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TWO CONSTRUCTIONS OF SIERPIŃSKI
AND SOME CARDINAL INVARIANTS OF

IDEALS

Abstract

Let N denote the ideal of null sets in R. Using CH Sierpiński con-
structed a set A ⊂ R satisfying A /∈ N , R\A /∈ N , and (A+h)\A ∈ N
for every h ∈ R. He also constructed a set H ⊂ R2 such that each
horizontal section of H and the complement of each vertical section of
H belong to N . In this note we investigate the existence of sets with
analogous properties when N is replaced by an arbitrary invariant ideal.
We also discuss the relationship among several related statements, in-
cluding some inequalities between the cardinal invariants of the ideal in
question.

In the case of null sets in R we show that the nonexistence of A ⊂ R
with A /∈ N , R \ A /∈ N , and (A + h) \ A ∈ N (h ∈ R) is equivalent to
the difference property of the class L of Lebesgue measurable functions
defined on R. As an application we obtain that the difference property
of the class L is consistent with ZFC.

1 The Diagram.

It is well-known that the following two statements are consequences of CH.

S1 : There exists a set A ⊂ R such that both A and R\A are of positive outer
measure, but (A+ h) \A is of measure zero for every h ∈ R.

S2 : There exists a set H ⊂ R2 such that the horizontal section Hy = {x :
(x, y) ∈ H} is of measure zero for every y ∈ R, and the complement of
the vertical section Hx = {y : (x, y) ∈ H} is of measure zero for every
x ∈ R.
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(See [11], Propositions C70 and C49. See also [9] and [10].) In this note we dis-
cuss the relationships between S1, S2, and several other statements involving
certain cardinal numbers. In fact, we shall consider these relationships in a
more general setting, when R is replaced by an arbitrary Abelian group X and
the system of Lebesgue null sets is replaced by a translation-invariant ideal of
subsets of X.

Let I be an ideal of sets. (For the basic facts concerning ideals and cardinal
invariants of ideals, the reader can consult [1].) We shall always assume that
I is nontrivial in that I 6= ∅ and

⋃
I /∈ I. The cardinality of a set H will be

denoted by |H|. We shall need the following cardinal functions of I.

add(I) = min{|H| : H ⊂ I, ∪H /∈ I},

cov(I) = min{|H| : H ⊂ I, ∪H = ∪I},

non(I) = min{|E| : E ⊂ ∪I, E /∈ I},

cof(I) = min{|H| : H ⊂ I, ∀ E ∈ I ∃ H ∈ H, E ⊂ H},

non∗(I) = min{κ : ∀ E /∈ I ∃ F ⊂ E such that F /∈ I and |F | ≤ κ}.

In order to make the diagram of the next proposition symmetric, we shall
introduce one more cardinal (the “chain cover” of I). We say that H ⊂ I is
a chain if, for every A,B ∈ H we have either A ⊂ B or B ⊂ A. Let ccv(I)
denote the smallest cardinal κ such that for every chain H ⊂ I there is F ⊂ I
such that

⋃
H ⊂

⋃
F and |F| ≤ κ.

Proposition 1. In the following diagram the cardinals increase from south-
west to north-east.

non(I) non∗(I) cof(I)

add(I) ccv(I) cov(I)

Diagram 1.

In other words, add(I) ≤ non(I) ≤ non∗(I) ≤ cof(I), add(I) ≤ ccv(I) ≤
cov(I) ≤ cof(I), and ccv(I) ≤ non∗(I).

Proof. The inequalities add(I) ≤ non(I) ≤ non∗(I) and ccv(I) ≤ cov(I) ≤
cof(I) are obvious.
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non∗(I) ≤ cof (I) : Let cof (I) = κ, and select H ⊂ I such that |H| = κ
and for every N ∈ I there is an H ∈ H with N ⊂ H. If E /∈ I, then E \H 6= ∅
for every H ∈ H. Let a point xH ∈ E \H be selected for every H ∈ H, and
put F = {xH : H ∈ H}. Then F ⊂ E and F /∈ I, since F is not covered by
any element of H. This implies |F | ≤ |H| = κ, which proves non∗(I) ≤ κ.

add(I) ≤ ccv(I) : Let add(I) = κ, and select F ⊂ I such that |F| = κ,
and

⋃
F /∈ I. Let {Eα : α < κ} be a well-ordering of F , and put H ={⋃

β<αEβ : α < κ
}
. Then H is a chain, H ⊂ I, and

⋃
H /∈ I. By the def-

inition of κ,
⋃
H is not covered by less than κ elements of I. Therefore,

ccv(I) ≥ κ.

ccv(I) ≤ non∗(I) : Let non∗(I) = κ. We have to prove that for every chain
H ⊂ I there is F ⊂ I such that

⋃
H ⊂

⋃
F and |F| ≤ κ. Let

⋃
H = D. If

D ∈ I, then F = {D} satisfies the requirements. Therefore we may assume
D /∈ I. Then there is a set F ⊂ D such that F /∈ I and |F | ≤ κ. For every
x ∈ F select an Hx ∈ H with x ∈ Hx, and put F = {Hx : x ∈ F}. Then
F ⊂ H and |F| ≤ κ. We prove

⋃
F = D. Suppose this is not true, and let a

point y ∈ D \
⋃
F be selected. If H ∈ H contains y, then Hx ⊂ H for every

x ∈ F, since H is a chain, and H ⊂ Hx is impossible because y /∈ Hx. Thus
F ⊂

⋃
F ⊂ H ∈ I, contrary to F /∈ I.

Let X be an Abelian group, and let I be an ideal of subsets of X. We shall
use the notation I|A = {B ⊂ A : B ∈ I} for every A ⊂ X. The ideal I is
called invariant, if E ∈ I implies E + x ∈ I for every x ∈ X.

We shall investigate the relationship between the following statements.

CI : X is the union of a chain of sets belonging to I. (It is easy to see that
CI is equivalent to the existence of an ordering ≺ of X such that each
initial segment of X belongs to I; that is, {y : y ≺ x} ∈ I for every x.)

GI : X is the union of a chain of subgroups belonging to I.

S1
I : There exists a set A ⊂ X such that A /∈ I, X \A /∈ I and (A+h)\A ∈ I

for every h ∈ X.

S1s
I : There exists a function f : X → X such that {x ∈ X : f(x+h)−f(x) 6=

0} ∈ I for every h ∈ X, and f−1({y}) ∈ I for every y ∈ X.

S2
I : There exists a set H ⊂ X ×X such that Hy ∈ I for every y ∈ X, and

X \Hx ∈ I for every x ∈ X.

S2w
I : There exists a set H ⊂ X ×X such that Hy ∈ I for every y ∈ X, and

{x : X \Hx ∈ I} /∈ I.
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DI : There exists a decomposition X = A∪B such that cov(I|A) ≤ non(I|B)
and cov(I|B) ≤ non(I|A).

Theorem 2. Let X be an uncountable Abelian group and let I be an invariant
ideal in X. Then each implication of the following diagram holds, except per-
haps S1s

I =⇒ S1
I . This implication is also true, supposing that I is a σ-ideal

and |X| is less than the first (2-valued) measurable cardinal.

[non(I) = |X|] HH�� GI HH�� S1s
I

HH�� S1
I

HH�� DI

AA�� AA�� AA�� AA��[(non(I) = |X|) or
(add(I) = cov(I))]

HH�� CI HH�� S2
I

HH�� S2w
I

HH�� [cov(I) ≤ non∗(I)]

[cov(I) ≤ non(I)]

�
�
�
�

�
�
�
�

@
@
@
@

@
@
@
@

Diagram 2.

Proof. First we prove the implications of the first row.

[[non (I) = |X|] =⇒ GI : Let {xα : α < |X|} be a well-ordering of X,
and let Gα denote the subgroup generated by {xβ : β < α}. Since |Gα| =
max(|α|, ω) < |X|, it follows from non(I) = |X| that Gα ∈ I for every α.
Then {Gα : α < |X|} is a chain of groups belonging to I whose union is X.

GI =⇒ S1s
I : Let {Gα : α < κ} be a chain of groups belonging to I such

that ∪α<κGα = X. Let Γ denote the set of those ordinals α < κ for which
the set G′α = Gα \ ∪β<αGβ is nonempty, and select a point yα ∈ G′α for every
α ∈ Γ.

We define f(x) = yα, where α = α(x) is the smallest ordinal with x ∈ Gα.
Then we have f−1({yα}) ⊂ Gα ∈ I for every α ∈ Γ. Let h ∈ X be fixed.
If h ∈ G′α and x /∈ Gα, then Gβ ⊂ Gα for every β < α, and thus x ∈ G′γ ,
where α < γ and Gα ⊂ Gγ . Therefore f(x + h) = f(x) = yγ , which proves
{x : f(x+ h)− f(x) 6= 0} ⊂ Gα ∈ I.

S1s
I =⇒ S1

I (supposing that I is a σ-ideal and |X| is less than the first
measurable cardinal): Let f be as in S1s

I . Let J = {H ⊂ X : f−1(H) ∈ I};
then J is a σ-ideal on X containing the singletons. Since |X| is less than the
first measurable cardinal, J cannot be prime. That is, there exists an H ⊂ X
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such that f−1(H) /∈ I and X \ f−1(H) /∈ I. It is easy to check that the set
A = f−1(H) satisfies the requirements of S1

I .

S1
I =⇒ DI : Let A satisfy S1

I . We show that cov(I|A) ≤ non(I|(X \ A))
and cov(I|(X \ A)) ≤ non(I|A). By symmetry it is enough to prove the first
inequality. Let non(I|(X \ A)) = κ, and select a set B ⊂ X \ A such that
|B| = κ, and B /∈ I. Since (A − h) \ A ∈ I, we have B 6⊂ A − h for every
h. This gives

⋂
{A − b : b ∈ B} = ∅, since h ∈ A − b (b ∈ B) would imply

B ⊂ A− h. Therefore A =
⋃
{A \ (A− b) : b ∈ B}; that is, A can be covered

by κ = non(I|(X \A)) elements of I.
Next we prove the vertical implications. The first two relations are obvious.

S1s
I =⇒ S2

I : If f satisfies S1s
I , then H = {(x, y) : f(x+y) 6= f(x)} satisfies

S2
I .

DI =⇒ [cov(I) ≤ non∗(I)] : Suppose DI . Then

cov(I) ≤ max(cov(I|A), cov(I|B)) ≤ max(non (I|B),non (I|A)) ≤ non∗(I).

Now we prove the implications of the second row.[
(non (I) = |X|) or (add (I) = cov (I))

]
=⇒ CI : If non(I) = |X|, then

the initial segments of any well-ordering {xα : α < |X|} of X belong to I.
Next suppose add(I) = cov(I) = κ and let X = ∪α<κNα, where Nα ∈ I for
every α. We may assume that the sets Nα are pairwise disjoint, and then we
can order X in such a way that the elements of Nα precede those of Nβ for
every α < β. It is clear that the initial segments of this ordering belong to I.
(This argument is well-known; special cases appear in [3, p. 193] and, in the
category case, in [6, Statement 3, p. 462].)

CI =⇒ S2
I : This follows by Sierpiński’s original argument [9]: If ≺ is an

ordering of X such that {x : x ≺ y} ∈ I for every y, then H = {(x, y) : x ≺ y}
satisfies S2

I .

S2
I =⇒ S2w

I : Obvious.

S2w
I =⇒ [cov(I) ≤ non∗(I)] : Suppose that H satisfies S2w

I and select
E ⊂ {x : X \ Hx ∈ I} such that E /∈ I and |E| ≤ non∗(I). Then X =
∪{X \ Hx : x ∈ E}. Indeed, y /∈ X \ Hx (x ∈ E) would imply E ⊂ Hy,
contradicting Hy ∈ I. (Cf. [8, p. 306].)

Finally, we turn to the implications of diagonal direction.

S2
I =⇒ [cov(I) ≤ non (I)] : Let E /∈ I be such that |E| = non(I). If H

satisfies S2
I , then X = ∪{X \Hx : x ∈ E}. Indeed, y /∈ X \Hx (x ∈ E) would

imply E ⊂ Hy, contradicting Hy ∈ I. (Cf. [3, p. 193].)
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[cov(I) ≤ non (I)] =⇒ DI : We shall say that the sets A,B ⊂ X are
congruent, if B = A + x for some x ∈ X. First we show that there is a
partition X = X1 ∪ . . . ∪Xk such that k ≥ 2 is finite and the sets X1, . . . , Xk

are congruent to each other. Let x 6= 0 be a fixed element of X, and let H be a
set containing exactly one element of each coset of the group generated by x.
Then the sets H +nx (0 ≤ n < N) constitute a partition of X into congruent
subsets, where N denotes the order of x. If N is finite, then this is the partition
we were looking for. If N is infinite, then we put X1 =

⋃∞
i=0(H + 2i) and

X2 =
⋃∞
i=0(H + (2i+ 1)), and obtain the partition X = X1 ∪X2.

By the invariance of I we have non(I|X1) = . . . = non(I|Xk). This easily
implies non(I|Xi) = non(I) for every i = 1, . . . , k. Similarly, cov(I|Xi) =
cov(I) (i = 1, . . . , k). Let A = X1 and B = X2 ∪ . . . ∪ Xk; then we have
cov(I|A) = cov(I) ≤ non(I) = non(I|B) and cov(I|B) = cov(I) ≤ non(I) =
non(I|A).

The two remaining implications follow by transitivity.

Remarks.
1. It is easy to check that if X is countable, then each statement of Diagram

2 is true except perhaps GI , S1s
I , and S1

I . The statement GI is false if X is
finitely generated or if X is not a torsion group and I equals the ideal of finite
subsets of X. Therefore the implication [non (I) = |X|] =⇒ GI is false in these
cases. The implication GI =⇒ S1s

I holds for every group (its proof did not
use |X| > ω). We shall see in the next section that S1s

I =⇒ S1
I fails in every

infinite Abelian group for some ideals.

2. Let λ be an infinite cardinal number less than |X|, and let I = {H ⊂
X : |H| < λ}. Then cov(I) = |X| > non∗(I) = λ. Therefore each statement
of the diagram is false. In particular, S1

I is false; that is, if A ⊂ X, |A| ≥ λ
and |X \ A| ≥ λ, then there is an x ∈ X such that |(A + x) \ A| ≥ λ. This is
Trzeciakiewicz’s theorem (see [13] or [4, Theorem 1.7, p. 308]).

3. Suppose |X| ∈ {ω1, ω2}, and let I be an invariant σ-ideal on X. Then
we have

[(non (I) = |X|) or (add (I) = cov(I))] ⇐⇒ CI ⇐⇒ S2
I

⇐⇒ [cov(I) ≤ non (I)].

Indeed, the implications from left to right are contained in Theorem 2. If
cov(I) ≤ non (I), then either non(I) = |X|, or non(I) = cov(I) = ω1. In the
latter case we have ω1 ≤ add(I) ≤ non(I) = ω1, and then add(I) = ω1 =
cov(I). (The special case of this observation, when X = R and I is the ideal
of first category sets, is due to P. Komjáth [6]. See also [3, p. 193].)
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4. In the proof of Theorem 2 the invariance of the ideal was needed in the
implications

S1
I =⇒ DI , S

1s
I =⇒ S2

I , [cov(I) ≤ non (I)] =⇒ DI

and S1s
I =⇒ [cov(I) ≤ non (I)].

It is easy to check that all the other implications of Diagram 2 hold for any
ideal.

2 On the Implication S1s
I =⇒ S1

I.

We start with the introduction of two more conditions.

S1w
I : There are sets A,B ⊂ X such that A /∈ I, B /∈ I, and (A+ h) ∩B ∈ I

for every h ∈ X.

FI : There exists a proper filter F on X such that

I = {H ⊂ X : H + x /∈ F for every x ∈ X}. (1)

It is easy to see that FI is equivalent to the existence of an ultrafilter F
satisfying (1). Indeed, suppose FI , and let F∗ be a filter maximal with respect
to the properties F ⊂ F∗ and F∗ ∩ I = ∅. Then F∗ is an ultrafilter, since
A /∈ F∗ and X \A /∈ F∗ would imply, by the maximality of F∗, that A∩B ∈ I
and (X \A)∩C ∈ I with suitable B, C ∈ F∗. Let B ∩C = D. Then D ∈ F∗
and D ⊂ (A∩B)∪ ((X \A)∩C) ∈ I, contradicting F∗∩I = ∅. Since F ⊂ F∗,
(1) remains true when F is replaced by F∗.

We shall also need the converse: If F is an ultrafilter (not containing ∅)
and I is defined by (1), then I is an invariant ideal satisfying FI . Or, in an
equivalent form, if I0 is a prime ideal, then

I = {H ⊂ X : H + x ∈ I0 for every x ∈ X} (2)

is an invariant ideal satisfying FI .

Proposition 3. For every invariant ideal I we have S1
I =⇒ S1w

I =⇒ ¬FI .

Proof. The first implication is trivial. To prove the second, suppose that S1w
I

and FI are both true. Let F be a filter as in FI , and suppose that A,B ⊂ X
are such that A /∈ I, B /∈ I, and (A+h)∩B ∈ I for every h ∈ X. Then there
are elements x, y ∈ X with A+ x, B + y ∈ F . Since F is a filter, this implies
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(A+x)∩ (B+y) ∈ F . Therefore (A+x−y)∩B /∈ I, since translating this set
by y we obtain an element of F . This contradicts the choice of A and B.

Our next aim is to show that the conditions implying S1s
I =⇒ S1

I are
necessary.

Theorem 4. For every infinite Abelian group X there exists an invariant ideal
I on X such that S1s

I is true but S1
I is false. If |X| is a measurable cardinal,

then there is such a σ-ideal.

Proof. Our first aim is to construct an invariant ideal J satisfying S1s
J . If X

is uncountable, then we put J = {H ⊂ X : |H| < |X|}. Then non(J ) = |X|
and hence, by Theorem 2, S1s

J is true.
Next suppose that X is countably infinite. If X is not finitely generated,

then let J denote the system of all sets H ⊂ X such that the subgroup
generated by H is finitely generated. It is clear that J is an invariant ideal.
Let {xn}∞n=1 be an enumeration of X, and let Gn be the group generated by
x1, . . . , xn. Then G1, G2, . . . is a chain of groups belonging to J , and thus GJ
holds. Therefore, S1s

J holds, also (see the first remark following Theorem 2).
If X is finitely generated, then GJ is false for every invariant ideal; so we

need a different construction. By the fundamental theorem, X is the direct
sum of a finite subgroup K and a finitely generated free Abelian group. That
is, there are elements h1, . . . , hd such that every element of X can be written
uniquely as g + n1h1 + . . . + ndhd, where g ∈ K and n1, . . . , nd ∈ Z. Then
φ(g + n1h1 + . . .+ ndhd) = n1 defines a homomorphism mapping X onto Z.

We shall say that a setA ⊂ Z has density zero if limN→∞ |A∩[−N,N ]|/N =
0. Let J denote the system of all subsets H ⊂ X such that φ(H) has density
zero. Then J is an invariant ideal; we show that it satisfies S1s

J .
For every x ∈ X we define

f(x) =

{
0 if |φ(x)| ≤ 1
nh1 if 2n−1 < |φ(x)| ≤ 2n (n = 1, 2, . . .).

Then φ
(
f−1({y})

)
is finite for every y ∈ X; in particular, f−1({y}) ∈

J (y ∈ X). Let y ∈ X be fixed, and put H = {x ∈ X : f(x + y) 6= f(x)}. If
x ∈ H, then

φ(x) ∈
∞⋃
k=0

(
[−2k − a,−2k + a] ∪ [2k − a, 2k + a]

)
,

where a = |φ(y)|. This implies that φ(H) has density zero. Therefore H ∈ J ,
and thus S1s

J holds.
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We have proved that for every infinite Abelian group X there exists an
invariant ideal J satisfying S1s

J . Then S1s
I is true for every invariant ideal I

with J ⊂ I. Let I0 be a prime ideal containing J , and let I be defined by (2).
Since J is invariant, I contains J and thus S1s

I holds. Also, I is an invariant
ideal satisfying FI and thus, by Proposition 3, S1

I is false. This completes the
proof of the first statement of the Theorem.

If |X| = κ is measurable, then there is a prime σ-ideal I0 containing the
ideal J = {H ⊂ X : |H| < κ}. Let I be defined by (2); then I is an invariant
σ-ideal satisfying FI . By Proposition 3, S1

I is false. On the other hand, we
have non(I) = |X|, since J ⊂ I. Thus, by Theorem 2, S1s

I is true.

We conclude this section by showing that, in general, the only implication
between the statements of Diagram 2 and S1w

I is S1
I =⇒ S1w

I .

Theorem 5. Let I be an invariant ideal such that

non∗(I) < cov(I) = cof (I). (3)

Then S1w
I is true, but every statement of Diagram 2 is false.

Proof. Condition (3) implies |X| > ω, since otherwise non∗(I) = cov(I) =
ω. Therefore, by Theorem 2, each of the statements of Diagram 2 is false.
Condition (3) also implies that

|X \ E| ≥ cof (I) for every E ∈ I. (4)

Indeed, suppose E ∈ I and |X \ E| < cof (I). Then X can be covered by less
than cof (I) elements of I; namely, by the singletons contained by X \E and
by the set E. This, however, contradicts (3).

Now we show that (4) implies S1w
I . Let cof (I) = κ, and let Eα ∈ I (α < κ)

be such that for every E ∈ I there is an α < κ with E ⊂ Eα. Let x0 = y0 ∈
X \ E0. If 0 < α < κ and xβ , yβ have been defined for every β < α, then the
set

Hα = X \ [Eα ∪ {xβ + yγ − yδ : β, γ, δ < α}]
is nonempty by (4). Let xα be an arbitrary element of Hα. The set

Kα = X \ [Eα ∪ {yβ + xγ − xδ : β < α, γ, δ ≤ α}]

is also nonempty; let yα ∈ Kα. In this way we have selected xα and yα for every
α < κ. Let A = {xα : α < κ} and B = {yα : α < κ}. Then A,B /∈ I since
A,B 6⊂ Eα for every α. On the other hand, x−y = x′−y′, x, y ∈ A, x′, y′ ∈ B
imply x = x′ and y = y′ by the construction. Therefore |(A+h)∩B| ≤ 1 and,
consequently, (A+ h) ∩B ∈ I for every h ∈ X.

A simple example of an ideal satisfying (3) is provided by the system of
finite subsets of R.
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3 On the Implication S1
I =⇒ S2w

I .

If we remove the statement cov(I) ≤ non(I) from Diagram 2, the remaining
chart suggests S1

I =⇒ S2w
I . We do not know if this is true in general. In the

next theorem we shall prove this implication under some extra conditions.

Theorem 6. Let I be an invariant ideal. If add(I) = non(I) or cov(I) =
cof (I) holds, then S1

I implies S2w
I .

Proof. We may assume |X| > ω, since otherwise S2w
I is true. Suppose

S1
I , let A be as in S1

I , and put B = X \ A. Then cov(I|A) ≤ non(I|B) and
cov(I|B) ≤ non(I|A) (see the proof of S1

I =⇒ DI in the proof of Theorem 2).

First assume add(I) = non(I) = κ. Since non(I) = min(non(I|A),non(I|B)),
we may assume, by symmetry, that non(I) = non(I|B) = κ. Then

κ = add (I) ≤ add (I|A) ≤ cov(I|A) ≤ non (I|B) = κ

and thus add(I|A) = cov(I|A). Therefore CI|A holds and hence there is an
ordering ≺ of A such that {y ∈ A : y ≺ x} ∈ I for every x ∈ A. We put

H = {(x, y) ∈ A×A : x ≺ y} ∪ {(x, y) ∈ X ×X : x ∈ A \ (A− y)}.

Then Hy ∈ I for every y. We show that X \ Hx ∈ I for every x ∈ A. Since
A /∈ I, this will prove S2w

I . Let x ∈ A be fixed. Then Hx = {y ∈ A : x ≺
y} ∪ (X \ (A− x)), and X \Hx ⊂ {y ∈ A : y ≺ x} ∪ {x} ∪ [(A− x) \A] ∈ I.

Next assume cov(I) = cof(I) = κ. Since cov(I) = max(cov(I|A), cov(I|B)),
we may suppose that cov(I|A) = κ. Our first aim is to construct a map
f : X → B such that f(E) ∈ I for every E ∈ I, but f(A) /∈ I.

Let {Eα : α < κ} be a subsystem of I such that every element of I can be
covered by an Eα. (Such a subsystem exists by cof(I) = κ.) Then there are
elements xα (α < κ) such that

xα ∈ A \
⋃
β<α

(Eβ ∪ {xβ}) (5)

for every α < κ. Indeed, let x0 ∈ A be arbitrary. If 0 < α < κ and xβ has been
selected for every β < α, then, by κ = cov(I|A), the sets Eβ ∪ {xβ} (β < α)
do not cover A, and we can choose a point xα satisfying (5). Now

κ = cov(I|A) ≤ non (I|B) ≤ cof (I|B) ≤ cof (I) = κ



Some Cardinal Invariants of Ideals 673

implies non(I|B) = κ and, consequently, there are elements bα ∈ B such that
B1 = {bα : α < κ} /∈ I. We define f(xα) = bα (α < κ) and f(x) = b0 if
x /∈ {xα : α < κ}. Then f : X → B1 and f(A) = B1 /∈ I. If E ∈ I, then there
is α < κ such that E ⊂ Eα, and thus

f(E) ⊂ f(Eα) ⊂ {bβ : β ≤ α} ∈ I,

since non(I|B) = κ. Now we define

H = {(x, y) : y ∈ X, x ∈ f(A \ (A− y))} ∪ {(x, y) : y ∈ X, x ∈ (A− y) \A}.

Then Hy ∈ I for every y, since A \ (A− y) and (A− y) \A both belong to I.
On the other hand, if x ∈ B1 \ {b0}, then X \Hx ∈ I. Indeed, if y /∈ Hx, then
x′ = f−1(x) /∈ A \ (A − y) and x /∈ (A − y) \ A. Since x′ ∈ A and x /∈ A, we
obtain x′ ∈ A− y and x /∈ A− y; that is, y ∈ A− x′ and y /∈ A− x. Thus we
have, for every x ∈ B1 \ {b0},

X \Hx ⊂ (A− x′) \ (A− x) = [(A− (x′ − x)) \A]− x ∈ I.

Since B1 \ {b0} /∈ I, this proves S2w
I .

4 The Case X = R, I = N .

Let N denote the ideal of null sets in R. Then the statements of Diagram 2
are independent of ZFC. Indeed, CH or Martin’s axiom implies non(N ) = 2ω

and then, by Theorem 2, each statement of Diagram 2 is true. On the other
hand, in the random real model we have cov(N ) ≥ ω2 and non∗(N ) = ω1 (see
Lemma 8 of [8]), and hence in this model each statement of Diagram 2 is false.
We remark that S1w

N is always true, no matter what the actual values of the
cardinal functions of N are. Indeed, E ∈ N implies |R \ E| = 2ω ≥ cof (N )
(see [1]), and this implies S1w

N by the proof of Theorem 5.

In this section we discuss some statements involving real functions that are
equivalent to one of S2

N , S
2w
N or S1

N .

It is well-known that S2
N is equivalent to the existence of a map φ : R→ N

such that, for every x, y ∈ R, x 6= y, either x ∈ φ(y) or y ∈ φ(x). (Proof.
If φ is such a map, then H = {(x, y) : x ∈ φ(y)} satisfies S2

N . In the other
direction, if S2

N holds for H ⊂ R2, then φ(x) = {y : (y, x) ∈ H or (x, y) /∈ H}
satisfies the requirements; see [3, pp. 197-198] and [12].) In other words, S2

N
is equivalent to the negation of condition Anull as defined in [3]. Therefore, by
[3, p. 198], S2

N is equivalent to the existence of a function f : [0, 1]2 → [0, 1]

such that
∫ 1

0

(∫ 1

0
f dx

)
dy 6=

∫ 1

0

(∫ 1

0
f dy

)
dx.
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In turn, S2w
N is equivalent to the existence of a non-measurable function

f : R2 → R such that the vertical sections of f are approximately continuous
and the horizontal sections of f are measurable [8, Lemma 7, p. 303]. Our
next aim is to show that S1

N is related to the difference property of the class
of measurable functions.

Let ∆h denote the difference operator; that is, for h ∈ R let ∆hf(x) =
f(x+ h)− f(x) for every f : R→ R and x ∈ R. Now S1

N is equivalent to the
existence of a non-measurable function f : R→ R such that ∆hf = 0 a.e. for
every h ∈ R. Indeed, if f is such a function, then there is a c ∈ R such that
A = {x : f(x) ≤ c} is non-measurable. Since (A+h)\A ⊂ {x : ∆−hf(x) 6= 0}
is of measure zero for every h, the set A satisfies S1

N .
On the other hand, if A satisfies S1

N , then the symmetric difference of A
and A + h is of measure zero for every h, since A \ (A + h) = [(A − h) \
A] + h. Therefore, if f denotes the characteristic function of A, then f is non-
measurable and ∆hf = 0 a.e. A class of real functions F ⊂ RR is said to have
the difference property if, whenever f : R→ R is such that ∆hf ∈ F for every
h ∈ R, then f = g + H, where g ∈ F and H is additive; that is, H satisfies
Cauchy’s functional equation H(x+ y) = H(x) +H(y) (see [2]). Let L denote
the family of Lebesgue measurable functions defined on R.

Theorem 7. L has the difference property if and only if S1
N is false.

Proof. Let A be as in S1
N . If f denotes the characteristic function of A, then

∆hf = 0 a.e. and thus ∆hf ∈ L for every h. On the other hand, f cannot be
written in the form g+H, where g is measurable and H is additive. Indeed, if
f = g+H where g is measurable, then H = f −g is bounded on a measurable
set of positive measure. If H is additive, then this implies that H is linear
and that f = g +H is measurable, a contradiction. Therefore, in this case L
does not have the difference property. (This argument is due to Erdős; see [2,
p. 195].)

Next suppose ¬S1
N , and let f : R → R be such that ∆hf ∈ L for every

h ∈ R. Then, by [7, Theorem 3], we have f = g + s + H, where g ∈ L, H is
additive and, for every h, ∆hs(x) = 0 a.e. Since S1

N is false, this implies that
s is measurable. Then f = (g+s)+H is the sum of a measurable function and
an additive function, which proves the difference property of the class L.

Theorem 8. It is consistent with ZFC that L has the difference property.

Proof. As we mentioned before, in the random real model S1
N is false and,

consequently, in this model L has the difference property.

We conclude with some remarks concerning the category analogues of the
results above. LetM denote the ideal of meager subsets (sets of first category)
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of R. The statements of Diagram 2 for I = M are, again, independent of
ZFC. Namely, under CH or Martin’s axiom we have non(M) = 2ω and then,
by Theorem 2, each statement of Diagram 2 is true. On the other hand, by
a theorem of Komjáth [5] it is consistent with ZFC that cov(M) ≥ ω2 and
non∗(M) = ω1 and then, in the relevant model each statement of Diagram 2
is false.

Let B denote the set of functions f : R → R having the Baire property.
It is easy to see that S1

M is equivalent to the existence of a function f : R →
R, f /∈ B such that {x : ∆hf(x) 6= 0} ∈ M for every h ∈ R. Also, if S1

M is
true, then the class B does not have the difference property. (The proofs of
these statements are analogous to those for I = N .) We do not know whether
the difference property of B is actually equivalent to ¬S1

M or not. The proof of
Theorem 7 would certainly work in the category case if the following statement
(the analogue of [7, Theorem 3]) were true: If f : R→ R is such that ∆hf ∈ B
for every h ∈ R, then f = g+s+H, where g ∈ B, H is additive and, for every
h, {x : ∆hs(x) 6= 0} ∈ M. However, it is not known whether this statement is
true or not.
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