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A MARTINGALE CLOSURE THEOREM
FOR A-INTEGRABLE MARTINGALE

SEQUENCES

Abstract

A generalized conditional expectation and the corresponding mar-
tingale is defined in terms of the Kolmogorov A-integral. It is proved
that the uniform A-integrability of a martingale sequence is a sufficient
condition for the sequence to be closed on the right by the A-integrable
last element.

A well known theorem in martingale theory states that a martingale se-
quence {Xn,Fn, n = 1, 2, . . .} is closed on the right by the last element
X∞(ω) = lim

n→∞
Xn(ω) iff {Xn,Fn} is a uniformly integrable sequence (see

[1, p.300], [3, p.239] or [6, p.60]). The conditional expectation in this theory
is defined in terms of the Lebesgue integral.

Meanwhile there are some other versions of a notion of the mathematical
expectation which involve integration more general than the Lebesgue inte-
gration. One of such generalization was introduced by Kolmogorov in [4] who
defined generalized mathematical expectation as a non-absolutely convergent
integral which later became known as the Kolmogorov A-integral (see [2], [5]).
In this note we are extending this definition to the case of the conditional
expectation and applying this extension to the investigation of A-integrable
martingales.

We recall some definitions.

Definition 1. A random variable (r. v.) X defined on a probability space
(Ω,B, P ) is said to be A-integrable over a set B ∈ B if

P
{
ω ∈ B : |X(ω)| > C

}
= ō(1/C) as C →∞ (1)
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and if there exists a finite limit

lim
C→∞

∫
{ω∈B : |X(ω)|≤C}

X dP = I.

Then I is called the A-integral of X over B and is denoted by (A)
∫
B

X dP .

Note that if a r. v. X is A-integrable over some set B ∈ B and X(ω) ≥ 0
a. s. on B then X is also L-integrable and (A)

∫
B

X dP = (L)
∫
B

X dP . This

fact implies that if an F-measurable r. v. X (F being a sub-σ-field of B)
is A-integrable over any F-measurable subset of some F-measurable set B
then X is L-integrable over B. Indeed, put B+ = {ω ∈ B : X(ω) ≥ 0} and
B− = {ω ∈ B : X(ω) < 0}. Then, being the r. v. X A-integrable over B+

and over B−, it must be L-integrable over each of these sets and consequently
over B. We use this observation in the following definition.

Definition 2. Let a r. v. X be A-integrable over any set B ∈ F where F
is a sub-σ-field of B. The conditional A-expectation of X with respect to F
is defined as an F-measurable r. v. AE(X|F ) such that for every B ∈ F we
have ∫

B

AE(X|F) dP = (A)
∫
B

X dP. (2)

Definition 3. An A-integrable r. v. X∞ is said to be the last element of
a martingale sequence {Xn,Fn, n = 1, 2, . . .} if Xn = AE(X∞|Fn) for each
n = 1, 2, . . .. We also say in this case that X∞ closes the martingale sequence
from the right.

We have omitted the ”A”-sign in front of the left hand side of (2) because
of the above observation, meaning that the Lebesgue integral can be used here.

It follows from the same observation that the use of the A-integral in the
definition of a martingale sequence gives an essentially more general notion
only for the last element and only in the case where each σ-field Fn is a
proper subset of the σ-field F∞generated by ∪nFn.

Here we are going to give a sufficient condition for a martingale sequence to
be closed on the right by the A-integrable last element. This condition is for-
mulated in terms of uniform A-integrability which is a non-absolute analogue
of the uniform Lebesgue integrability.

Definition 4. A family of r. v. {Xγ}γ∈Γ, defined on (Ω,B, P ) (Γ is some
index set) is said to be uniformly A-integrable on B ∈ B iff the sets Dγ(C) =
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{ω ∈ B : |Xγ(ω)| > C} satisfy the conditions: P (Dγ(C)) = o( 1
C ) uniformly

in γ as C →∞ and

sup
γ∈Γ

∣∣∣∣∣ (A)
∫

Dγ(C)

Xγ dP

∣∣∣∣∣ −→ 0 as C →∞.

Now let {Fn} be an increasing sequence of sub-σ-fields of B and let {Xn,Fn,
n = 1, 2, . . .} be a martingale. For any B ∈ ∪nFn we define a set function Φ
by putting

Φ(B) =
∫
B

Xn dP if B ∈ Fn. (3)

We call Φ the associated set function for {Xn,Fn}.
Note that Φ is well defined. Indeed, if m ≥ n then for the same B by (3)

with n substituted by m we get

Φ(B) =
∫
B

Xm dP if B ∈ Fn ⊆ Fm. (4)

Now by the definition of the martingale and by the definition of the con-
ditional expectation we get∫

B

Xm dP =
∫
B

E(Xm|Fn) dP =
∫
B

Xn dP

and this proves that the values of Φ on B given by (3) and (4) coincide.
Φ is of course additive on ∪nFn but we do not assume that Φ can be

extended to the σ-field F∞ generated by ∪nFn.

Lemma 1. A r. v. X∞ is the last element of a martingale {Xn,Fn, n =
1, 2, . . . ,∞} in the sense of the A-integral iff for the associated set function Φ of
the martingale sequence {Xn,Fn, n = 1, 2, . . .} we have (A)

∫
B
X∞ dP = Φ(B)

for any B ∈ ∪nFn.

Proof. This follows directly from the definition of Φ and from the definition
of the last element.

Note that this Lemma is true for any other integral which can be used in
the above equality.
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Theorem 1. Let {Xn,Fn, n = 1, 2, . . .} be a martingale sequence convergent
a. s. to a r. v. X∞. Let

P
{
ω ∈ Ω: |Xn(ω)| > C

}
= ō(1/C) uniformly in n as C →∞ (5)

and {Xn} be uniformly A-integrable on any B ∈ ∪nFn in the sense of Def-
inition 3. Then X∞ is A-integrable on each B ∈ ∪nFn and closes the mar-
tingale sequence {Xn,Fn} on the right, i. e. {Xn,Fn, n = 1, 2, . . . ,∞} is an
A-integrable martingale with

Xn = AE(X∞|Fn)

X∞ being its last element.

Proof. We show first that (5) implies (1) with X = X∞.
It is enough to prove (1) withB = Ω. Denote D(C) =

{
ω ∈ Ω: |X∞(ω)| >

C
}
, Dn(C) =

{
ω ∈ Ω: |Xn(ω)| > C

}
, Gn(C) =

∞⋂
m=n

Dm(C). Then obvi-

ously P (D(C)) ≤ P (
∞⋃
n=1

Gn(C)), Gn(C) ⊆ Gn+1(C),

P
(
D(C)

)
≤ lim
n→∞

P
(
Gn(C)

)
, (6)

Gn(C) ⊆ Dn(C). (7)

Fix any ε > 0. By (5) there exists Cε > 0 such that P
(
Dn(C)

)
≤ ε/C

for all n = 1, 2 . . . and for any C ≥ Cε. Fix such C. Then by (6) and (7)
P
(
D(C)

)
≤ ε/C. As ε > 0 is arbitrary and C is such that C ≥ Cε, then (1)

with X = X∞ is proved for B = Ω and therefore for any B ∈ B.
For any r. v. X and C > 0 define

XC(ω) =
{

X(ω), if |X(ω)| ≤ C,
C signX(ω), otherwise.

Notice that
lim
n→∞

XC
n (ω) = XC

∞(ω) a. s. on Ω. (8)

Now fix B ∈ ∪nFn. Then B ∈ Fn for some n and hence for the associated
function Φ the equality (4) holds for any m ≥ n.

Fix ε > 0. Since the sequence {Xn,Fn, n = 1, 2, . . .} is uniformly A-
integrable on B and (5) holds, we can find C0 such that for all C ≥ C0 and
for all m ∣∣∣∣∣

∫
B

(
Xm −XC

m

)
dP

∣∣∣∣∣ =

∣∣∣∣∣
∫

{ω∈B : |Xm(ω)|>C}

Xm dP
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−CP
{
ω ∈ B : Xm(ω) > C

}
+ CP

{
ω ∈ B : Xm(ω) < −C

} ∣∣∣∣∣ ≤
≤

∣∣∣∣∣
∫

{ω∈B : |Xm(ω)|>C}

Xm dP

∣∣∣∣∣+ CP
{
|Xm| > C

}
< ε/2 (9)

Let C be also fixed for the moment. Then (8) and the Lebesgue dominated
convergence theorem imply that for some m = mε,C ≥ n∫

B

∣∣XC
m −XC

∞
∣∣ dP < ε/2 (10)

Now combining (4), (9) and (10) we get for the chosen m∣∣∣∣∣ Φ(B)−
∫
B

XC
∞ dP

∣∣∣∣∣ =

∣∣∣∣∣
∫
B

Xm dP −
∫
B

XC
∞ dP

∣∣∣∣∣ ≤
≤

∣∣∣∣∣
∫
B

(
Xm −XC

m

)
dP

∣∣∣∣∣+
∫
B

∣∣XC
m −XC

∞
∣∣ dP < ε

This together with (1) proved already for X = X∞ implies that X∞ is A-
integrable on B to Φ(B) and by Lemma, the r. v. X∞ is the last element,
in the sense of the A-integral, of the considered martingale sequence. This
completes the proof.

Note that unlike in the case of the uniform Lebesgue integrability, the
above condition in terms of the uniform A-integrability is not necessary for
existence of the last element. This can be shown by constructing an example
of a Haar series such that it is the A-Fourier series of an A-integrable function
and its partial sums are not uniformly A-integrable. (See [7] for details.)
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