T. H. Steele, Department of Mathematics, Weber State University, Ogden, UT, 84408-1702; e-mail: thsteele@weber.edu

THE SET OF CONTINUOUS FUNCTIONS WITH ZERO TOPOLOGICAL ENTROPY

Abstract

Let I = [0, 1]. We show that those functions in C(I, I) possessing zero topological entropy form a nowhere dense perfect subset of the continuous self maps of the interval. We also show that every function with zero topological entropy that possesses an infinite ω -limit set is the uniform limit of functions having only finite ω -limit sets.

1 Introduction

In the study of chaotic and dynamical systems, those functions possessing zero topological entropy have received considerable attention. Topological entropy, as introduced in [1], was initially used to provide a numerical measure for the complexity of an endomorphism of a compact topological space. The notion has since been extended to provide a way of describing the chaotic behavior of a self map of a compact interval. As the following results of Misiurewicz and Sarkovskii indicate, those functions with zero topological entropy must have relatively benign iterative structures [8], [9], [7].

Theorem 1. Let $f : [0,1] \rightarrow [0,1]$ be continuous. The following conditions are equivalent.

- f has positive topological entropy.
- For some $x \in I = [0, 1]$, the ω -limit set $\omega(x, f)$ is infinite and contains a periodic point.
- f has a cycle of order not a power of two.
- There are closed intervals J and K in I having at most one point in common, and positive integers m, n such that $J \cup K \subset f^m(J) \cap f^n(K)$.

821

Key Words: topological entropy, continuous function, ω -limit set Mathematical Reviews subject classification: 54H20, 26A18 Received by the editors May 22, 1998

Four years later V. Fedorenko, A. Sarkovskii and J. Smítal published a more extensive list of conditions equivalent to a function having zero topological entropy; the interested reader is referred to Theorem A of [6]. From Theorem 1, one sees that each periodic orbit of f must have order 2^n for some nonnegative integer n whenever f has zero topological entropy. Our next theorem, due to Smítal, sheds considerable light onto the structure of the infinite ω -limit sets of a function with zero topological entropy [10].

Theorem 2. If ω is an infinite ω -limit set of $f \in C(I, I)$ possessing zero topological entropy, then there exists a sequence of closed intervals $\{J_k\}_{k=1}^{\infty}$ in [0, 1] such that

- for each $k, \{f^i(J_k)\}_{i=1}^{2^k}$ are pairwise disjoint, and $J_k = f^{2^k}(J_k)$.
- for each $k, J_{k+1} \cup f^{2^k}(J_{k+1}) \subset J_k$.
- for each $k, \omega \subset \bigcup_{i=1}^{2^k} f^i(J_k)$.
- for each k and $i, \omega \cap f^i(J_k) \neq \emptyset$.

Given the very specific behavior that functions of zero topological entropy must demonstrate on their infinite ω -limit sets, it may not be too surprising that Bruckner and Smital have been able to characterize these sets [4].

Theorem 3. An infinite compact set $W \subset (0,1)$ is an ω -limit set of a map $f \in C(I, I)$ with zero topological entropy if and only if $W = Q \cup P$ where Q is a Cantor set and P is empty or countably infinite, disjoint with Q, and satisfies the following conditions:

- every interval contiguous to Q contains at most two points of P;
- each of the intervals $[0, \min Q), (\max Q, 1]$ contains at most one point of P, and
- $\overline{P} = Q \cup P$.

More recently in [2], Block and Coppel have turned their attention to the structure of the collection $\mathcal{E} = \{f \in C(I, I) : f \text{ has zero topological entropy}\}$ as a subset of C(I, I). We extend their results by first recalling that \mathcal{E} is a nowhere dense perfect subset of C(I, I). We then go on to prove that every function in \mathcal{E} possessing an infinite ω -limit set is the uniform limit of functions possessing only finite ω -limit sets. That \mathcal{E} is a nowhere dense perfect subset of C(I, I) follows from earlier work of Block and Misiurewicz; we present an alternate proof of this fact since it complements the second part of Theorem 4, which answers a specific query of [2].

2 Preliminaries

We write $\mathbf{h}(f) = 0$ in order to indicate that f in C(I, I) possesses zero topological entropy, so that $\mathcal{E} = \{f \in C(I, I) : \mathbf{h}(f) = 0\}$. While we can take I to be any compact interval of the real line, for convenience we set I = [0, 1]. We let $||f - g|| = \sup\{|f(x) - g(x)| : x \in I\}$, and work in the complete metric space $(C(I, I), || \circ ||)$. Also, let \mathbb{P}_n denote the set of all continuous functions $f : I \to I$ which possess a point of period n, and let $\mathbb{P}_{2^{\infty}}$ represent those functions with zero topological entropy that possess a point of period 2^n for all natural numbers n. From the Sarkovskii ordering on periodic orbits of continuous self-maps of a compact interval, one sees that $\mathbb{P}_{2^{\infty}} \subset \cdots \subset \mathbb{P}_{2^{n+1}} \subset \mathbb{P}_{2^n} \subset \cdots \subset \mathbb{P}_4 \subset \mathbb{P}_2 \subset \mathbb{P}_1$.

We make the following definitions with Smítal's Theorem 2 in mind. Let ω be an infinite compact subset of I, and let f map ω into itself. We call f a simple map on ω if ω has a decomposition $S \cup T$ into compact portions that f exchanges, and f^2 is simple on each of these portions. From Smítal's Theorem one sees that every map f with zero topological entropy is simple on each of its infinite ω -limit sets. Let $\{J_k\}_{k=1}^{\infty}$ be a nested sequence of compact periodic intervals of ω and f as described in Smítal's Theorem. Every set of the form $\omega \cap f^i(J_k)$ is periodic of period 2^k , and we call each such set a periodic portion of rank k. This system of periodic portions of ω , or of the corresponding periodic intervals, is called the simple system of ω with respect to f. We now recall a device from [5] that allows us to code the sets $f^i(J_k)$ with finite tuples of zeros and ones. Let \mathbb{N} denote the natural numbers, and take \mathcal{N} to be the set of sequences composed of zeros and ones. If $\mathbf{n} \in \mathcal{N}$ and $\mathbf{n} = \{n_i\}_{i=1}^{\infty}$, we let $\mathbf{n}|k = (n_1, n_2, \dots, n_k)$. Set $\mathbf{0} = \{0, 0, \dots\}$ and $\mathbf{1} = \{1, 1, \dots\}$. Now, define a function $\mathcal{A}: \mathcal{N} \longrightarrow \mathcal{N}$ given by $\mathcal{A}(\mathbf{n}) = \mathbf{n} + 1\mathbf{0}$, where addition is modulus two from left to right. For each $k \in \mathbb{N}$ and $i \in \mathbb{N}$ put $F_{1|k} = J_k$ and $F_{\mathcal{A}^{i}(\mathbf{1}|k)} = f^{i}(J_{k})$. Thus, for each **m** and **n** in \mathcal{N} and $k \in \mathbb{N}$ there is a $j \in \mathbb{N}$ such that $\mathcal{A}^{j}(\mathbf{m}|k) = \mathbf{n}|k$; the above relations define $F_{\mathbf{n}|k}$ for all $\mathbf{n} \in \mathcal{N}$ and $k \in \mathbb{N}$. Now, set $F_{\mathbf{n}} = \bigcap_{k=1}^{\infty} F_{\mathbf{n}|k}$, and let $K = \bigcup_{\mathbf{n} \in \mathcal{N}} \bigcap_{k=1}^{\infty} F_{\mathbf{n}|k}$. Then K and each $F_{\mathbf{n}}$ are compact, and the components of K consist of the $F_{\mathbf{n}}$ sets. Let G be the component of [0,1] - K which contains the interval between F_1 and F_0 . In general, let $G_{\mathbf{n}|k}$ be that component of [0,1] - K which contains the interval between $F_{\mathbf{n}|k0}$ and $F_{\mathbf{n}|k1}$. We set $\mathcal{G} = \{G\} \cup \{G_{\mathbf{n}|k} : \mathbf{n}\}$ $\in \mathcal{N}, k \in \mathbb{N}\}, G^0 = G \cup [0, \inf K] \cup (\sup K, 1] \text{ and } G^k = \bigcup \{G_{\mathbf{n}|k} : \mathbf{n} \in \mathcal{N}\}.$ Thus, $[\inf K, \sup K] = K \cup \mathcal{G}$ and $[0, 1] = K \cup (\bigcup_{i=0}^{\infty} G^{j}).$

3 Results

We are now in a position to state precisely as well as prove our main result; this is the content of the following theorem.

Theorem 4. Let $\mathcal{E} = \{ f \in C(I, I) : \mathbf{h}(f) = 0 \}$. Then

- \mathcal{E} is a nowhere dense perfect subset of C(I, I).
- $\overline{\bigcup_{k>0}(\mathbb{P}_{2^k}\cap\mathcal{E})}=\mathcal{E}.$

PROOF. We first prove that \mathcal{E} is a nowhere dense closed subset of C(I, I). From [2] we know that the function $\mathbf{h} : C(I, I) \to \mathbb{R}^+ \cup \{+\infty\}$, given by $f \to \mathbf{h}(f)$, is lower semicontinuous. Thus, if $\mathbf{h}(f) > \alpha > 0$, then $\mathbf{h}(g) > \alpha$ for all $g \in C(I, I)$ sufficiently close to f. In particular, the set $\mathcal{S} = \{f \in C(I, I) : \mathbf{h}(f) > 0\}$ is open. Now, suppose that $f \in \mathcal{E}$. Since f must have a fixed point in I, for any $\varepsilon > 0$ we can find g in C(I, I) so that $||f - g|| < \varepsilon$, yet $\mathbf{h}(g) > 0$. In fact, we can take g to equal f outside of a neighborhood of the fixed point, and define g on a subinterval of that neighborhood so that it is an appropriately scaled copy of the hat map $h : I \to I$ given by $x \longmapsto 2x$ for $x \in [0, \frac{1}{2}]$, and $x \longmapsto 2(1 - x)$ for $x \in [\frac{1}{2}, 1]$. To show that \mathcal{E} is perfect in addition to being nowhere dense and closed in C(I, I), we let $\{\varphi_n\}$ be a sequence of homeomorphisms from I to I that converge uniformly to the identity map on I. Let f be an element of \mathcal{E} , and set $f_n = \varphi_n f \varphi_n^{-1}$. Since f_n is topologically conjugate to $f \in \mathcal{E}$, one sees that $\mathbf{h}(f_n) = 0$ for each n, too. Moreover, $f_n \to f$ since the uniform limit of $\{\varphi_n\}$ is the identity map.

It remains to show that $\overline{\bigcup_{k\geq 0}(\mathbb{P}_{2^k}\cap \mathcal{E})} = \mathcal{E}$. To this end, it suffices to show that for any f in $\mathbb{P}_{2^{\infty}}$, there exists $\{f_n\}$ contained in $\bigcup_{k\geq 0}(\mathbb{P}_{2^k}\cap \mathcal{E})$ for which $f_n \to f$. Let $f \in \mathbb{P}_{2^{\infty}}$. We proceed through two cases. First, let us suppose that f is not chaotic in the sense of Li and Yorke, so that $|F_{\mathbf{n}}| = 0$ for all the components $F_{\mathbf{n}}$ in a simple system of f, should the function possess an infinite ω -limit set [3]. Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ with the property that $|F_{\mathbf{n}}|_k| < \varepsilon$ for all \mathbf{n} in \mathcal{N} , whenever $k \geq N$. We let g equal fon $I - (\bigcup_{\mathbf{n}\in\mathcal{N}}F_{\mathbf{n}|N})$, and extend g linearly on each of the 2^N intervals of the form $F_{\mathbf{n}|N}$. Since $g^{2^N} : F_{\mathbf{n}|N} \to F_{\mathbf{n}|N}$ is linear for each \mathbf{n} in \mathcal{N} , it follows that g has periodic points of order no more that 2^{N+1} . In a similar fashion one constructs $g \neq 2^{N+1}$ function so that $||f - g|| < \varepsilon$ whenever f is a 2^{∞} function that does not possess an infinite ω -limit set.

For our second case, let us suppose that f is chaotic in the sense of Li and Yorke, so that int $F_{\mathbf{n}} \neq \emptyset$ for some component of the simple system of f. Let $x \in \operatorname{int} F_{\mathbf{n}}$, and take $\varepsilon > 0$. Since f is uniformly continuous, there exists Na natural number such that $|G_{\mathbf{m}|n}| < \varepsilon$ and $|f(G_{\mathbf{m}|n})| < \varepsilon$ whenever n > N

824

for all **m** in \mathcal{N} . Also, there exists **m** in \mathcal{N} and M in \mathbb{N} so that $|F_{\mathbf{m}|n}| < \varepsilon$ and $|F_{\mathcal{A}(\mathbf{m})|n}| < \varepsilon$ for any n > M. Let $n > \max\{M, N\}$, and without loss of generality we may presume that $F_{\mathbf{m}|n+2}$ lies between $G_{\mathbf{m}|n}$ and $G_{\mathbf{m}|n+1}$. There exists a $k \in \mathbb{N}$ for which $f^k(x) \in F_{\mathbf{m}|n+2}$, and since $f^{2^{n+2}-k}(F_{\mathbf{m}|n+2}) =$ $F_{\mathbf{n}|n+2}$, there is x^* in $F_{\mathbf{m}|n+2}$ such that $f^{2^{n+2}-k}(x^*) = x$. We modify f on $F_{\mathbf{m}|n+2}, G^n$ and G^{n+1} to get a function g so that $g \in \mathbb{P}_{2^{n+2}}$, and $||f - g|| < \varepsilon$. If y is in $I - (F_{\mathbf{m}|n+2} \cup G^n \cup G^{n+1})$, we let g(y) = f(y). If $y \in F_{\mathbf{m}|n+2}$, let $g(y) = f(x^*)$. We extend g in a linear fashion on G^n and G^{n+1} to get $g \in C(I, I)$ for which $||f - g|| < \varepsilon$. Since $g^k(x) = f^k(x) \in F_{\mathbf{m}|n+2}, g(g^k(x)) =$ $f(x^*)$ and $g^{2^{n+2}-(k+1)}(g(g^k(x))) = f^{2^{n+2}-(k+1)}(f(x^*)) = x$, it follows that xhas period 2^{n+2} . Since g possesses a unique periodic point of period 2^n in G^n , and a unique periodic point of period 2^{n+1} in G^{n+1} , it follows that g is a 2^{n+2} function.

References

- R. Adler, A. Konheim and M. McAndrew, *Topological entropy*, Trans. Amer. Math. Soc. **114** (1965), 309–319.
- [2] L. Block and W. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, 1991.
- [3] A. M. Bruckner and J. G. Ceder, Chaos in terms of the map $x \mapsto \omega(x, f)$, Pac. J. Math. **156** (1992), 63–96.
- [4] A. M. Bruckner and J. Smítal, The structure of ω-limit sets of maps of the interval with zero topological entropy, Ergod. Th. and Dynam. Sys. 13 (1993), 7–19.
- [5] R. L. Devaney, *Chaotic dynamical systems*, Benjamin/Cummings Publ. Co., 1986.
- [6] V. Fedorenko, A. Sarkovskii and J. Smítal, *Characterizations of weakly chaotic maps of the interval*, Proc. Amer. Math. Soc. **110** (1990), 141–148.
- [7] M. Misiurewicz, Horseshoe mappings of the interval, Bull. Acad. Polon. Sci. Ser. Math. 27 (1979), 167–169.
- [8] A. N. Sarkovskii, The behavior of a map in a neighborhood of an attracting set, Ukrain. Mat Z. 18 (1966), 60–83. (in Russian)

- [9] A. N. Sarkovskii, On cycles and the structure of continuous mappings, Ukrain. Mat Z. 17 (1965), 104–111. (in Russian)
- [10] J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269–282.