

First, consider the Vitali covering of the set Qo ∩ E formed by the cubes
described above. Since λ(E) ≤ 1, the Vitali Covering Theorem yields finitely
many disjoint cubes Ii, i = 1, 2, . . . , nE , contained in Qo with the properties

λ
(
E \

⋃nE

i=1 Ii
)
< ε/4 and λ

(⋃nE

i=1 Ii \ E
)
< ε/4.

Second, consider the Vitali covering of the set F formed by the cubes described
above. As λ(F ) = λ(E), the Vitali Covering Theorem yields finitely many
disjoint cubes Jj , j = 1, 2, . . . , nF , contained in Rn \Q with the properties

λ
(
F \

⋃nF

j=1 Jj
)
< ε/4 and λ

(⋃nF

j=1 Jj \ F
)
< ε/4.

Let k0 be a positive integer such that 2−k0 is less than the side-lengths of the
cubes Ii, i = 1, 2, . . . , nE , and the cubes Jj , j = 1, 2, . . . , nF . Now subdivide
the cubes Ii, i = 1, 2, . . . , nE , into nonoverlapping cubes Kk, k = 1, 2, . . . , NE ,
with side-lengths exactly equal to 2−k0 , and also subdivide the cubes Jj ,
j = 1, 2, . . . , nF , into nonoverlapping cubes Ll, l = 1, 2, . . . , NF , with side-
lengths exactly equal to 2−k0 . Let N = min {NE , NF } and let

(Kp, Lp), p = 1, 2, . . . , N,

be pairings of these newly formed cubes. Clearly there may be some cubes Kk

or Ll that are not paired. Let us show

λ
(⋃

k>N Kk

)
< ε/2.

If N = NE , then
⋃
k>N Kk = ∅. So assume N < NE . Then

λ
(⋃

k>N Kk

)
= λ

(⋃NE

k=1Kk

)
− λ
(⋃NF

l=1 Ll
)

= λ
(⋃nE

i=1 Ii
)
− λ
(⋃nF

j=1 Jj
)

<
(
λ(E) + ε/4

)
−
(
λ(F )− ε/4

)
= ε/2
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because λ(E) = λ(F ).
Next let (Kp, Lp) be any of the paired cubes. Denote by Tp the translation

of Kp onto Lp. Define

Ep = (Kp
o ∩ E) ∩ Tp−1[Lpo ∩ F ] and Fp = Tp[Kp

o ∩ E] ∩ (Lpo ∩ F ).

Clearly, as Tp is one-to-one,

Tp[Ep] = Fp and Tp
−1[Fp] = Ep,

and, as Tp is measure-preserving,

λ(Ep) ≥ λ(Kp
o ∩ E)− λ(Lpo \ F ).

Finally define
U =

⋃N
p=1Ep and V =

⋃N
p=1 Fp,

and define H : U ∪ V → U ∪ V by

H(x) =

{
Tp(x) if x ∈ Ep, p = 1, 2, . . . , N,
Tp
−1(x) if x ∈ Fp, p = 1, 2, . . . , N.

Only λ(F \ V ) < ε remains to be verified. To this end we have

λ(F \ V ) = λ
(
F \

⋃N
p=1 Fp

)
= λ(F )−

∑N
p=1 λ(Fp)

= λ(E)−
∑N

p=1 λ(Ep)

≤ λ(E)−
∑N

p=1 λ(Kp ∩ E) +
∑N

p=1 λ(Lp \ F )

≤ λ(E)−
∑NE

p=1 λ(Kp ∩ E) +
∑

p>N λ(Kp) +
∑NF

p=1 λ(Lp \ F )

< λ
(
E \

⋃nE

i=1 Ii) + ε/2 + λ
(⋃nF

j=1 Jj \ F
)

< ε/4 + ε/2 + ε/4
= ε.

The lemma is proved. Observe that H is Borel measurable on the Borel set
U ∪ V and that H2 is the identity map, whence H−1 is Borel measurable.

Proof of Theorem 1. We repeatedly apply the lemma.
Let E1 = Q\B and F1 = B \Q and ε1 = 1/2 in the lemma. We get sets U1

and V1 and a map H1 : U1 ∪ V1 → U1 ∪ V1 such that H1 is measure-preserving
and λ(F1 \ V1) < 1/2, where U1 ⊂ E1, V1 ⊂ F1, H1[U1] = V1 and H1[V1] = U1.
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Continuing inductively, we have sets Ek, Fk, Uk and Vk and measure-
preserving maps Hk : Uk ∪ Vk → Uk ∪ Vk such that λ(Fk \ Vk) < 2−k, where

Uk ⊂ Ek, Vk ⊂ Fk,

Ek+1 = Ek \ Uk = E1 \
⋃ k
j=1 Uj , Fk+1 = Fk \ Vk = F1 \

⋃ k
j=1 Vj ,

and
Hk[Uk] = Vk, Hk[Vk] = Uk.

Let
E∞ = E1 \

⋃∞
j=1 Uj and F∞ = F1 \

⋃∞
j=1 Vj .

Then λ(E∞) = 0 and λ(F∞) = 0 hold. We define H in the obvious way.
That is, for each k, H(x) = Hk(x) if x ∈ Uk ∪ Vk, and H(x) = x otherwise.
Clearly H is a measure-preserving bijection of Rn onto Rn. Finally,

H[B] = H
[
(Q ∩B) ∪ F∞ ∪

⋃∞
k=1 Vk

]
= (Q ∩B) ∪ F∞ ∪

⋃∞
k=1 Uk

= (Q ∩B) ∪ F∞ ∪
(
(Q \B) \ E∞

)
= (Q \ E∞) ∪ F∞,

whence λ(Q \H[B]) = 0, and the theorem is proved.

For a simple application let us turn to the assertion stated in the abstract.

Theorem 3. Let Q = [0, 1]n and let B be a Borel set in Rn with λ(B) = 1.
Then there is a measure-preserving bijection H : Rn → Rn such that H[B] = Q.
Moreover, H may be assumed to be the identity map on the complement of
B ∪Q ∪ Z, where Z is a set of Lebesgue measure 0.

Proof. Let H be given by Theorem 1. Define

A = Q \H[B] and C = B \H−1[Q].

Let ZA0, ZA1, ZC0 and ZC1 be mutually disjoint, nonempty perfect sets such
that

ZA0 ∪ ZA1 ⊂ Q ∩H[B] and (ZC0 ∪ ZC1) ∩ (Q ∪B) = ∅.

Note that the sets ZA0 ∪ A, A ∪ ZC0, ZC1 ∪ C and C ∪ ZA1 are Borel sets
with cardinality c = 2ℵ0 . Using the cardinality only, we select one-to-one
correspondences

h1 : ZA0 → ZA0 ∪A, h2 : A ∪ ZC0 → ZC0,

h3 : ZC1 → ZC1 ∪ C, h4 : C ∪ ZA1 → ZA1.
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These maps will define a one-to-one map of (ZA0∪A∪ZC0)∪ (ZC1∪C ∪ZA1)
onto itself. Let h be the extension of this map to all of Rn by means of the
identity on the complement of this set. The map h ◦H satisfies Q = h ◦H[B].
All that remains is to require λ(ZA0) = λ(ZA1) = λ(ZC0) = λ(ZC1) = 0 to
complete the proof.

Theorem 3 can be sharpened to include the Borel measurability of the
bijections H and H−1. We give here a straightforward proof that relies on an
elementary topological property due to Menger (Theorem 5 below).

Theorem 4. Let Q = [0, 1]n and let B be a Borel set in Rn with λ(B) = 1.
Then there is a measure-preserving bijection H : Rn → Rn such that H[B] = Q
and both H and H−1 are Borel measurable. Moreover, H may be assumed to
be the identity map on the complement of B ∪Q ∪ Z, where Z is a Borel set
of Lebesgue measure 0.

The main idea of the proof is found in the proof of Theorem 3. The
proof will use the following topological property of 0-dimensional subsets of
separable metrizable spaces which may not be found in the “toolbox” of every
analyst. (A separable metrizable space is 0-dimensional if each point has
arbitrarily small neighborhoods with empty boundaries.)

Theorem 5 (Menger). Every 0-dimensional separable metrizable space is
topologically embeddable in the Cantor ternary set.

(See [1, page 26] for Menger’s theorem.) Another useful fact is that the Cantor
ternary set can be topologically embedded in every nonempty perfect subset
of Rn.

Let us turn to the first step of the proof. Observe that every nonempty
Borel subset of Rn can be written as the union of at most countably many
Borel sets whose dimensions are 0. This is quite obvious since, for each positive
integer k, the subset of Rk that consists of all points (x1, x2, . . . , xk) with every
coordinate being irrational is a 0-dimensional Borel set (see [2, Example II.6,
page 11]). As the Cantor ternary set C contains countably many (indeed,
2ℵ0 many) mutually disjoint topological copies of C, it now follows that, for
each nonempty Borel subset Y0 of Rn, there is an injection ϕ0 of Y0 into C
such that ϕ0 and ϕ0

−1 are Borel measurable. Let us denote the image of this
injection by Y1. We may assume that Y1 is contained in the interval [2/3, 1].
For each positive integer ν define the subset Yν+1 = 3−1Yν of C. In the
set Y0∪C we form the space Y = Y0∪Y1∪Y2∪· · ·∪Yν ∪· · · , where Y is given
the obvious metric topology. Then the injection ϕ : Y → Y1∪Y2∪· · ·∪Yν ∪· · ·
given by

ϕ|Y0 = ϕ0 and ϕ(y) = 3−1y for y ∈ Yν , ν = 1, 2, . . . ,
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is onto and is such that ϕ and ϕ−1 are Borel measurable. The reader should
be able to complete the proof.
Remarks. Using the general results alluded to at the beginning of this note,
we can establish the following more general statement.

Theorem 6. Let X be a complete separable metric space and let µ be a
nonatomic, σ-finite, Borel regular measure on X. If A and B are Borel subsets
of X with 0 < µ(A) = µ(B) < µ(X) then there is a bijection of X onto itself
such that H[B] = A, H and H−1 are Borel measurable, and H is the identity
map on the complement of A ∪B ∪ Z where Z is a Borel set with µ(Z) = 0.

Clearly we must deal with the sets A \ B and B \ A, just as in the proof of
Theorem 1. When µ(A \ B) > 0 holds, the measure µ restricted to A \ B
is “essentially the same as Lebesgue measure on the interval [0, µ(A \ B)]”
and analogously for B \A. (In passing, we note that the machinery of Borel
isomorphisms of uncountable Borel subsets of complete separable metric spaces
is used in the proof of the last assertion. For a good reference see [3], in
particular, Theorem 16 on page 409.) So, there is a bijection H of A∪B onto
itself so that H and H−1 are Borel measurable and µ(A \H[B]) = 0 (that is,
the analogue of Theorem 1). The remainder of proof follows the pattern of
that for Theorem 4. Here, we will need 2 facts. The first is that every Borel
set in X is Borel isomorphic to a Borel subset of the Cantor ternary set C.
The second is that C is topologically embeddable into any uncountable Borel
subset of X.

Of course, the point of the first of the proofs given in this note is that the
additional information of µ being Lebesgue measure on Rn permits an elemen-
tary, real analytic proof. The author wishes to thank Professors Rae Shortt
of Wesleyan University and Bertram Schreiber of Wayne State University for
pointing out the reference to the third edition of [3] used here and Professor
Daniel Waterman of Syracuse University for bringing the folklore theorem to
the author’s attention.
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