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THE SET OF CONTINUOUS FUNCTIONS
WITH ZERO TOPOLOGICAL ENTROPY

Abstract

Let I = [0, 1]. We show that those functions in C(I, I) possessing
zero topological entropy form a nowhere dense perfect subset of the
continuous self maps of the interval. We also show that every function
with zero topological entropy that possesses an infinite ω-limit set is the
uniform limit of functions having only finite ω-limit sets.

1 Introduction

In the study of chaotic and dynamical systems, those functions possessing zero
topological entropy have received considerable attention. Topological entropy,
as introduced in [1], was initially used to provide a numerical measure for the
complexity of an endomorphism of a compact topological space. The notion
has since been extended to provide a way of describing the chaotic behavior of
a self map of a compact interval. As the following results of Misiurewicz and
Sarkovskii indicate, those functions with zero topological entropy must have
relatively benign iterative structures [8], [9], [7].

Theorem 1. Let f : [0, 1] → [0, 1] be continuous. The following conditions
are equivalent.

• f has positive topological entropy.

• For some x ∈ I = [0, 1], the ω-limit set ω(x, f) is infinite and contains
a periodic point.

• f has a cycle of order not a power of two.

• There are closed intervals J and K in I having at most one point in
common, and positive integers m,n such that J ∪K ⊂ fm(J) ∩ fn(K).
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Four years later V. Fedorenko, A. Sarkovskii and J. Smı́tal published a more
extensive list of conditions equivalent to a function having zero topological
entropy; the interested reader is referred to Theorem A of [6]. From Theorem 1,
one sees that each periodic orbit of f must have order 2n for some nonnegative
integer n whenever f has zero topological entropy. Our next theorem, due to
Smı́tal, sheds considerable light onto the structure of the infinite ω-limit sets
of a function with zero topological entropy [10].

Theorem 2. If ω is an infinite ω-limit set of f ∈ C(I, I) possessing zero
topological entropy, then there exists a sequence of closed intervals {Jk}∞k=1 in
[0, 1] such that

• for each k, {f i(Jk)}2k

i=1 are pairwise disjoint, and Jk = f2k

(Jk).

• for each k, Jk+1 ∪ f2k

(Jk+1) ⊂ Jk.

• for each k, ω ⊂ ∪2k

i=1f
i(Jk).

• for each k and i, ω ∩ f i(Jk) 6= ∅.

Given the very specific behavior that functions of zero topological entropy
must demonstrate on their infinite ω-limit sets, it may not be too surprising
that Bruckner and Smital have been able to characterize these sets [4].

Theorem 3. An infinite compact set W ⊂ (0, 1) is an ω-limit set of a map
f ∈ C(I, I) with zero topological entropy if and only if W = Q ∪ P where
Q is a Cantor set and P is empty or countably infinite, disjoint with Q, and
satisfies the following conditions:

• every interval contiguous to Q contains at most two points of P ;

• each of the intervals [0,minQ), (maxQ, 1] contains at most one point
of P , and

• P = Q ∪ P .

More recently in [2], Block and Coppel have turned their attention to the
structure of the collection E = {f ∈ C(I, I) : f has zero topological entropy}
as a subset of C(I, I). We extend their results by first recalling that E is a
nowhere dense perfect subset of C(I, I). We then go on to prove that every
function in E possessing an infinite ω-limit set is the uniform limit of functions
possessing only finite ω-limit sets. That E is a nowhere dense perfect subset
of C(I, I) follows from earlier work of Block and Misiurewicz; we present an
alternate proof of this fact since it complements the second part of Theorem 4,
which answers a specific query of [2].
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2 Preliminaries

We write h(f) = 0 in order to indicate that f in C(I, I) possesses zero
topological entropy, so that E = {f ∈ C(I, I) : h(f) = 0}. While we can
take I to be any compact interval of the real line, for convenience we set
I = [0, 1]. We let ‖f − g‖ = sup{|f(x) − g(x)| : x ∈ I}, and work in the
complete metric space (C(I, I), ‖ ◦ ‖). Also, let Pn denote the set of all con-
tinuous functions f : I → I which possess a point of period n, and let P2∞

represent those functions with zero topological entropy that possess a point
of period 2n for all natural numbers n. From the Sarkovskii ordering on
periodic orbits of continuous self-maps of a compact interval, one sees that
P2∞ ⊂ · · · ⊂ P2n+1 ⊂ P2n ⊂ · · · ⊂ P4 ⊂ P2 ⊂ P1.

We make the following definitions with Smı́tal’s Theorem 2 in mind. Let
ω be an infinite compact subset of I, and let f map ω into itself. We call f a
simple map on ω if ω has a decomposition S ∪T into compact portions that f
exchanges, and f2 is simple on each of these portions. From Smı́tal’s Theorem
one sees that every map f with zero topological entropy is simple on each of
its infinite ω-limit sets. Let {Jk}∞k=1 be a nested sequence of compact periodic
intervals of ω and f as described in Smı́tal’s Theorem. Every set of the form
ω∩f i(Jk) is periodic of period 2k, and we call each such set a periodic portion
of rank k. This system of periodic portions of ω, or of the corresponding
periodic intervals, is called the simple system of ω with respect to f . We
now recall a device from [5] that allows us to code the sets f i(Jk) with finite
tuples of zeros and ones. Let N denote the natural numbers, and take N to be
the set of sequences composed of zeros and ones. If n ∈ N and n = {ni}∞i=1,
we let n|k = (n1, n2, . . . , nk). Set 0 = {0, 0, . . . } and 1 = {1, 1, . . . }. Now,
define a function A : N −→ N given by A(n) = n + 10, where addition is
modulus two from left to right. For each k ∈ N and i ∈ N put F1|k = Jk

and FAi(1|k) = f i(Jk). Thus, for each m and n in N and k ∈ N there is
a j ∈ N such that Aj(m|k) = n|k; the above relations define Fn|k for all
n ∈ N and k ∈ N. Now, set Fn = ∩∞k=1Fn|k, and let K = ∪n∈N ∩∞k=1 Fn|k.
Then K and each Fn are compact, and the components of K consist of the
Fn sets. Let G be the component of [0, 1] − K which contains the interval
between F1 and F0. In general, let Gn|k be that component of [0, 1]−K which
contains the interval between Fn|k0 and Fn|k1. We set G = {G} ∪ {Gn|k : n
∈ N , k ∈ N}, G0 = G ∪ [0, inf K) ∪ (supK, 1] and Gk = ∪{Gn|k : n ∈ N }.
Thus, [inf K, supK] = K ∪ G and [0, 1] = K ∪ (∪∞j=0G

j).
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3 Results

We are now in a position to state precisely as well as prove our main result;
this is the content of the following theorem.

Theorem 4. Let E = {f ∈ C(I, I) : h(f) = 0}. Then

• E is a nowhere dense perfect subset of C(I, I).

• ∪k≥0(P2k ∩ E) = E.

Proof. We first prove that E is a nowhere dense closed subset of C(I, I).
From [2] we know that the function h : C(I, I) → R+ ∪ {+∞}, given by
f → h(f), is lower semicontinuous. Thus, if h(f) > α > 0, then h(g) > α
for all g ∈ C(I, I) sufficiently close to f . In particular, the set S = {f ∈
C(I, I) : h(f) > 0} is open. Now, suppose that f ∈ E . Since f must have a
fixed point in I, for any ε > 0 we can find g in C(I, I) so that ‖f − g‖ < ε,
yet h(g) > 0. In fact, we can take g to equal f outside of a neighborhood of
the fixed point, and define g on a subinterval of that neighborhood so that it
is an appropriately scaled copy of the hat map h : I → I given by x 7−→ 2x
for x ∈ [0, 1

2 ], and x 7−→ 2(1 − x) for x ∈ [ 12 , 1]. To show that E is perfect
in addition to being nowhere dense and closed in C(I, I), we let {ϕn} be
a sequence of homeomorphisms from I to I that converge uniformly to the
identity map on I. Let f be an element of E , and set fn = ϕnfϕ

−1
n . Since fn

is topologically conjugate to f ∈ E , one sees that h(fn) = 0 for each n, too.
Moreover, fn → f since the uniform limit of {ϕn} is the identity map.

It remains to show that ∪k≥0(P2k ∩ E) = E . To this end, it suffices to
show that for any f in P2∞ , there exists {fn} contained in ∪k≥0(P2k ∩ E) for
which fn → f . Let f ∈ P2∞ . We proceed through two cases. First, let us
suppose that f is not chaotic in the sense of Li and Yorke, so that |Fn| = 0
for all the components Fn in a simple system of f , should the function possess
an infinite ω-limit set [3]. Let ε > 0. Then there exists N ∈ N with the
property that |Fn|k| < ε for all n in N , whenever k ≥ N . We let g equal f
on I − (∪n∈NFn|N ), and extend g linearly on each of the 2N intervals of the
form Fn|N . Since g2N

: Fn|N → Fn|N is linear for each n in N , it follows that
g has periodic points of order no more that 2N+1. In a similar fashion one
constructs g a 2N+1 function so that ‖f − g‖ < ε whenever f is a 2∞ function
that does not possess an infinite ω-limit set.

For our second case, let us suppose that f is chaotic in the sense of Li and
Yorke, so that intFn 6= ∅ for some component of the simple system of f . Let
x ∈ intFn, and take ε > 0. Since f is uniformly continuous, there exists N
a natural number such that |Gm|n| < ε and |f(Gm|n)| < ε whenever n > N
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for all m in N . Also, there exists m in N and M in N so that |Fm|n| < ε
and |FA(m)|n| < ε for any n > M . Let n > max{M,N}, and without loss
of generality we may presume that Fm|n+2 lies between Gm|n and Gm|n+1.
There exists a k ∈ N for which fk(x) ∈ Fm|n+2, and since f2n+2−k( Fm|n+2) =
Fn|n+2, there is x∗ in Fm|n+2 such that f2n+2−k( x∗) = x. We modify f on
Fm|n+2, G

n and Gn+1 to get a function g so that g ∈ P2n+2 , and ‖f − g‖ < ε.
If y is in I − (Fm|n+2 ∪ Gn ∪ Gn+1), we let g(y) = f(y). If y ∈ Fm|n+2,
let g(y) = f(x∗). We extend g in a linear fashion on Gn and Gn+1 to get
g ∈ C(I, I) for which ‖f − g‖ < ε. Since gk(x) = fk(x) ∈ Fm|n+2, g(gk(x)) =
f(x∗) and g2n+2−(k+1)(g(gk(x))) = f2n+2−(k+1)(f(x∗)) = x, it follows that x
has period 2n+2. Since g possesses a unique periodic point of period 2n in Gn,
and a unique periodic point of period 2n+1 in Gn+1, it follows that g is a 2n+2

function.

References

[1] R. Adler, A. Konheim and M. McAndrew, Topological entropy, Trans.
Amer. Math. Soc. 114 (1965), 309–319.

[2] L. Block and W. Coppel, Dynamics in one dimension, Lecture Notes in
Mathematics, vol. 1513, Springer-Verlag, 1991.

[3] A. M. Bruckner and J. G. Ceder, Chaos in terms of the map x 7−→ ω(x, f),
Pac. J. Math. 156 (1992), 63–96.

[4] A. M. Bruckner and J. Smı́tal, The structure of ω-limit sets of maps of
the interval with zero topological entropy, Ergod. Th. and Dynam. Sys. 13
(1993), 7–19.

[5] R. L. Devaney, Chaotic dynamical systems, Benjamin/Cummings Publ.
Co., 1986.

[6] V. Fedorenko, A. Sarkovskii and J. Smı́tal, Characterizations of weakly
chaotic maps of the interval, Proc. Amer. Math. Soc. 110 (1990),
141–148.

[7] M. Misiurewicz, Horseshoe mappings of the interval, Bull. Acad. Polon.
Sci. Ser. Math. 27 (1979), 167–169.

[8] A. N. Sarkovskii, The behavior of a map in a neighborhood of an attracting
set, Ukrain. Mat Z. 18 (1966), 60–83. (in Russian)



826 T. H. Steele

[9] A. N. Sarkovskii, On cycles and the structure of continuous mappings,
Ukrain. Mat Z. 17 (1965), 104–111. (in Russian)

[10] J. Smı́tal, Chaotic functions with zero topological entropy, Trans. Amer.
Math. Soc. 297 (1986), 269–282.


