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TWO CONSTRUCTIONS OF SIERPINSKI
AND SOME CARDINAL INVARIANTS OF
IDEALS

Abstract

Let N denote the ideal of null sets in R. Using CH Sierpinski con-
structed a set A C R satisfying A ¢ N, R\A ¢ N, and (A+h)\AeN
for every h € R. He also constructed a set H C R? such that each
horizontal section of H and the complement of each vertical section of
H belong to A. In this note we investigate the existence of sets with
analogous properties when A is replaced by an arbitrary invariant ideal.
We also discuss the relationship among several related statements, in-
cluding some inequalities between the cardinal invariants of the ideal in
question.

In the case of null sets in R we show that the nonexistence of A C R
with A¢ N, R\A¢ N, and (A+ h)\ A €N (h €R) is equivalent to
the difference property of the class £ of Lebesgue measurable functions
defined on R. As an application we obtain that the difference property
of the class L is consistent with ZFC.

1 The Diagram.

It is well-known that the following two statements are consequences of CH.

S1: There exists a set A C R such that both A and R\ A are of positive outer
measure, but (A+ h)\ A is of measure zero for every h € R.

S? . There exists a set H C R? such that the horizontal section HY = {z :
(z,y) € H} is of measure zero for every y € R, and the complement of
the vertical section H, = {y : (z,y) € H} is of measure zero for every
xz eR.
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(See [11], Propositions Crg and Cjyg. See also [9] and [10].) In this note we dis-
cuss the relationships between S, S%, and several other statements involving
certain cardinal numbers. In fact, we shall consider these relationships in a
more general setting, when R is replaced by an arbitrary Abelian group X and
the system of Lebesgue null sets is replaced by a translation-invariant ideal of
subsets of X.

Let Z be an ideal of sets. (For the basic facts concerning ideals and cardinal
invariants of ideals, the reader can consult [1].) We shall always assume that
T is nontrivial in that Z # () and |JZ ¢ Z. The cardinality of a set H will be
denoted by |H|. We shall need the following cardinal functions of Z.

add(Z) =min{|H|: HC Z, UK ¢ I},

cov(Z) =min{|H|: H C Z, UH = UL},

non(Z) =min{|E|: ECUZ, E ¢TI},

cof(Z)=min{|H|: HCZ, VE€IIHecH, EC H},

non*(Z) =min{x:V E¢Z 3 F C E such that F' ¢ T and |F| < k}.

In order to make the diagram of the next proposition symmetric, we shall
introduce one more cardinal (the “chain cover” of 7). We say that H C Z is
a chain if, for every A, B € H we have either A C B or B C A. Let ccv(Z)
denote the smallest cardinal x such that for every chain H C 7 there is F C Z
such that JH C UF and |F| < k.

Proposition 1. In the following diagram the cardinals increase from south-
west to north-east.

non(7) non*(Z) ———cof(7)
add(Z) cev(Z) cov(Z)
Diagram 1.

In other words, add(Z) < non(Z) < non*(Z) < cof(Z), add(Z) < ccv(Z) <
cov(Z) < cof(Z), and ccv(Z) < non*(Z).

PROOF. The inequalities add(Z) < non(Z) < non*(Z) and ccv(Z) < cov(Z) <
cof (Z) are obvious.
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non*(Z) < cof (Z) : Let cof (Z) = «, and select H C Z such that |H| = &
and for every N € 7 thereisan H € H with N C H. If E ¢ T, then E\ H # )
for every H € H. Let a point g € E \ H be selected for every H € H, and
put F = {xyg : H € H}. Then F C E and F ¢ Z, since F is not covered by
any element of H. This implies |F'| < |H| = &, which proves non*(Z) < «.

add(Z) < ccv(Z) : Let add(Z) = &, and select F C T such that |F| = &,
and |JF ¢ Z. Let {E, : @ < K} be a well-ordering of F, and put H =

{Ug<a Eg:a< Ii}. Then H is a chain, H C Z, and |JH ¢ Z. By the def-

inition of k, |JH is not covered by less than x elements of Z. Therefore,
cev(Z) > k.

cev(Z) < non*(Z) : Let non*(Z) = k. We have to prove that for every chain
H C T there is F C Z such that (JH C |JF and |F| < k. Let [JH = D. If
D € 7, then F = {D} satisfies the requirements. Therefore we may assume
D ¢ 7. Then there is a set ' C D such that F ¢ Z and |F| < k. For every
x € F select an H, € H with z € H,, and put F = {H, : « € F}. Then
F C H and |F| < k. We prove | JF = D. Suppose this is not true, and let a
point y € D\ |JF be selected. If H € H contains y, then H, C H for every
x € F, since H is a chain, and H C H, is impossible because y ¢ H,. Thus
Fc|UFCHEeTZ, contrary to F¢Z. [

Let X be an Abelian group, and let Z be an ideal of subsets of X. We shall
use the notation Z|A = {B C A: B € I} for every A C X. The ideal 7 is
called invariant, if £ € 7 implies E + x € T for every z € X.

We shall investigate the relationship between the following statements.

Cz: X is the union of a chain of sets belonging to Z. (It is easy to see that
C7 is equivalent to the existence of an ordering < of X such that each
initial segment of X belongs to Z; that is, {y : y < x} € T for every z.)

Gz : X is the union of a chain of subgroups belonging to T.

SL: There exists a set A C X such that A¢Z, X\A¢7T and (A+h)\A €T
for every h € X.

S1s: There exists a function f: X — X such that {x € X : f(x+h)— f(z) #
0} € Z for every h € X, and f~1({y}) € T for every y € X.

SZ . There exists a set H C X x X such that HY € T for every y € X, and
X\ H, €T for every x € X.

S2Zw : There exists a set H C X x X such that HY € T for every y € X, and
{r:X\H, €T} ¢7T.
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Dz : There exists a decomposition X = AU B such that cov(Z|A) < non(Z|B)
and cov(Z|B) < non(Z|A).

Theorem 2. Let X be an uncountable Abelian group and let T be an invariant
ideal in X. Then each implication of the following diagram holds, except per-
haps S¥ = SL. This implication is also true, supposing that T is a o-ideal
and | X| is less than the first (2-valued) measurable cardinal.

non(Z) = |X|] Gt Sis St Dyt

N\ %

[cov(Z) < non(Z)]

7 N\

[(non(Z) = |X]) or 4 - - -
(add(Z) = cov(z))] = 7 53 $20 => [cov(Z) < non*(Z)]

Diagram 2.

PROOF. First we prove the implications of the first row.

[non (Z) = |X|] = Gz : Let {zo : @ < |X|} be a well-ordering of X,
and let G, denote the subgroup generated by {z3 : f < a}. Since |G,| =
max(|a|,w) < |X|, it follows from non(Z) = |X| that G, € T for every «.
Then {G, : a < |X|} is a chain of groups belonging to Z whose union is X.

Gz = S3* : Let {G, : @ < Kk} be a chain of groups belonging to Z such
that Uy<xGo = X. Let I' denote the set of those ordinals @ < x for which
the set G, = G, \ Ug<oGp is nonempty, and select a point y, € G, for every
ael.

We define f(z) = yo, where o = a(x) is the smallest ordinal with z € G,.
Then we have f~1({yn}) C Go € T for every a € T'. Let h € X be fixed.
If h € G|, and x ¢ G,, then Gg C G, for every # < a, and thus = € G/,
where o« < v and G, C G,. Therefore f(z + h) = f(x) = y,, which proves
{z:f(x+h)—flz)#£0} C G, €.

S1s = Sl (supposing that Z is a o-ideal and |X| is less than the first
measurable cardinal): Let f be as in S Let 7 = {H C X : f~Y(H) € T};
then J is a o-ideal on X containing the singletons. Since | X| is less than the
first measurable cardinal, J cannot be prime. That is, there exists an H C X
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such that f~'(H) ¢ Z and X \ f~1(H) ¢ T. It is easy to check that the set
A = f~1(H) satisfies the requirements of S%.

St = Dz : Let A satisfy S+. We show that cov(Z|A) < non(Z|(X \ 4))
and cov(Z|(X \ A)) < non(Z|A). By symmetry it is enough to prove the first
inequality. Let non(Z|(X \ A)) = &, and select a set B C X \ A such that
|B| = k, and B ¢ Z. Since (A —h)\ A € Z, we have B ¢ A — h for every
h. This gives (J{A —b:b € B} =0, since h € A—b (b € B) would imply
B C A — h. Therefore A = |J{A\ (A —b) : b € B}; that is, A can be covered
by k = non(Z|(X \ A)) elements of Z.

Next we prove the vertical implications. The first two relations are obvious.

S35 = SZ . If f satisfies S3*, then H = {(z,y) : f(z+y) # f(z)} satisfies
S2.

Dz = [cov(Z) < non*(Z)] : Suppose Dz. Then
cov(Z) < max(cov(Z|A), cov(Z|B)) < max(non (Z|B),non (Z|A)) < non*(Z).

Now we prove the implications of the second row.

[(non (Z) = |X]) or (add (Z) = cov (Z))] = Cz : If non(Z) = |X|, then
the initial segments of any well-ordering {z, : a@ < |X|} of X belong to Z.
Next suppose add(Z) = cov(Z) = & and let X = Uy<xNq, where N, € T for
every . We may assume that the sets N, are pairwise disjoint, and then we
can order X in such a way that the elements of N, precede those of Ng for
every o < (3. It is clear that the initial segments of this ordering belong to Z.
(This argument is well-known; special cases appear in [3, p. 193] and, in the
category case, in [6, Statement 3, p. 462].)

C7 = S% : This follows by Sierpiniski’s original argument [9]: If < is an
ordering of X such that {z : x < y} € T for every y, then H = {(z,y) : ¢ < y}
satisfies S2.

S2 = S2v ; Obvious.

S2v — [cov(Z) < non*(Z)] : Suppose that H satisfies S2* and select
E C {x: X\ H, € I} such that £ ¢ 7 and |E| < non*(Z). Then X =
U{X\Hy, : 2z € E}. Indeed, y ¢ X \ H; (z € E) would imply E C HY,
contradicting HY € Z. (Cf. [8, p. 306].)

Finally, we turn to the implications of diagonal direction.

S2 = [cov(Z) <mnon(Z)] : Let E ¢ T be such that |E| = non(Z). If H
satisfies S%, then X = U{X \ H, : « € F}. Indeed, y ¢ X \ H, (z € E) would
imply F C HY, contradicting HY € Z. (Cf. [3, p. 193].)



668 MikLOS LACZKOVICH

[cov(Z) <non(Z)] = Dz : We shall say that the sets A,B C X are
congruent, if B = A 4+ z for some z € X. First we show that there is a
partition X = Xy U...U X} such that £ > 2 is finite and the sets X1, ..., Xi
are congruent to each other. Let x # 0 be a fixed element of X, and let H be a
set containing exactly one element of each coset of the group generated by .
Then the sets H +nz (0 < n < N) constitute a partition of X into congruent
subsets, where N denotes the order of x. If N is finite, then this is the partition
we were looking for. If N is infinite, then we put Xy = (J;oo(H + 2i) and
Xo = Ujoo(H + (2i + 1)), and obtain the partition X = X; U Xo.

By the invariance of Z we have non(Z|X;) = ... = non(Z|Xy). This easily
implies non(Z|X;) = non(Z) for every ¢ = 1,...,k. Similarly, cov(Z|X;) =
cov(Z) (i = 1,...,k). Let A = X; and B = X5 U ...U Xj; then we have
cov(Z|A) = cov(Z) < non(Z) = non(Z|B) and cov(Z|B) = cov(Z) < non(Z) =
non(Z|A).

The two remaining implications follow by transitivity. O

Remarks.

1. It is easy to check that if X is countable, then each statement of Diagram
2 is true except perhaps Gz, S%%, and St. The statement Gz is false if X is
finitely generated or if X is not a torsion group and Z equals the ideal of finite
subsets of X. Therefore the implication [non (Z) = | X|] = Gz is false in these
cases. The implication Gz = S holds for every group (its proof did not
use |X| > w). We shall see in the next section that S¥* = S1 fails in every
infinite Abelian group for some ideals.

2. Let A be an infinite cardinal number less than |X|, and let T = {H C
X :|H| < A}. Then cov(Z) = | X| > non*(Z) = A. Therefore each statement
of the diagram is false. In particular, St is false; that is, if A C X, |A| > A
and | X \ A > A, then there is an # € X such that [(A+ z) \ A] > A. This is
Trzeciakiewicz’s theorem (see [13] or [4, Theorem 1.7, p. 308]).

3. Suppose |X| € {w1,wa}, and let Z be an invariant o-ideal on X. Then
we have

[(non (Z) = | X]) or (add (Z) = cov(Z))] <= C7 <= 5%
<= [cov(Z) < non (Z)].

Indeed, the implications from left to right are contained in Theorem 2. If
cov(Z) < non (Z), then either non(Z) = | X|, or non(Z) = cov(Z) = w;. In the
latter case we have wy < add(Z) < non(Z) = wyq, and then add(Z) = wy =
cov(Z). (The special case of this observation, when X = R and 7 is the ideal
of first category sets, is due to P. Komjéath [6]. See also [3, p. 193].)
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4. In the proof of Theorem 2 the invariance of the ideal was needed in the
implications

S> = Dz, S¥* = 5%, [cov(Z) < non ()] = Dz
and S}* = [cov(Z) < non (T)].

It is easy to check that all the other implications of Diagram 2 hold for any
ideal.

2 On the Implication S3* = SI.

We start with the introduction of two more conditions.

Slw s There are sets A,B C X such that A¢Z, B¢ Z, and (A+h)NB€eZ
for every h € X.

Fr . There exists a proper filter F on X such that

I={HCX:H+xz¢F foreveryx e X} (1)

It is easy to see that Fr is equivalent to the existence of an ultrafilter F
satisfying (1). Indeed, suppose F7, and let F* be a filter maximal with respect
to the properties F C F* and F* NZ = (. Then F* is an ultrafilter, since
A ¢ F* and X\ A ¢ F* would imply, by the maximality of F*, that ANB € T
and (X \ A) NC € T with suitable B, C € F*. Let BNC = D. Then D € F*
and D C (ANB)U((X\A)NC) € Z, contradicting F*NZ = @. Since F C F*,
(1) remains true when F is replaced by F*.

We shall also need the converse: If F is an ultrafilter (not containing ()
and 7 is defined by (1), then 7 is an invariant ideal satisfying Fr. Or, in an
equivalent form, if 7y is a prime ideal, then

I={HCX:H+z¢€Iforevery z € X} (2)
is an invariant ideal satisfying Fr.
Proposition 3. For every invariant ideal T we have S} = S¥¥ — —F7y.

PROOF. The first implication is trivial. To prove the second, suppose that S*
and F7 are both true. Let F be a filter as in Fz, and suppose that A, B C X
are such that A ¢ Z, B¢ 7T, and (A+h)N B € T for every h € X. Then there
are elements z,y € X with A+ 2z, B+y € F. Since F is a filter, this implies
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(A+z)N(B+y) € F. Therefore (A+xz —y)NB ¢ I, since translating this set
by y we obtain an element of F. This contradicts the choice of A and B. [

Our next aim is to show that the conditions implying S3* = Si are
necessary.

Theorem 4. For every infinite Abelian group X there exists an invariant ideal
T on X such that S3* is true but S% is false. If |X| is a measurable cardinal,
then there is such a o-ideal.

PROOF. Our first aim is to construct an invariant ideal J satisfying S};. If X
is uncountable, then we put J = {H C X : |H| < |X|}. Then non(J) = | X|
and hence, by Theorem 2, 5375 is true.

Next suppose that X is countably infinite. If X is not finitely generated,
then let J denote the system of all sets H C X such that the subgroup
generated by H is finitely generated. It is clear that J is an invariant ideal.
Let {z,}22, be an enumeration of X, and let G,, be the group generated by
Z1,...,Tn. Then Gy, Gy, ... is a chain of groups belonging to J, and thus G 7
holds. Therefore, S7 holds, also (see the first remark following Theorem 2).

If X is finitely generated, then G 7 is false for every invariant ideal; so we
need a different construction. By the fundamental theorem, X is the direct
sum of a finite subgroup K and a finitely generated free Abelian group. That
is, there are elements hy, ..., hg such that every element of X can be written
uniquely as g + nihy + ... + nghg, where g € K and nq,...,nq € Z. Then
d(g+nihy + ...+ nghg) = ny defines a homomorphism mapping X onto Z.

We shall say that aset A C Z has density zero if limy_,o, |[AN[—N, N]|/N =
0. Let J denote the system of all subsets H C X such that ¢(H) has density
zero. Then J is an invariant ideal; we show that it satisfies S}j".

For every x € X we define

{0 el

Then ¢ (f~*({y})) is finite for every y € X; in particular, f~'({y}) €
J (y € X). Let y € X be fixed, and put H ={z € X : f(zx +y) # f(z)}. If
x € H, then

o0

€ U ([kafa,f2k+a]U[2kfa,2k+a]),

where a = |¢(y)|. This implies that ¢(H) has density zero. Therefore H € 7,
and thus S7° holds.
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We have proved that for every infinite Abelian group X there exists an
invariant ideal J satisfying S‘?. Then S1¢ is true for every invariant ideal 7
with J C Z. Let Zy be a prime ideal containing 7, and let Z be defined by (2).
Since J is invariant, Z contains J and thus S%S holds. Also, 7 is an invariant
ideal satisfying Fr and thus, by Proposition 3, S} is false. This completes the
proof of the first statement of the Theorem.

If |X| = k is measurable, then there is a prime o-ideal Zy containing the
ideal J = {H C X : |H| < x}. Let Z be defined by (2); then 7 is an invariant
o-ideal satisfying Fr. By Proposition 3, S} is false. On the other hand, we
have non(Z) = |X|, since J C Z. Thus, by Theorem 2, S is true. O

We conclude this section by showing that, in general, the only implication
between the statements of Diagram 2 and S3* is S3 = S3*.

Theorem 5. Let Z be an invariant ideal such that
non*(Z) < cov(Z) = cof (I). (3)
Then SX is true, but every statement of Diagram 2 is false.

PrOOF. Condition (3) implies | X| > w, since otherwise non*(Z) = cov(Z) =
w. Therefore, by Theorem 2, each of the statements of Diagram 2 is false.
Condition (3) also implies that

|X \ E| > cof (Z) for every E € T. (4)

Indeed, suppose E € Z and | X \ E| < cof (Z). Then X can be covered by less
than cof (Z) elements of Z; namely, by the singletons contained by X \ E and
by the set E. This, however, contradicts (3).

Now we show that (4) implies S+*. Let cof (Z) = k, and let E, € T (a < k)
be such that for every E € T there is an a < k with F C E,. Let xg = yo €
X\ Ep. If 0 < @ < K and zg,ys have been defined for every 8 < «, then the
set

Hoc :X\[Eau{xﬁ+y7_y5 :ﬂ7776< OZ}]

is nonempty by (4). Let z, be an arbitrary element of H,. The set
Ka:X\[EOéU{y,@+x’y_x5:ﬁ<a7 ’}/7(5§Oé}]
is also nonempty; let y, € K. In this way we have selected z,, and y,, for every
a <k Let A={zy:a <k}and B={y,:a <k} Then A,B ¢ T since
A, B ¢ E, for every a. On the other hand, x —y =2’ —y/, z,y € A, ',y € B
imply z = 2’ and y = 3’ by the construction. Therefore |(A+h)NB| <1 and,
consequently, (A + h) N B € T for every h € X. O
A simple example of an ideal satisfying (3) is provided by the system of
finite subsets of R.
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3 On the Implication S} = S2v.

If we remove the statement cov(Z) < non(Z) from Diagram 2, the remaining
chart suggests SL = S2¥. We do not know if this is true in general. In the
next theorem we shall prove this implication under some extra conditions.

Theorem 6. Let 7 be an invariant ideal. If add(Z) = non(Z) or cov(Z) =
cof () holds, then St implies SZ.

PrROOF. We may assume |X| > w, since otherwise S2* is true. Suppose
Si, let A be as in Si, and put B = X \ A. Then cov(Z|A) < non(Z|B) and
cov(Z|B) < non(Z|A) (see the proof of S = Dy in the proof of Theorem 2).

First assume add(Z) = non(Z) = «. Since non(Z) = min(non(Z|A), non(Z|B)),
we may assume, by symmetry, that non(Z) = non(Z|B) = k. Then

k=add (Z) < add(Z|A) < cov(Z]|A) <non(Z|B) =k

and thus add(Z|A) = cov(Z|A). Therefore Cz4 holds and hence there is an
ordering < of A such that {y € A:y <z} €T for every z € A. We put

H={(z,y) e AxA:z<y}U{(z,y) e X xX:x € A\ (A—y)}.

Then HY € 7 for every y. We show that X \ H, € Z for every € A. Since
A ¢ T, this will prove S2*. Let # € A be fixed. Then H, = {y € A: z <
ypUX\(A—2z)),and X\ H, C{ycA:y<z}U{z}U[(A—=x)\ 4] €.

Next assume cov(Z) = cof(Z) = k. Since cov(Z) = max(cov(Z|A), cov(Z|B)),
we may suppose that cov(Z|A) = k. Our first aim is to construct a map
f: X — Bsuch that f(E) € Z for every E € Z, but f(A) ¢ Z.

Let {E, : @ < k} be a subsystem of Z such that every element of Z can be
covered by an F,. (Such a subsystem exists by cof(Z) = k.) Then there are
elements z, (o < k) such that

to € A\ | (EsU{ag)) (5)

B<a

for every a < k. Indeed, let p € A be arbitrary. If 0 < o < x and 23 has been
selected for every 8 < a, then, by k = cov(Z|A), the sets Eg U {z3} (8 < )
do not cover A, and we can choose a point z,, satisfying (5). Now

k = cov(Z|A) <mnon (Z|B) < cof (Z|B) <cof (T) =k
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implies non(Z|B) = « and, consequently, there are elements b, € B such that
By = {by : a < K} ¢ Z. We define f(zy) = by (o < &) and f(z) = by if
x¢{xq:a <k} Then f: X — By and f(A) =By ¢ Z. If E € Z, then there
is @ < Kk such that F C E,, and thus

f(E)C f(By) C{bg:B<a}el,

since non(Z|B) = k. Now we define

H={(z,y):yeX, ve f(A\(A-y)}U{(z,y):ye X, ze(A-y)\ A}

Then HY € 7 for every y, since A\ (A —y) and (A —y) \ A both belong to Z.
On the other hand, if z € By \ {bo}, then X \ H, € Z. Indeed, if y ¢ H,, then
v =fYr)¢g A\(A—y)and x ¢ (A —y)\ A. Since 2’ € A and x ¢ A, we
obtain '’ € A —y and v ¢ A—y; that is, y € A — 2’ and y ¢ A — . Thus we
have, for every € By \ {bo},

X\H,C(A=a")\(A—z)=[(A— (2" —2))\A] —z € T.
Since By \ {bo} ¢ Z, this proves S2%. O

4 The Case X =R, ZT=N.

Let A denote the ideal of null sets in R. Then the statements of Diagram 2
are independent of ZFC. Indeed, CH or Martin’s axiom implies non(N) = 2¢
and then, by Theorem 2, each statement of Diagram 2 is true. On the other
hand, in the random real model we have cov(N') > wy and non*(N) = wy (see
Lemma 8 of [8]), and hence in this model each statement of Diagram 2 is false.
We remark that S}\}” is always true, no matter what the actual values of the
cardinal functions of A/ are. Indeed, F € N implies |R\ E| = 2 > cof (N)
(see [1]), and this implies S}/ by the proof of Theorem 5.

In this section we discuss some statements involving real functions that are
2w

equivalent to one of SJQ\/, Syf or S}\/.

It is well-known that Sj?\/ is equivalent to the existence of amap ¢ : R — A/
such that, for every x,y € R, x # y, either z € ¢(y) or y € ¢(x). (PROOF.
If ¢ is such a map, then H = {(z,y) : € ¢(y)} satisfies S3;. In the other
direction, if S3, holds for H C R?, then ¢(z) = {y : (y,z) € H or (z,y) ¢ H}
satisfies the requirements; see [3, pp. 197-198] and [12].) In other words, S,
is equivalent to the negation of condition A,y as defined in [3]. Therefore, by
3, p. 198], S% is equivalent to the existence of a function f : [0,1]* — [0,1]

such that fol (fol fdx) dy # fol (fol fdy) dx.
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In turn, S3¥ is equivalent to the existence of a non-measurable function
f :R? — R such that the vertical sections of f are approximately continuous
and the horizontal sections of f are measurable [8, Lemma 7, p. 303]. Our
next aim is to show that S}v is related to the difference property of the class
of measurable functions.

Let A denote the difference operator; that is, for h € R let Ay f(x) =
f(z+h) — f(z) for every f: R — R and = € R. Now S}, is equivalent to the
existence of a non-measurable function f : R — R such that A, f =0 a.e. for
every h € R. Indeed, if f is such a function, then there is a ¢ € R such that
A= {z: f(z) < c} is non-measurable. Since (A+h)\A C {z: A_pf(z) # 0}
is of measure zero for every h, the set A satisfies S}\/.

On the other hand, if A satisfies S}\/, then the symmetric difference of A
and A + h is of measure zero for every h, since A\ (A+ h) = [(A—h)\
A] + h. Therefore, if f denotes the characteristic function of A, then f is non-
measurable and Ay, f = 0 a.e. A class of real functions F C RF is said to have
the difference property if, whenever f : R — R is such that A, f € F for every
h € R, then f = g+ H, where g € F and H is additive; that is, H satisfies
Cauchy’s functional equation H(z +y) = H(z) + H(y) (see [2]). Let £ denote
the family of Lebesgue measurable functions defined on R.

Theorem 7. L has the difference property if and only if S\, is false.

PROOF. Let A be as in S},. If f denotes the characteristic function of A, then
Apf =0 a.e. and thus Ay f € L for every h. On the other hand, f cannot be
written in the form g+ H, where g is measurable and H is additive. Indeed, if
f = g+ H where g is measurable, then H = f — g is bounded on a measurable
set of positive measure. If H is additive, then this implies that H is linear
and that f = g + H is measurable, a contradiction. Therefore, in this case £
does not have the difference property. (This argument is due to Erdds; see [2,
p. 195].)

Next suppose =S}, and let f : R — R be such that A, f € L for every
h € R. Then, by [7, Theorem 3|, we have f = g + s + H, where g € L, H is
additive and, for every h, Aps(z) =0 a.e. Since S}\[ is false, this implies that
s is measurable. Then f = (¢g+s)+ H is the sum of a measurable function and
an additive function, which proves the difference property of the class £. [

Theorem 8. It is consistent with ZFC that L has the difference property.

PRrROOF. As we mentioned before, in the random real model S}\; is false and,
consequently, in this model £ has the difference property. O

We conclude with some remarks concerning the category analogues of the
results above. Let M denote the ideal of meager subsets (sets of first category)
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of R. The statements of Diagram 2 for Z = M are, again, independent of
ZFC. Namely, under CH or Martin’s axiom we have non(M) = 2¢ and then,
by Theorem 2, each statement of Diagram 2 is true. On the other hand, by
a theorem of Komjath [5] it is consistent with ZFC that cov(M) > wy and
non*(M) = w; and then, in the relevant model each statement of Diagram 2
is false.

Let B denote the set of functions f : R — R having the Baire property.
It is easy to see that S}, is equivalent to the existence of a function f: R —
R, f ¢ B such that {z : A, f(z) # 0} € M for every h € R. Also, if S}, is
true, then the class B does not have the difference property. (The proofs of
these statements are analogous to those for Z = N.) We do not know whether
the difference property of B is actually equivalent to =S}, or not. The proof of
Theorem 7 would certainly work in the category case if the following statement
(the analogue of [7, Theorem 3]) were true: If f : R — R is such that A, f € B
for every h € R, then f = g+ s+ H, where g € B, H is additive and, for every
hy, {x : Aps(z) # 0} € M. However, it is not known whether this statement is
true or not.
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