
Real Analysis Exchange
Vol. 24(2), 1998/9, pp. 703–728

Togo Nishiura, Department of Mathematics, Wayne State University, MI
48202, Department of Mathematics and Computer Science, Dickinson
College, Carlisle, PA 17013. e-mail: nishiura@dickinson.edu

ABSOLUTELY MEASURABLE FUNCTIONS
ON MANIFOLDS

Dedicated to Casper Goffman on his 85 th birthday.

Abstract

The paper is an investigation of the collection of absolutely mea-
surable functions defined on compact, connected manifolds. Several
analytical properties of these functions defined on the manifold I, the
unit interval of R, have been studied by C. Goffman, D. Waterman and
the author in Homeomorphisms in analysis [Math. Surveys Monogr.,
Number 54, American Mathematical Society, Providence, 1997]. It will
be shown that these properties also hold for all compact, connected
manifolds. The method of proof differs from those used earlier for the
interval I. The key element here is the use of the von Neumann-Ulam-
Oxtoby Theorem for compact connected manifolds (proved here for the
first time) which concerns measures induced by homeomorphisms.

The notion of absolutely measurable functions has appeared several times
in the context of one-variable functions. (See the book [4] for some references
and the book by J. C. Oxtoby [11] for related material on absolutely measur-
able sets.) A development of this notion in the context of manifolds is initiated
here. A key element of this development is the von Neumann-Ulam-Oxtoby
Theorem (see [14, 12, 4]). The symbol λn will be reserved for the Lebesgue
n-dimensional measure on Rn.

The first section presents the preliminaries. Properties of a certain closure-
like operator P in the context of compact, connected metric spaces are devel-
oped. Also a statement is given of the original von Neumann-Ulam-Oxtoby
Theorem for intervals In contained in Rn. As all the measures encountered in
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the paper are finite, the finiteness condition will not be stated in the discussion
of measures except for the purpose of emphasis.

In the second section the von Neumann-Ulam-Oxtoby Theorem for com-
pact, connected manifolds is proved.

The final section concerns Lebesgue’s notion of equivalence. H. Lebesgue
defined his notion of equivalence of functions in [10]. In an analogous manner,
the notion of Lebesgue equivalence of measures can be made (see the first sec-
tion). This notion is well suited for the von Neumann-Ulam-Oxtoby Theorem
for manifolds. The theorem says that the Lebesgue equivalence classes of mea-
sures are determined by the value of the measure of the manifold. With the
aid of the von Neumann-Ulam-Oxtoby Theorem for manifolds, three measure-
theoretic theorems on manifolds will be proved. These theorems have been
discussed for the manifold [0, 1] in Chapters 2 and 11 of [4]. The proofs given
there are somewhat different from those presented here. The first theorem is
the equality µ-almost everywhere of absolutely measurable functions to some
Baire class 1 function where µ is some complete, nonatomic, Borel regular
measure with the property that µ(U) > 0 whenever U is a nonempty open
set of the manifold. The second is a characterization of the absolute essential
supremum of absolutely measurable functions. (The notion of absolute essen-
tial supremum is defined in the first section.) The third is a characterization
of those functions defined on a manifold M for which its composition with
every self-homeomorphism of M are in the space L1(M,µ), where M is a fixed
manifold and µ is a fixed complete, nonatomic, Borel regular measure with the
property given above concerning open sets. Also a short discussion of product
measures is included. The section ends with a discussion of Lebesgue equiv-
alence of nonabsolutely measurable functions. In particular, a relationship
between L1(M,µ) and L1(M,ν) is established, which yields a generalization
of a theorem of T. Świa̧tkowski [13, 9].

1 Preliminaries

The preliminary discussion is motivated by two useful properties of complete,
nonatomic, Borel regular measures defined on a compact metric space. The
first is that if E is a µ-measurable set with µ(E) > 0 then E necessarily
contains a nonempty perfect set because µ is nonatomic. The second is that,
for each nonempty perfect set E of a compact metric space, there is such a
measure µ on the space with µ(E) > 0. For our purposes, only spaces whose
cardinality exceeds ℵ0 are of interest. Even more, the cardinality of each
nonempty open set should exceed ℵ0. These requirements are certainly met
by compact metric spaces that are nondegenerate and connected. As usual,
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such a space is called a continuum.
The spaces X in this section will always be assumed to be continua and the

measures onX will be complete, nonatomic and Borel regular. For a measure µ
on X and a µ-measurable set A of X, the measure µ A on X is defined by(
µ A

)
(E) = µ(A∩E) for µ-measurable sets E, and the measure µ|A on A is

defined by
(
µ|A

)
(E) = µ(E) for µ-measurable subsets E of A. The topological

interior, closure and boundary of a subset E of X will be denoted respectively
by IntX(E), ClX(E) and BdX(E).

A short discussion of the von Neumann-Ulam-Oxtoby Theorem will close
the preliminary section.

1.1 Absolutely Measurable Sets

Let M(X) be the collection of all finite, complete, nonatomic, Borel regular
measures on X (note the inclusion of nonatomic). For each µ in M(X), the
σ-algebra associated with µ is denoted by A(X,µ). The natural definition for
the collection of absolutely measurable sets of X is

abA(X) =
⋂
{A(X,µ) : µ ∈ M(X) }.

Its subcollection

abN (X) = {E : µ(E) = 0 for every µ in M(X) }

is called the collection of sets of absolute measure 0. Clearly abA(X) is
a σ-algebra that contains the σ-algebra of Borel sets. A function f defined
on X into a complete metric space is said to be absolutely measurable
if it is measurable with respect to the σ-algebra abA(X); hence, a function
is absolutely measurable if and only if it is measurable with respect to the
σ-algebra A(X,µ) for every µ in M(X). (Other authors have used the word
universally instead of absolutely when X = R.) The composition gf , where g
is a Borel measurable function, is absolutely measurable whenever f is abso-
lutely measurable on X. Moreover, the collection of all absolutely measurable
real-valued functions on X is a vector lattice that is closed under pointwise
convergence of sequences. (The pointwise product of 2 real-valued functions f
and g will be denoted by f · g since the usual juxtaposition convention has
been used for composition.)

A measure µ in M(X) is said to be positive if µ(U) > 0 whenever U is
a nonempty open set (that is, the topological support of µ is X). Denote
by Mp(X) the collection of all positive measures in M(X). Since X is a con-
tinuum we have Mp(X) 6= ∅. To see this, let {Fi : i = 1, 2, . . . } be a countable
collection of nonempty, totally disconnected, perfect sets whose union is dense
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in X. Such a collection exists because X is second countable. For each i there
is a homeomorphism hi : K → Fi of the Cantor ternary set K onto Fi. Let κ
be the measure on K that is induced by the usual Cantor function. Then a
measure κi is induced on X by the formula κi(E) = κ

(
hi
−1[E]

)
, where E is a

Borel subset of X. Clearly,
∑∞

i=1 2−i κi ∈ Mp(X).
Finally, observe that, for each µ in M(X) and each ν in Mp(X), the measure

(1− ε)µ+ ε ν is in Mp(X) whenever 0 < ε < 1.

1.2 The Closure-Like Operation P

Let X be a continuum. We define the closure-like operation P as follows: For
a subset E of X, the set P(E) consists of all points x of X with the property
that U ∩ E contains a nonempty perfect set whenever U is a neighborhood
of x. Clearly, E ⊂ F implies P(E) ⊂ P(F ). Obviously P(X) = X, and P(E)
is a closed set. Indeed, P(E) is a perfect set since E ∩P(E) is dense in P(E).
Obviously, P2(E) = P(E). Also, P(E) = ∅ for Borel sets E precisely when E
is a countable set. There are absolutely measurable sets E with cardinality
exceeding ℵ0 for which P(E) = ∅ [11, page 99].

We have the useful lemma:

Lemma 1.1. Let X be a continuum. An absolutely measurable set A will fail
to be in abN (X) if and only if A contains a nonempty perfect set. Con-
sequently, if Z is in abA(X), then Z will be in abN (X) when and only
when P(Z) = ∅; whence A \ P(A) ∈ abN (X) for every absolutely measurable
set A. Finally, P

(
IntX

(
P(A)

)
∩ A

)
= ClX

(
IntX P(A)

)
for every absolutely

measurable set A.

Proof. Let A be an absolutely measurable set with µ(A) > 0 for some mea-
sure µ in M(X). Since µ is Borel regular, there exists an uncountable Borel
set contained in A. The first statement now follows.

The proofs of the remaining statements are left to the reader to supply.

Now the statement

P(E ∪ F ) = P(E) ∪ P(F ) whenever E and F are in abA(X)

follows from the lemma. Clearly E ⊂ P(E) may fail for some E, hence P is
not the ClX operator.

We next establish a connection between absolutely measurable sets and
Baire spaces. (A topological space X is called a Baire space if the intersection
of each countable collection of dense open sets is a dense subset of X.)
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Theorem 1.2. In a continuum X, suppose that U is a nonempty Borel set
with U ⊂ P(U). If U is a Baire space and if Z ∈ abN (X), then U \ Z is an
uncountable Baire space.

Proof. Suppose that U \Z is countable. Then U ⊂ P
(
(U \Z) ∪ (U ∩Z)

)
=

P(U \ Z) ∪ P(U ∩ Z) = ∅, a contradiction. Hence U \ Z is uncountable.
Suppose that U \ Z is not a Baire space. Then there is an open set V

of X and there are, in the subspace U \ Z, closed and nowhere dense sub-
sets Fi of U \ Z, i = 1, 2, . . . , that satisfy V ∩ (U \ Z) =

⋃∞
i=1(V ∩ Fi) and

V ∩ (U \ Z) 6= ∅. As V is open in X and U ⊂ P(U), we have the inclusion
V ∩U ⊂ P(V ∩U). Since V ∩U is a Borel set that is also a Baire space, there
is no loss in assuming that V ∩ U is U . Clearly

U ∩ ClX(Fi) ⊂ Fi ∪ Z and U \ Z ⊂
⋃∞
i=1 ClX(Fi).

In the space U , for each i, we have that U ∩ ClX(Fi) is closed and nowhere
dense. The nowhere denseness follows because, in the space U , each nonempty
open subset contains some nonempty open subset W with (W \ Z) ∩ Fi = ∅,
whence W ⊂ Z. As U ⊂ P(U) yields W ⊂ P(W ), we have the contradic-
tion ∅ 6= W ⊂ P(W ) ⊂ P(Z) = ∅. As U is a Baire space with U ⊂ P(U),
the set Y = U \

⋃∞
i=1 ClX(Fi) is uncountable. Since Y is also a Borel set,

P(Y ) 6= ∅ holds. We have

Y = U \
⋃∞
i=1 ClX(Fi) ⊂ U \ (U \ Z) ⊂ Z,

and the contradiction ∅ 6= P(Y ) ⊂ P(Z) = ∅ has been reached. Hence U \ Z
is a Baire space.

The above theorem was first proved for open sets U of [0, 1] by A. M. Bruck-
ner, R. O. Davies and C. Goffman in [1]. The next two lemmas are conse-
quences of the theorem.

Lemma 1.3. Let Ai, i = 1, 2, . . . , be a sequence of mutually disjoint, abso-
lutely measurable sets of a continuum X with X =

⋃∞
i=1Ai. Then

Gi = IntX
(
P(Ai)

)
\
⋃
j<i P(Aj), i = 1, 2, . . . ,

is a sequence of mutually disjoint open sets such that
⋃∞
i=1Gi is dense in X

and P(Gi ∩Ai) = ClX(Gi) for each i.

Proof. Let Zi = Ai \ P(Ai) for each i. Then Z =
⋃∞
i=1 Zi ∈ abN (X).

Observe

X =
⋃∞
i=1 P(Ai) ∪ Z =

⋃∞
i=1

(
P(Ai) \

⋃
j<i P(Aj)

)
∪ Z.
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The subspace X \Z is a Baire space by the above theorem, and X \Z is dense
in X.

For each i let Hi = X \ BdX
(
P(Ai)

)
. As Hi is dense and open in X, we

have that Hi \ Z is dense and open in the subspace X \ Z. Hence the set

(X \ Z) ∩
⋂∞
i=1Hi =

⋂∞
i=1(Hi \ Z)

is dense in X \Z (and additionally is uncountable and a member of abA(X)).
Since

⋂∞
i=1Hi = X \

⋃∞
i=1 BdX

(
P(Ai)

)
, we have

(X \ Z) ∩
⋂∞
i=1Hi =

(⋃∞
i=1

(
P(Ai) \

⋃
j<i P(Aj)

)
\ Z
)
\
⋃∞
i=1 BdX

(
P(Ai)

)
⊂
(⋃∞

i=1Gi
)
\ Z ⊂ X \ Z.

Hence
(⋃∞

i=1Gi
)
\ Z is dense in X \ Z and the denseness of

⋃∞
i=1Gi in X

easily follows. Since Ai ∩ IntX
(
P(Ai)

)
is dense in IntX

(
P(Ai)

)
, the rest of the

proof will follow.

The proof of the next lemma is a simple modification of (indeed, is con-
tained in) the last lemma.

Lemma 1.4. Let Ai, i = 1, 2, . . . , be a sequence of mutually disjoint, abso-
lutely measurable sets of a continuum X with X =

⋃∞
i=1 P(Ai). Then

Gi = IntX
(
P(Ai)

)
\
⋃
j<i P(Aj), i = 1, 2, . . . ,

is a sequence of mutually disjoint open sets such that
⋃∞
i=1Gi is dense in X

and P(Gi ∩Ai) = ClX(Gi) for each i.

Proof. The proof begins with the second line of the above proof with the
set Z replaced by the empty set.

Lemma 1.5. Let A and Ei, i = 1, 2, . . . , N , be absolutely measurable sets
of a continuum X such that P(A) = X and X =

⋃N
i=1Ei. Then there

is a collection Gi, i = 1, 2, . . . , N , of mutually disjoint, open sets whose
union is dense in X such that P(A ∩ Ei ∩ Gi) = ClX(Gi) for each i, whence
P
(⋃N

i=1A ∩ Ei ∩Gi
)

= X.

Proof. Let Ai = A ∩ Ei for each i. Then

X = P(A) = P
(
A ∩

⋃N
i=1Ei

)
= P

(⋃N
i=1Ai

)
=
⋃N
i=1 P(Ai).

Now apply the previous lemma.
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We now consider sequences of absolutely measurable real-valued functions.
It will be convenient to use the sequence space R∞ with the metric

ρ(t, s) =
∑∞
j=1 2−j |tj − sj |(1 + |tj − sj |)−1,

where the points t of R∞ are written in vector notation as

t =
∑∞

j=1 tj ej .

Hence, for σ-algebras M on X, a function f : X → R∞ is M-measurable if
and only if each of its coordinate functions fj : X → R is. Even more, f will
be in the Baire class α if and only if all of its coordinate functions fj are in
that same Baire class.

In the vector space R∞, the usual product gf of g : X → R and f : X → R∞
will have coordinates given by (gf)j = g · fj . This juxtaposition notation
should not be confused with the composition convention adopted earlier.

Proposition 1.6. For a continuum X, let A be an absolutely measurable set
with P(A) 6= ∅ and let f : X → R∞ be an absolutely measurable function.
Then there is a nonempty perfect set F contained in A such that χF f is in
the Baire class 1.

Proof. There is a measure µ in M(X) such that µ(A) > 0. By Lusin’s
theorem, for each j, there is a closed set Fj contained in A such that fj |Fj
is continuous and µ(Fj) >

(
1 − 4−j

)
µ(A). Obviously the closed set

⋂∞
j=1 Fj

contains a nonempty perfect set F because it has positive µ-measure and µ is
nonatomic. That χF ·fj is in the Baire class 1 easily follows from the Tietze
extension theorem applied to fj |F .

Lemma 1.7. Let f : X → R∞ be an absolutely measurable function defined on
a continuum X such that f [X] is a countable set. Then there is an absolutely
measurable set E and there is a function ϕ : X → R∞ in the Baire class 1
such that f |E = ϕ|E and P(E) = X.

Proof. The sets f−1[y], y ∈ f [X], form a countable and mutually disjoint
collection and the union of these sets is X. We apply Lemma 1.3 to get the
mutually disjoint open sets Gy, y ∈ f [X], whose union is dense in X and
satisfy P(f−1[y] ∩Gy) = ClX(Gy). Let ϕ be the Baire class 1 function

ϕ =
∑
y∈f [X]

χGy
y

and let E =
⋃
y∈f [X] f

−1[y] ∩ Gy. As
⋃
y∈f [X]Gy is dense in X, we have

P(E) = X. An easy calculation leads to f |E = ϕ|E.
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We make a slight digression and consider functions that may not be abso-
lutely measurable. Observe that if E is any set then there is a Borel subset B
of E with P(E) = P(B) because X is a second countable topological space.

Proposition 1.8. Let f : X → R∞ be a function defined on a continuum X
such that the image f [X] contains a countable subset Y with the property

X =
⋃
y∈Y P

(
f−1[y]

)
.

Then there is a function ϕ in the Baire class 1 and an absolutely measurable
set E such that f |E = ϕ|E and P(E) = X.

Proof. The proof is exactly the same as that of the previous lemma where
Lemma 1.3 is replaced by Lemma 1.4.

We return to absolutely measurable functions. The next lemma concerns
functions into Rm for finite m.

Lemma 1.9. For a continuum X and j = 1, 2, . . . ,m, let f1,j be an absolutely
measurable function and let g1,j be a function in the Baire class 1 with the
property P(E1) = X where E1 =

⋂m
j=1{x : f1,j(x) = g1,j(x) }.

If f2,j, j = 1, 2, . . . ,m, are absolutely measurable functions such that the
images of f2,j − f1,j are contained in {0, 1}, then there exists an absolutely
measurable set E2 contained in E1 with P(E2) = X and there are func-
tions g2,j, j = 1, 2, . . . ,m, in the Baire class 1 such that, for each j,

g2,j |E2 = f2,j |E2 and (g2,j − g1,j)[X] ⊂ {0, 1}.

Proof. We use Lemma 1.5. In that lemma, let A = E1 and use the finitely
many sets Ey =

⋂m
j=1(f2,j − f1,j)−1[yj ], where y = (y1, y2, . . . , ym) are in the

product set Y = {0, 1}m. Then the open sets Gy that result satisfy

P
(⋃

y∈Y (E1 ∩ Ey ∩Gy)
)

= X.

To complete the proof, let

g2,j =
∑

y∈Y yj χGy + g1,j and E2 =
⋃
y∈Y

(
E1 ∩ Ey ∩Gy

)
.

It follows easily that f2,j and g2,j agree on E2.

Lemma 1.10. For a continuum X, let f : X → R∞ be an absolutely measur-
able function and let ϕ : X → R∞ be a function in the Baire class 1 with the
property P

(
{x : ρ(f(x), ϕ(x)) < ε }

)
= X whenever ε > 0. Then there is a

function g : X → R∞ in the Baire class 1 such that

P
(⋂∞

j=1{x : fj(x) = gj(x) }
)

= X.
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Proof. Let Ui, i = 1, 2, . . . , be a basis for the open sets of X and let

Ei = {x : ρ(f(x), ϕ(x)) < 2−i } for each i.

By Proposition 1.6 there is a nowhere dense, nonempty perfect set F1 contained
in U1∩E1 such that (fj−ϕj)·χF1 is in the Baire class 1 for each j. Continuing
inductively, we construct a sequence Fi, i = 1, 2, . . . , of mutually disjoint,
nowhere dense, nonempty perfect sets such that, for each i and for each j,

Fi ⊂ (Ui ∩ Ei) \
⋃
k<i Fk, (fj − ϕj) · χFi

is in the Baire class 1,

and, for each i, supx∈X ρ
(
χFi(x)f(x),χFi(x)ϕ(x)

)
≤ 2−i. Clearly, P(F ) = X

where F =
⋃∞
i=1 Fi. Uniform convergence implies that g = ϕ+

∑∞
i=1

χFi
(f −

ϕ) is in the Baire class 1. As

f − g = f − ϕ−
∑∞

i=1
χFi

(f − ϕ) = χX\F (f − ϕ),

we have F ⊂ {x : f(x)j = gj(x) } for every j, and the final equation in the
lemma follows easily.

Theorem 1.11. Let X be a continuum. If f : X → R∞ is an absolutely
measurable function, then there is a function g : X → R∞ in the Baire class 1
such that P

(
{x : f(x) = g(x) }

)
= X.

Proof. The proof follows the lines of the proof by Bruckner, Davies and
Goffman given in [4, Theorem 2.10] for the real-valued case.

With f =
∑∞

j=1 fj ej , let fj,i be absolutely measurable functions that take
values only from m/2i, m = 0,±1,±2, . . . , and satisfy

fj,i(x) ≤ fj(x) < fj,i(x) + 2−i whenever x ∈ X

for j = 1, 2, . . . and i = 0, 1, 2, . . . . For each i let

Fi =
∑ i

j=1 fj,(i−j+1) ej +
∑
j>i fj,0 ej .

By Lemma 1.7 there is a function Φ0 =
∑∞

j=1 ϕj,0 ej in the Baire class 1
such that P(E0) = X where E0 = {x : Φ0(x) = F0(x) }. With the aid of
Lemma 1.9, we can construct a sequence

Φi =
∑ i

j=1 ϕj,(i−j+1) ej +
∑

j>i ϕj,0 ej , i = 1, 2, . . . ,

of functions in the Baire class 1 and a sequence of absolutely measurable
sets Ei, i = 1, 2, . . . , such that Ei ⊂ Ei−1, P(Ei) = X, Fi|Ei = Φi|Ei, and
ρ
(
Φi(x),Φi−1(x)

)
≤ i 2−i whenever x ∈ X. Since ϕ =

∑∞
k=1

(
Φk−Φk−1

)
+ Φ0
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converges uniformly as an R∞-valued series on X, we have that ϕ is a Baire
class 1 function and that Φi, i = 1, 2, . . . , converges uniformly on X to ϕ.

It is easily shown that ρ
(
Fi(x), f(x)

)
≤ (i + 2) 2i+1 whenever x ∈ X.

To complete the proof of the theorem we shall show that f and ϕ meet the
requirement of Lemma 1.10. We have for each i

(f − ϕ)|Ei = (f − Fi)|Ei + (Fi − Φi)|Ei + (Φi − ϕ)|Ei.

The middle term on the right side of the above equation is identically 0 and
the other two terms tend unifomly to 0 as i tends to infinity. The theorem is
proved.

1.3 Absolute Essential Supremum Modulo a Closed Set

Let f be an absolutely measurable real-valued function defined on a contin-
uum X and let F be a closed subset of X. The absolute essential supre-
mum modulo F of f is defined to be

ab. ess. sup f = inf
{
M : {x : f(x) > M } \ F ∈ abN (X)

}
and the absolute essential infimum modulo F of f is defined analogously.
The absolute essential norm modulo F of f is

ab ‖f‖∞ = ab. ess. sup |f |.

Since the closed set F will remain fixed, we shall not display the dependence
on F in the notations.

For absolutely measurable functions f we have

ab. ess. sup f = sup
{
M : {x : f(x) > M } \ F /∈ abN (X)

}
,

whence, for each M with M < ab. ess. sup f , there is a µ in M(X) with

µ
(
{x : f(x) > M } \ F

)
> 0.

Even more, there is a µ in M(X) such that µ
(
{x : f(x) > M } \ F

)
> 0

whenever M < ab. ess. sup f. Indeed, if Mi, i = 1, 2, . . . , is a strictly increas-
ing sequence of real numbers that converges to ab. ess. sup f , then there is a
sequence µi, i = 1, 2, . . . , in M(X) such that µi

(
{x : f(x) > Mi } \F

)
> 0 for

every i. The measure

µ =
∑∞

i=1

(
2i µi(X)

)−1
µi

meets the requirement.
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The usual norm properties hold for the absolute essential norm modulo F .
For example,

ab ‖f‖∞ = 0 if and only if {x : f(x) 6= 0 } \ F ∈ abN (X),
ab ‖f + g‖∞ ≤ ab ‖f‖∞ + ab ‖g‖∞,

ab ‖f · g‖∞ ≤ ab ‖f‖∞ ab ‖g‖∞.

For each µ in M(X) let the supremum norm of f be denoted by

‖f‖µ,∞ = inf
{
M : {x : |f(x)| > M } ∈ N (X,µ)

}
where N (X,µ) = {Z : µ(Z) = 0 }. We have

ab ‖f‖∞ ≥ ‖f · (1− χF )‖µ,∞ whenever µ ∈ M(X) (1)

because abN (X) ⊂ N (X,µ) for each µ in M(X).

Theorem 1.12. Let X be a continuum and F be a closed subset of X. For
each absolutely measurable function f : X → R, there is a positive measure µ
such that the absolute essential norm modulo F satisfies

ab ‖f‖∞ = ‖f · (1− χF )‖µ,∞.

Proof. We have observed earlier the existence of a measure µ0 in M(X) such
that ab ‖f‖∞ = ‖f · (1 − χF )‖µ0,∞. Let ν ∈ Mp(X). To complete the proof
we use the measure µ = µ0 + ν. Indeed, we have

ab ‖f‖∞ ≥ ‖f · (1− χF )‖µ,∞ ≥ ‖f · (1− χF )‖µ0,∞ = ab ‖f‖∞

since N (X,µ) ⊂ N (X,µ0).

1.4 Absolutely integrable functions .

Let X be a continuum. For absolutely measurable functions f : X → R we
use the usual notation ‖f‖µ,1 =

∫
X
|f | dµ . We denote the collection of all

µ-integrable functions by I1(X,µ) and define

ab I1(X) =
⋂
µ∈M(X) I1(X,µ).

Clearly, every function in ab I1(X) is absolutely measurable. (As the use of
equality µ-almost everywhere has been avoided in the above discussion, we do
not use the notation L1(X,µ).)
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Let F be a closed subset of X. The collection of all absolutely measurable
functions whose absolute essential norms modulo F are finite will be denoted
by ab I∞(X). For each absolutely measurable function f we have

‖f · (1− χF )‖µ,1 =
∫
X
|f · (1− χF )| dµ ≤ ab ‖f‖∞ µ(X).

Hence we have ab ‖f‖∞ ≥ sup { ‖f ·(1−χF )‖µ,1 : µ ∈ M(X) with µ(X) = 1 }.
Indeed we have a stronger statement.

Proposition 1.13. For closed subsets F of a continuum X, if f : X → R is
absolutely measurable, then the absolute essential norm modulo F satisfies

ab ‖f‖∞ = sup { ‖f · (1− χF )‖µ,1 : µ ∈ Mp(X) with µ(X) = 1 }.

Proof. Let M be such that M < ab ‖f‖∞. There is a positive measure ν
such that the set E = {x : |f(x)| > M } satisfies ν(E \ F ) > 0. We may sup-
pose further that ν(X) = 1. Then µ = (1− ε)

(
ν(E \ F )

)−1
ν (E \ F ) + ε ν,

where 0 < ε < 1, satisfies ‖f · (1− χF )‖µ,1 > M(1− ε) and µ(X) = 1.

Clearly the above supremum need not be a maximum. We have the fol-
lowing corollary.

Corollary 1.14. Let F be a closed subset of a continuum X and f : X → R be
absolutely measurable. If the absolute essential norm modulo F of f satisfies
ab ‖f‖∞ =∞, then ‖f · (1− χF )‖µ,1 =∞ for some measure µ in Mp(X).

Proof. For each n let µn be a positive measure that satisfies µn(X) = 1 and
‖f · (1− χF )‖µn,1 > 2n. Let µ =

∑∞
n=1 2−n µn.

We shall revisit Theorem 1.11, Proposition 1.13 and its corollary later in
the context of compact manifolds.

1.5 Lebesgue Equivalence

For a continuum X the group of self-homeomorphisms of X will be denoted
by H(X) where the group operation is composition.

Let us begin with H(In). According to Lebesgue [10], two functions f
and g on In are equivalent if there is an h in H(In) such that the composi-
tion fh equals g. In the literature this equivalence is referred to as Lebesgue
equivalence of functions. (See for example [2, 3].)

We extend in the obvious way the definition of Lebesgue equivalence of
functions to functions defined on continua. The composition fh will be de-
noted in the contravariant notation h#f since (h1h2)#f = h2

#h1
#f whenever
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h1 ∈ H(X) and h2 ∈ H(X). We warn the reader that the topological notion
of Lebesgue equivalence of functions differs from the measure theoretic notion
of “equal µ-almost everywhere.”

For each measure µ on X and each Borel measurable map ϕ : X → Y , a
measure ϕ#µ on Y is induced by the formula

ϕ#µ(E) = µ
(
ϕ−1[E]

)
where E is a Borel subset of Y .

It follows easily that (h1h2)#µ = h1#h2#µ whenever h1 ∈ H(X) and h2 ∈
H(X).

In a manner analogous to functions, measures µ and ν on X are said to
be Lebesgue equivalent measures if there is an h in H(X) such that the
induced measure h#µ is equal to ν.

For measurable maps, it is well-known that inverse images of measurable
sets need not be measurable. But this is not the case for absolutely measurable
sets. Indeed, we have the following.

Proposition 1.15. Let X be a continuum. For every measure µ in M(X),
if h ∈ H(X) and if E is an absolutely measurable set, then h−1[E] is µ-meas-
urable and h#µ(E) = µ

(
h−1[E]

)
.

Proof. As E is absolutely measurable and h#µ is Borel regular we have the
two identities

h#µ(E) = sup {h#µ(F ) : F ⊂ E, F is closed },
h#µ(E) = inf {h#µ(U) : E ⊂ U, U is open }.

Now we have h#µ(F ) = µ
(
h−1[F ]

)
and h#µ(U) = µ

(
h−1[U ]

)
for closed sets F

and open sets U . As h−1[F ] ⊂ h−1[E] ⊂ h−1[U ], the proposition follows.

Theorem 1.16. For a continuum X let h ∈ H(X). Then h−1[E] ∈ abA(X)
whenever E ∈ abA(X) and h−1[Z] ∈ abN (X) whenever Z ∈ abN (X).
Consequently, h#f is absolutely measurable whenever f is. Indeed, for abso-
lutely measurable, real-valued functions f and for µ in M(X), h−1

[
f−1[E]

]
=

(h#f)−1[E] holds for every Borel subset E of R, whence h#µ
(
f−1

[
[a, b)

])
=

µ
(
(h#f)−1

[
[a, b)

])
holds and therefore

∫
X
f d(h#µ) =

∫
X

(h#f) dµ.

Proof. The first two conclusions follow from Proposition 1.15 above and the
definitions of abA(X), abN (X) and absolute measurability of f . The next
statement follows from the identity h−1f−1 = (fh)−1 = (h#f)−1, and finally
the definition of the integral.



716 Togo Nishiura

1.6 The von Neumann-Ulam-Oxtoby Theorem

The von Neumann-Ulam-Oxtoby Theorem concerns the Lebesgue measure λn
on intervals In contained in Rn. The h#µ notation for self-homeomorphisms h
of In from the previous section will be used. We state the theorem.

Theorem (von Neumann-Ulam-Oxtoby). Let µ be a complete, Borel reg-
ular measure on the interval In of Rn with µ(In) = λn(In), where λn is the
Lebesgue measure on Rn. In order that there exists a self-homeomorphism h
of In with λn = h#µ, it is necessary and sufficient that µ satisfies the three
conditions.

1. µ(∂In) = 0.

2. µ is nonatomic.

3. µ(U) > 0 whenever U is a nonempty, relatively open subset of In.

Moreover, h may be assumed to be the identity map on ∂In.

Employing the terminology presented in the earlier Section 1.5, we find that
the von Neumann-Ulam-Oxtoby Theorem exhibits necessary and sufficient
conditions on a measure µ so that it is Lebesgue equivalent to the Lebesgue
measure λn. The conditions are µ ∈ Mp(In), µ(∂In) = 0 and µ(In) = λn(In).
(We remind the reader that the measures in Mp(M) are nonatomic.)

The theorem was conjectured by S. M. Ulam in 1936 and was proved first
(but not published) by J. von Neumann [14]. A second proof was given by
Oxtoby and Ulam [12]. A third and different proof was given by Goffman and
G. Pedrick [5]. A deformation version of the above theorem was established
in Chapter 7 of [4]. (See Theorem 7.1 on page 90.)

2 Manifolds

Only compact, connected manifolds with or without boundary will be consid-
ered. The boundary of a manifold M will be denoted by ∂M . The reader
should be aware of the distinction between the boundary ∂M and the bound-
ary BdM (M). The second is always the empty set whereas the first need not
be empty. The Brouwer Invariance of Domain Theorem [8, Theorem VI 9,
page 95] gives us the useful invariant h[∂M ] = ∂M for every h in H(M).

The conclusion of the von Neumann-Ulam-Oxtoby Theorem is named the
von Neumann-Ulam-Oxtoby property. The purpose of the section is to prove
that every manifold has this property, thereby generalizing the von Neumann-
Ulam-Oxtoby Theorem. It is an easy matter to show that topological n-cells
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have the von Neumann-Ulam-Oxtoby property. A series of lemmas will show
that the n-cell case implies the theorem for the general manifold.

2.1 Lebesgue-Like Measures

In view of the von Neumann-Ulam-Oxtoby Theorem we shall say that a mea-
sure µ on a compact, connected manifold M is Lebesgue-like if it satis-
fies the conditions µ ∈ Mp(M) and µ(∂M) = 0. (Recall that the mea-
sures in Mp(M) are nonatomic.) For M , the collection of all Lebesgue-
like measures will be denoted by ML(M). We have, for each h in H(M),
h#µ ∈ ML(M) whenever µ ∈ ML(M). A compact, connected manifold M is
said to have the von Neumann-Ulam-Oxtoby property if for each pair of
measures µ and ν in ML(M) with µ(M) = ν(M) there is a homeomorphism h
in H(M) such that h#µ = ν and h|∂M is the identity map id ∂M .

We have the following assertion.

Theorem 2.1. Every topological n-cell has the von Neumann-Ulam-Oxtoby
property.

Proof. Let A be a topological n-cell and let ϕ : A → In be a homeomor-
phism. By the von Neumann-Ulam-Oxtoby Theorem, for measures µ and ν
in ML(A) with µ(A) = ν(A) there is a self-homeomorphism H of In such that
H#ϕ#µ = ϕ#ν and H|∂In is the identity map. Let h = ϕ−1Hϕ. Then

h#µ = ϕ−1
#(H#ϕ#µ) = ϕ−1

#(ϕ#ν) = ν

and h|∂A is the identity map.

Observe that the exact same proof will show that the von Neumann-Ulam-
Oxtoby property is a topological invariant.

In passing, we make the following observation. A topological 2-cell M
has many embeddings into R2. Supppose that M is an embedding such
that λ2(∂M) > 0 (which, of course, exists). Then the measure λ2|M is not
Lebesgue-like on the manifold M . Thus we caution the reader that the no-
tion of Lebesgue-like measures is a topological notion and yet the restiction of
a Lebesgue-like measure to a submanifold may not result in a Lebesgue-like
measure on the submanifold.

2.2 Absolutely Measurable Sets of Manifolds

We begin with the existence of nonatomic Borel regular measures associated
with absolutely measurable sets E of a manifold M .
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Proposition 2.2. Let M be a compact, connected manifold and let E be
any absolutely measurable set. Then there exists a nonatomic Borel regular
measure µ such that µ(U ∩E) > 0 whenever U is an open set with (U \∂M)∩
P(E) 6= ∅ and such that µ

(
(M \ E) ∪ ∂M

)
= 0.

Proof. Let Ui, i = 1, 2, . . . , be a basis of open sets for the topology of M .
From the definition of the closure-like operation P there is a nonempty perfect
set Fi contained in (Ui \ ∂M) ∩ E whenever (Ui \ ∂M) ∩ P(E) 6= ∅. For each
set Fi let µi be a nonatomic Borel regular measure such that the topological
support of µi is Fi. (See the discussion of Section 1.1.) We may assume
that µi(M) ≤ 2−i holds. Define µ =

∑∞
i=1 µi to complete the proof.

Here is a useful H(M)-invariance lemma.

Lemma 2.3. Let h be in H(M) and let f be an absolutely measurable, real-
valued function on M , where M is a compact, connected manifold. For Borel
subsets E of R, h−1

[
f−1[E] \ ∂M

]
= (h#f)−1[E] \ ∂M. Consequently, if E is

any Borel subset of R and if µ ∈ M(M), then

h#µ
(
f−1[E] \ ∂M

)
= µ

(
(h#f)−1[E] \ ∂M

)
, (2)

and thereby

f−1[E] \ ∂M ∈ abN (M) if and only if (h#f)−1[E] \ ∂M ∈ abN (M).

Proof. Clearly, h−1f−1 = (fh)−1 = (h#f)−1. By the Brouwer Invariance of
Domain Theorem we have h−1[∂M ] = ∂M . So the first identity holds. The
rest of the lemma follows easily.

2.3 Preliminary Lemmas

The following lemmas will lead to the proof of the main lemma and theorem
in the next section.

Lemma 2.4. Let µ and ν be Lebesgue-like measures on a compact, connected
manifold M and let A be an n-cell contained in M with (µ + ν)(∂A) = 0.
Suppose that U and V are disjoint, nonempty open sets contained in A \ ∂A
with (µ− ν)(U) ≥ 0. Then there is a self-homeomorphism h of M such that h
is the identity map on (M \A) ∪ ∂A and such that

h#µ− ν = (µ− ν) (M \ U) +
(µ− ν)(U)
ν(V )

ν V,

whence (h#µ− ν)(U) = 0, (h#µ− ν)(V ) = (µ− ν)(U ∪ V ), and h#µ(Z) = 0
whenever (µ+ ν)(Z) = 0.
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Proof. With µ0 defined by

µ0 =ν + (µ− ν) (M \ U) +
(µ− ν)(U)
ν(V )

ν V, (3)

we have the two equations:

µ0 =ν U + µ (M \ U) +
(µ− ν)(U)
ν(V )

ν V, (4)

µ− µ0 =(µ− ν) U − (µ− ν)(U)
ν(V )

ν V. (5)

From equation (4) we see that µ0 is Lebesgue-like, and from equation (5) we
see that µ(A) = µ0(A) and µ0(∂A) = 0. Hence we may apply Theorem 2.1
to µ0|A and µ|A. Let h be a self-homeomorphism of A such that h|∂A is the
identity map and h#(µ|A) = µ0|A. Define h on M \A to be the identity map.
From dimU = dimM ≥ dimA ≥ dimU we find that M is n-dimensional.
We infer from the Brouwer Invariance of Domain Theorem that h is a self-
homeomorphism of M . Then h#µ = µ0 as measures on M . The remaining
assertions of the lemma follow from equation (3).

We turn to compact, connected, n-dimensional manifolds M that are not
topological n-cells. Let C be a finite collection of n-cells contained in M with
M =

⋃
{ IntM (A) : A ∈ C }. Let ZC =

⋃
{ ∂A : A ∈ C }. As M is not an

n-cell we have card C > 1. A Lebesgue-like measure µ on M is said to be
compatible with C whenever µ(ZC) = 0.

Corresponding to the collection C is the collection of open sets A \ ∂A
and M \ (A ∪ ∂M), A ∈ C. Using this collection, we associate with C the
finite collection VC of mutually disjoint, nonempty open sets satisfying the
conditions:

U ⊂ A whenever U ∈ VC , A ∈ C and U ∩A 6= ∅;

M \ ZC =
⋃
{U : U ∈ VC };

ZC =
⋃
{BdM (U) : U ∈ VC }.

We are now ready for the final lemma of this section.

Lemma 2.5. Suppose that M is a compact, connected n-dimensional manifold
that is not an n-cell. Let C and its associated collection VC be as described above
and let ν be a Lebesgue-like measure on M that is compatible with C. If µ is
a Lebesgue-like measure on M such that µ(M) = ν(M) and µ is compatible



720 Togo Nishiura

with C, then there is a self-homeomorphism h of M such that h|∂M is the
identity map, h#µ(M) = ν(M), h#µ is compatible with C, and

card {U : U ∈ VC , h#µ(U) 6= ν(U) } = 0.

Proof. Let k(C) be the minimum kh = card{U : U ∈ VC , h#µ(U) 6= ν(U) }
where h is a self-homeomorphism ofM satisfying the conditions h|∂M = id ∂M ,
h#µ(M) = ν(M), and h#µ is compatible with C.

We must prove k(C) = 0. To the contrary, suppose k(C) > 0. Let h0 be
such that kh0 = k(C). We designate by Umax and Umin the members of VC for
which

(h0#µ− ν)(Umin) ≤ (h0#µ− ν)(U) ≤ (h0#µ− ν)(Umax)

whenever U ∈ VC . As 0 = (h0#µ− ν)(M) =
∑

U∈VC (h0#µ− ν)(U), we infer
from the properties of the collection VC that

(h0#µ− ν)(Umax) > 0 > (h0#µ− ν)(Umin).

We consider only the case where no A in C contains both Umax and Umin since
the contrary case is a simple modification of this case.

There is a finite sequence Ai, i = 1, 2, . . . , N , in C such that Umax ⊂ A1,
Umin ⊂ AN , and (Ai \ ∂Ai) ∩ (Ai+1 \ ∂Ai+1) 6= ∅ for each i. Let Ui be a
member of VC contained in Ai ∩ Ai+1. We may suppose that Umax 6= U1,
Ui 6= Ui+1 for all i, and UN−1 6= Umin. Let i0 be the smallest integer such
that (h0#µ− ν)(Ui0) 6= 0. Then (h0#µ− ν)(Ui) = 0 whenever 1 ≤ i < i0. We
apply Lemma 2.4, where h0#µ replaces µ, to the sets Umax and U1 to get a self-
homeomorphism h1 of M such that h1|∂M = id ∂M , (h1h0)#µ(M) = ν(M),
(h1h0)#µ is compatible with C, and(

(h1h0)#µ− ν
)
(Umax) = 0,(

(h1h0)#µ− ν
)
(U1) = (h0#µ− ν)(Umax ∪ U1) = (h0#µ− ν)(Umax) > 0,(

(h1h0)#µ− ν
)
(U) = (h0#µ− ν)(U) for U ∈ V \ {Umax, U1 },

whence kh1h0 = kh0 . Repeating this procedure i0 times, we have self-home-
omorphisms hi of M , i = 1, 2, . . . , i0, such that H = hi0 · · ·h1h0 satisfies the
requirements H|∂M = id ∂M , H#µ(M) = ν(M), H#µ is compatible with C,
and

(H#µ− ν
)
(Umax) = 0,

(H#µ− ν
)
(Ui0) = (h0#µ− ν)(Umax ∪ Ui0),

(H#µ− ν
)
(U) = (h0#µ− ν)(U) for U ∈ V \ {Umax, Ui0 },



Absolutely Measurable Functions on Manifolds 721

whence kH < kh0 . Thus the contradiction k(C) ≤ kH < kh0 = k(C) has
appeared and the lemma is proved.

2.4 Main Theorem

Lemma 2.6. Suppose that M is a compact, connected n-dimensional manifold
that is not an n-cell. Let C and its associated collection VC be as described
above. If µ and ν are Lebesgue-like measures on M that are compatible with C
and satisfy µ(M) = ν(M) and card {U : U ∈ VC , µ(U) 6= ν(U) } = 0, then
there is a self-homeomorphism h of M such that it is the identity map on ∂M
and such that h#µ = ν.

Proof. Index the finite set C as Ai, i = 1, 2, . . . , N . As µ(A1) = ν(A1), we
infer from Theorem 2.1 that there is a self-homeomorphism h1 of M such that
it is the identity map on (M \ A1) ∪ ∂A1 and such that (h1#µ) A1 = ν A1.
Clearly, card {U : U ∈ VC , h1#µ(U) 6= ν(U) } = 0, h1#µ is compatible with C
and h1#µ(M) = ν(M). Hence (h1#µ)(A2 \A1) = ν(A2 \A1). There is a self-
homeomorphism h2 of M such that it is the identity map on (M \A2) ∪ ∂A2

and such that (h2#h1#µ) A2 = ν A2 and (h2#h1#µ) A1 = ν A1. Repeat-
ing this process N times, we will have self-homeomorphisms hi of M such that
they are the identity maps on ∂M and such that (hN · · ·h2h1)#µ = ν.

Theorem 2.7. Every compact, connected manifold has the von Neumann-
Ulam-Oxtoby property.

Proof. Let µ and ν be Lebesgue-like measures on the n-dimensional mani-
fold M with µ(M) = ν(M). We assume that M is not an n-cell (see Theo-
rem 2.1). As M is compact, there is a finite collection C of n-cells such that
M =

⋃
{ IntM (A) : A ∈ C } and such that µ + ν is compatible with C. Com-

bining Lemmas 2.5 and 2.6, we have a self-homeomorphism h of M such that
it is the identity map on ∂M and h#µ = ν. The theorem is proved.

3 Lebesgue’s Notion of Equivalence

In his paper [10], Lebesgue defined the notion of equivalence of functions f
and g by using compositions with self-homeomorphisms h, that is, f = gh.
He used it in the calculus of variations to represent curves and surfaces by
continuous maps. Of course not every analytical property is invariant under
the “action” of self-homeomorphisms. Nonetheless, many interesting invariant
properties have been investigated when the functions were defined on [0, 1].
(Besides those mentioned in this paper there are many more related to Fourier
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series; see the many references in [4], especially those to Goffman and Water-
man.) We shall extend them now to functions defined on manifolds. The key
to the proofs is the von Neumann-Ulam-Oxtoby Theorem for manifolds.

3.1 Baire Class 1

The following theorem is related to a theorem by Bruckner, Davies and Goff-
man [1] (see also [4, page 17]).

Theorem 3.1. Let M be a compact, connected manifold. If fj : M → R,
j = 1, 2, . . . , are absolutely measurable functions and ν is a Lebesgue-like mea-
sure on M , then there is a self-homeomorphism h of M such that h|∂M is the
identity map and there are functions gj, j = 1, 2, . . . , in the Baire class 1 such
that h#fj is equal to gj ν-almost everywhere.

Proof. According to Theorem 1.11 there are Baire class 1 functions gj,1 such
that

P
(⋂∞

j=1{x : fj(x) = gj,1(x) }
)

= M.

Since
⋂∞
j=1{x : fj(x) = gj,1(x) } is absolutely measurable, there is a Lebesgue-

like measure µ with µ
(⋃∞

j=1{x : fj(x) 6= gj,1(x) }) = 0 (see Proposition 2.2).
We may assume µ(M) = ν(M).

As M has the von Neumann-Ulam-Oxtoby property, there is a self-homeo-
morphism h such that µ = h#ν and h|∂M is the identity map. Let gj = h#gj,1.
Then

ν
(
{ t : h#fj(t) 6= gj(t) }

)
= µ

(
{x : fj(x) 6= gj,1(x) }

)
by Lemma 2.3. As gj is in the Baire class 1, the theorem is proved.

Bruckner, Davies and Goffman gave in [1] a proof of the theorem for
one function on the interval [0, 1], where ν = λ1, without the use of the
von Neumann-Ulam-Oxtoby Theorem. Their proof does not extend to the
compact manifold case. In passing, we remark that there are functions that
are not absolutely measurable for which the conclusion of the theorem holds
when ν is Lebesgue measure on [0, 1] (see [7, 1, 4]). This is a result proved by
W. J. Gorman III. We extend Gorman’s result to manifolds.

Theorem 3.2. Let M be a compact, connected manifold and ν be a Lebesgue-
like measure on M . If f is a ν-measurable, real-valued function on M with
card f [M ] < ℵ0, then there is a self-homeomorphism h of M such that h|∂M
is the identity map and there is a function g in the Baire class 1 such that h#f
is equal to g ν-almost everywhere.
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Proof. Index the finite set f [M ] as yi, i = 1, 2, . . . , N . Let Ai be a Borel
subset of f−1[yi] with ν

(
f−1[yi] \Ai

)
= 0. Then M =

⋃N
i=1 P(Ai). We apply

Propositions 1.8 and 2.2, and the von Neumann-Ulam-Oxtoby property to
complete the proof.

3.2 Absolute Essential Supremum Modulo ∂M

The closed set of the discussion in Section 1.3 will be the boundary ∂M of
a compact, connected n-dimensional manifold M . As we will be concerned
only with Lebesgue-like measures on M , the Brouwer Invariance of Domain
Theorem will ensure that µ

(
h[∂M ]

)
= 0 for every self-homeomorphism h

and every Lebesgue-like measure µ. Consequently we may assume that the
absolutely measurable functions take the value 0 on ∂M .

We restate Theorem 1.12 in the present context of modulo ∂M .

Theorem 3.3. Let M be a compact, connected manifold. For each absolutely
measurable function f : M → R, there exists a Lebesgue-like measure µ such
that the absolute essential norm modulo ∂M satisfies ab ‖f‖∞ = ‖f‖µ,∞. Ad-
ditionally, µ(M) = 1 may be assumed.

The proof will be left to the reader.

Theorem 3.4. Let M be a compact, connected manifold. If f : M → R is
absolutely measurable, then the absolute essential norm modulo ∂M satisfies
ab ‖f‖∞ = ab ‖h#f‖∞ for every self-homeomorphism h of M .

Proof. The desired identity follows from Lemma 2.3 and the definition of
the absolute essential norm modulo ∂M .

Observe that equation (2) in Lemma 2.3 yields the useful identities

‖(h#f)‖µ,∞ = ‖f‖h#µ,∞ and ‖(h#f)‖µ,1 = ‖f‖h#µ,1 (6)

whenever h ∈ H(M), µ ∈ ML(M) and f is absolutely measurable.

Theorem 3.5. Let M be a compact, connected manifold. If f : M → R is
absolutely measurable and if ν is a Lebesgue-like measure on M , then there is
a self-homeomorphism h of M such that h is the identity map on ∂M and the
absolute essential norm modulo ∂M satisfies ab ‖f‖∞ = ‖h#f‖ν,∞.

Proof. For every pair of Lebesgue-like measures µ and ν with µ(M) = ν(M)
there is a self-homeomorphism h such that µ = h#ν and h|∂M is the iden-
tity map. Select µ as in Theorem 3.3 for the function f . We may assume
µ(M) = ν(M). Then from equation (6) and Theorem 3.3 we have

ab ‖f‖∞ = ‖f‖µ,∞ = ‖f‖h#ν,∞ = ‖h#f‖ν,∞
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thereby completing the proof.

3.3 Absolutely Integrable Functions on M

We translate Proposition 1.13 into statements about manifolds modulo their
boundary.

Theorem 3.6. Let M be a compact, connected manifold. If f : M → R is
absolutely measurable, then the absolute essential norm modulo ∂M satisfies

ab ‖f‖∞ = sup { ‖h#f‖ν,1 : h ∈ H(M), h|∂M = id ∂M }

for every Lebesgue-like measure ν with ν(M) = 1.

Proof. The statement is an immediate consequence of the von Neumann-
Ulam-Oxtoby property, equation (6) and Proposition 1.13.

Theorem 3.7. Let M be a compact, connected manifold. Suppose that f is
an absolutely measurable, real-valued function whose absolute essential norm
modulo ∂M satisfies ab ‖f‖∞ = ∞. Then, for each Lebesgue-like measure ν
with ν(M) = 1, there is a self-homeomorphism h of M such that h|∂M is the
identity map and ‖h#f‖ν,1 =∞.

Proof. By Corollary 1.14 there is a Lebesgue-like measure µ with µ(M) = 1
such that ‖f‖µ,1 = ∞. Let h be such that h|∂M = id ∂M and µ = h#ν.
Then ‖h#f‖ν,1 = ‖f‖µ,1 =∞ and the theorem is proved.

Different proofs of the above theorems when M = [0, 2π] and ν = λ1 have
been given in [6] and [4, pages 160–161]. The theorems for the manifold [0, 2π]
have applications in certain questions of “change of variables” in Fourier series.
Of course the manifold in the study of Fourier series is S1.

In summary, we have established the following.

Theorem 3.8. Let ν be a Lebesgue-like measure on a compact, connected man-
ifold M . For absolutely measurable, real-valued functions f on M , a necessary
and sufficient condition for the ν-integrability of h#f for every h in H(M) with
h|∂M = id ∂M is that ab ‖f‖∞ modulo ∂M be finite.

3.4 Product Measures

The original von Neumann-Ulam-Oxtoby Theorem concerned the Lebesgue
measure λn. Of course, λn is a product measure. We have the following.
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Theorem 3.9. Let µ be a Lebesgue-like measure on a compact, connected
manifold M . If ν is a Lebesgue-like measure on M× [0, 1] with ν(M× [0, 1]) =
µ(M), then there is a self-homeomorphism h of M × [0, 1] such that it is the
identity map on ∂(M×[0, 1]) and such that h#ν = µ×λ1, where λ1 is Lebesgue
measure on [0, 1].

As µ× λ1 is Lebesgue-like on M × [0, 1], the proposition is a trivial conse-
quence of the von Neumann-Ulam-Oxtoby property.

3.5 L1-Spaces

The von Neumann-Ulam-Oxtoby property of compact, connected manifolds M
has rather nice consequences for L1(M,µ) when µ is a Lebesgue-like measure.

Lemma 3.10. Suppose that µ is Lebesgue-like measure on a compact, con-
nected manifold M . If h is a self-homeomorphism of M with h|∂M = id ∂M ,
then L1(M,ν) = {h#f : f ∈ L1(M,h#ν) } and

∫
M
h#f dν =

∫
M
f d(h#ν)

whenever f ∈ L1(M,h#ν).

Proof. With µ = h#ν, let f ∈ L1(M,µ) (of course, f is extended real-
valued). Select a Borel measurable function g : M → R such that µ(Z) = 0
where Z = {x : f(x) 6= g(x) }. From

(
h#(f − g)

)−1 = h−1(f − g)−1 we have
h−1[Z] = { t : h#f(t) 6= h#g(t) }. Let us show ν

(
h−1[Z]

)
= 0. To this end,

let E be a Borel set such that E ⊃ Z and µ(E) = 0. Then we have

0 = µ(E) = h#ν(E) = ν
(
h−1[E]

)
≥ ν

(
h−1[Z]

)
.

Consequently, h#f = h#g ν-almost everywhere on M . Since g is absolutely
measurable, we finally have∫

M
|h#f | dν =

∫
M
|h#g| dν =

∫
M
|g| d(h#ν) =

∫
M
|g| dµ =

∫
M
|f | dµ <∞.

Hence the inclusion L1(M,ν) ⊃ {h#f : f ∈ L1(M,µ) } follows. From this we
infer L1(M,µ) ⊃ { (h−1)#f : f ∈ L1(M,ν) }. Consequently

L1(M,ν) ⊃ {h#f : f ∈ L1(M,µ) }
⊃ {h#(h−1)#f : f ∈ L1(M,ν) } = L1(M,ν)

and the lemma is proved.

We have the following application.
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Theorem 3.11. Suppose that ν is a Lebesgue-like measure on a compact, con-
nected manifold M and that F is a ν-measurable, extended real-valued function
that is real-valued ν-almost everywhere on M . Let V be the vector space of all
ν-measurable, extended real-valued functions f on M with the property that
|f | ≤ k F ν-almost everywhere on M for some real number k. Then there
exists a self-homeomorphism h of M such that h|∂M = id ∂M and

h#f ∈ L1(M,ν) whenever f ∈ V.

Proof. Let µ be the measure on M given by µ(E) = α
∫
E

(1 + F )−1 dν for
E ∈ A(M,ν), where α is such that µ(M) = ν(M). As F is real-valued
ν-almost everywhere on M , we have that µ is Lebesgue-like. By Theorem 2.7,
there is a self-homeomorphism h of M such that h|∂M = id ∂M and µ = h#ν.
Since V ⊂ L1(M,µ) clearly holds, the theorem follows.

Corollary 3.12. Suppose that ν is a Lebesgue-like measure on a compact,
connected manifold M . If fj, j = 1, 2, . . . , is a sequence of ν-measurable, ex-
tended real-valued functions on M such that

∑∞
j=1|fj | is real-valued ν-almost

everywhere on M , then there is a self-homeomorphism h of M such that
h|∂M = id ∂M and such that h#fj is ν-integrable for every j.

Proof. Let F be
∑∞

j=1|fj | in the above theorem.

We have the simple corollary.

Corollary 3.13. If fj, j = 1, 2, . . . , are Lebesgue measurable, extended real-
valued functions on Rn with

∑∞
j=1|fj | real-valued λn-almost everywhere, then

there is a self-homeomorphism h of Rn such that h#fj is locally Lebesgue
integrable for each j.

Obviously, local integrability cannot be strengthened to integrability on Rn.
For the proof, use the compact manifolds {x : k−1 ≤ ‖x‖ ≤ k }, k = 1, 2, . . . .
In [13], the above corollary was proved by Świa̧tkowski for only a single func-
tion defined on In but with a stronger conclusion. (See also [9].)

Theorem 3.14. Let µ and ν be Lebesgue-like measures on a compact, con-
nected manifold M with µ(M) = ν(M). Then there is a self-homeomorphism h
of M such that h|∂M = id ∂M and such that h# : L1(M,µ) → L1(M,ν) is
a norm-preserving linear isomorphism. Moreover, h# preserves the Baire
classes of functions.

Proof. By Theorem 2.7, there is a self-homeomorphism h of M such that
h|∂M = id ∂M and µ = h#ν. Then the above lemma provides an onto map.



Absolutely Measurable Functions on Manifolds 727

Clearly, h# is a linear map that satisfies ‖f‖µ,1 = ‖h#f‖ν,1. That h# is
one-to-one follows from ν = (h−1)#µ. Finally, for each α and any function f
on M , the function h#f is in the Baire class α if and only if f is.
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