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MAKING BOREL FUNCTIONS LOOK
CONTINUOUS

Abstract

We investigate the possibility of making all functions in Baire class
α, α < ω1, close to continuous by adding to them a single function of
Baire class α+ 1.

Remnants of continuity are preserved, in various senses, in arbitrary Borel
functions. Yet another way in which this is true has been considered recently
by several authors. Given α < ω1, can we find a single function f which
makes all functions of the form f + g, with g Baire class α, look continuous?
Obviously, we would like f to be as simple as possible and the functions f + g
as close to continuous as possible. The following four definitions are normally
used, in this context, to measure the “degree of continuity” of f + g. How to
measure simplicity of f will be clear from the statements of results. Let g be
a function mapping a separable metric space X into the reals.

g is Darboux if images of connected sets are connected.
g is connectivity if the graph of the restriction of g to any connected subset

of X is a connected subset of X × R.
g is almost continuous if any open subset of X × R containing the graph

of g contains also the graph of a continuous function from X to R.
g is extendable connectivity if g(x) = G(x, 0), for all x ∈ X, for some

connectivity function G : X × [0, 1]→ R.
It is known that if X = R, then the above classes are getting properly

smaller as we go down the list and that all of them contain the continuous
functions.

Let us also fix notation concerning Borel functions. By Bα, α < ω1, we
denote the class of all functions g : X → R, X separable metric, for which
preimages of open sets are in Σ0

1+α if α < ω, and in Σ0
α if α ≥ ω, where Σ0

α

is the α’th class of the Borel hierarchy. (Remember that the enumeration of
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Σ0
α’s starts with α = 1 while that of the Bα’s with α = 0.) In particular, B0 is

the class of continuous functions, B1 the class of Baire class 1 functions, etc.
In general, by a theorem of Lebesgue and Hausdorff, functions of Baire rank
α coincide with Bα, for α < ω, and Bα+1, for α ≥ ω. Clearly,

⋃
α<ω1

Bα is
the class of all Borel functions. By Bα(X) I will denote all functions in Bα

defined on X. For more details on the hierarchies of Borel functions and Borel
sets see [K, Chapters 11 and 24].

It follows from the work of Ciesielski and Rec law [CR], building on earlier
papers by Fast, Kellum, and Ciesielski and Miller, that there exists f : R→ R
such that all functions in f +

⋃
α<ω1

Bα(R) are extendable connectivity func-
tions. Such an f clearly cannot be Borel. Later, Natkaniec and Rec law [NR]
showed that given α < ω1, one can find f ∈ Bα+2(R) for which all functions in
f +Bα(R) are Darboux, and one can find a Borel f (without any control over
its class) with all functions in f+Bα(R) almost continuous. Below, answering
a question from [NR], I prove a natural common generalization to the two
Natkaniec-Rec law results. As in the Natkaniec-Rec law paper, the method of
Cichoń-Morayne universal functions is used. There is a new ingredient, how-
ever. It turns out that “strongly universal,” in an appropriate sense, rather
than universal functions are needed. I obtain their existence by a Kleene Re-
cursion Theorem argument. Moreover, since tight control on complexity of
the functions is needed, I employ in the proof the existence of a perfect set
independent over Q.

Theorem. For any 1 ≤ α < ω1 there exists f : R→ R in Bα such that f + g
is an extendable connectivity function for any g : R→ R in

⋃
γ<αBγ .

The following lemma is due to Cichoń and Morayne [CM]. Recall that by
Bα we denote the class of functions defined on separable metric spaces for
which the preimages of half lines (r,∞), r ∈ R, are in Σ0

1+α if α < ω, and Σ0
α

if α ≥ ω. It is easy to see that Bα ⊆ Bα ⊆ Bα+1. And again by Bα(X) I
will denote the family of all functions in Bα which are defined on X. For a
separable metric space X, a function F : 2N ×X → R is called 2N-universal
for a class of functions defined on X if this class consists precisely of all the
functions X 3 x 7→ F (a, x) for a ∈ 2N.

Lemma 1. (Cichoń-Morayne [CM]) Let X be a separable metric space. For
any α < ω1 there exists a function from 2N × X to [0, 1] in Bα which is
2N-universal for {f : X → [0, 1] : f ∈ Bα(X)}.

Note that, by a diagonal argument, Lemma 1 fails if the functions consid-
ered in it have R rather than [0, 1] as the target space. Similarly, as follows
from [CMPS, Theorem 2.1], it fails if we replace Bα(X) by Bα(X) regardless
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of whether we keep [0, 1] as the target space or replace it by R. However,
below we have a lemma, a variation of Kleene’s Recursion Theorem similar
to that in [K, 35.26], which shows that it is possible to find a function in Bα

that is, in the sense made precise by the lemma, more than 2N-universal for⋃
γ<αBγ(X), for separable metric X, even with the target space R. I leave

it to the reader to see that a function F with the property as in the lemma
below is 2N-universal for

⋃
γ<αBγ(X).

Lemma 2. Let X be separable metric. Given 1 ≤ α < ω1 there exists F :
2N×X → R in Bα such that for any f : 2N×X → R in

⋃
γ<αBγ there exists

a ∈ 2N such that F |{a} ×X = f |{a} ×X.

Proof. Claim 1. For any separable metric space Y there exists G in Bα

that is 2N-universal for
⋃
γ<αBγ(Y ).

Proof of Claim 1. Assume first that α is a successor, so α = β + 1 for
some β. Let F1 : 2N × Y → [0, 1] be in Bβ and 2N-universal for {f : Y →
[0, 1] : f ∈ Bβ}. Such an F1 exists by the Cichoń-Morayne Lemma above.
Let A = F−1

1 (0). Define F2 : 2N × Y → [1,∞) by

F2 =
1
F1

on (2N × Y ) \A and F2 ≡ 1 on A.

It is easy to check that F2 ∈ Bα and that for any f : Y → [1,∞) in Bβ , for
some a ∈ 2N, F2(a, x) = f(x) for all x ∈ Y . Define G : (2N × 2N)× Y → R by

G(a, b, x) = F2(a, x)− F2(b, x).

Clearly G is in Bα and it is 2N × 2N-universal for Bβ(Y ). Since 2N × 2N is
homeomorphic to 2N, we are done.

If α is limit, fix αn → α, αn < α. Let Fn be in Bαn+1 and 2N-universal
for Bαn(X) which exist by the argument in the previous paragraph. Divide
2N \{(0, 0, 0, . . . )} into infinitely many clopen sets Un, n ∈ N. Let F |Un×Y =
Fn ◦ φn where φn = ψn × id and ψn : Un → 2N is a homeomorphism. Finally
put F |{(0, 0, 0, . . . )} × Y ≡ 0. This F works for α. The claim is proved.

Let 〈 , 〉 : 2N × 2N → 2N be defined by

c = 〈b, a〉 iff c2n = bn and c2n+1 = an for all n ∈ N.

Obviously, 〈 , 〉 is a homeomorphism. The following property of the mapping
will be crucial.

Claim 2. For any b ∈ 2N there exists a ∈ 2N with 〈b, a〉 = a.
Proof of Claim 2. Consider the metric ρ(c, d) =

∑∞
n=0 2−n|cn − dn| for

c, d ∈ 2N. As is well known ρ is a complete, actually compact, metric on



660 Slawomir Solecki

2N. As is easily seen ρ(〈b, a1〉, 〈b, a2〉) ≤ 1
2ρ(a1, a2). Thus, by the Banach

contraction principle, for any b the mapping 2N 3 a 7→ 〈b, a〉 ∈ 2N has a
(unique) fixed point which proves the claim. (Obviously a direct proof of the
claim, which is really a repetition of Banach’s argument, is possible.)

Let G be as in Claim 1 for Y = 2N ×X. Now define F : 2N ×X → R by

F (〈b, a〉, x) = G(b, a, x).

Since 〈 , 〉 is a homeomorphism, F is well defined on 2N and F ∈ Bα. Now, let
f : 2N×X → R be in

⋃
γ<αBγ . Find b0 ∈ 2N such that for all (a, x) ∈ 2N×X,

G(b0, a, x) = f(a, x). By Claim 2 find a0 ∈ 2N with 〈b0, a0〉 = a0. Then, for
any x ∈ X,

F (a0, x) = F (〈b0, a0〉, x) = G(b0, a0, x) = f(a0, x).

The following lemma is taken from [R] and [CR]. Actually, it is not proved
there that the function constructed is in B2 but, as already noted in [NR], it
is straightforward to verify it.

Lemma 3. (Ciesielski-Rec law [CR], Rosen [R]) There exists a B2 function
f : R→ R and an Fσ meager set H1 ⊆ R such that any extension of f |H1 is
extendable connectivity.

The next lemma is an old result due to Alexandroff and Urysohn [AU].

Lemma 4. (Alexandroff-Urysohn [AU]) Let H1, H2 ⊆ R be Fσ meager sets
such that for any non-empty open U ⊆ R, Hi ∩ U is uncountable, i = 1, 2.
Then there exists a homeomorphism φ : R→ R with φ[H1] = H2.

Proof of Theorem. For α = 1 the theorem is clear since B0 = the contin-
uous functions. So assume that α ≥ 2. Let P be a Cantor set independent
over Q with 1 ∈ P . Such a set was first constructed by von Neumann in [vN].
Let P0, P1 ⊆ P be two disjoint Cantor sets. Let H = Q + P1. Note that
F is a meager Fσ and that U ∩ F is uncountable for any non-empty open
U ⊆ R. Fix a homeomorphism ψ : 2N → P0. Define ψ′ : 2N ×H → P0 + H
by ψ′(a, x) = ψ(a) + x. Note that ψ′ is a homeomorphism. Continuity and
surjectivity are obvious while injectivity and continuity of (ψ′)−1 follow from
compactness of P0 and Q-independence or, more precisely, from the fact that
any z ∈ P0 + H can be uniquely represented as z = a + x with a ∈ P0 and
x ∈ H. Also define π : P0 + H → H by letting π = π1 ◦ (ψ′)−1 where
π1 : 2N ×H → H is the projection onto H. Clearly π is continuous.

Let f : R→ R and H1 be as in Lemma 3. We can assume, by making H1

larger if necessary, that for any U ⊆ R open nonempty, H1∩U is uncountable.
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(One can easily see that any H1 from Lemma 3 must have this property, so it is
never necessary to enlarge it.) Now Lemma 4 allows us to fix a homeomorphism
φ : R→ R with φ[H] = H1.

Now define f1 : R→ R by letting f1 be equal to f ◦ φ ◦ π on P0 +H and
0 outside P0 +H. Since φ and π are continuous, f1|P0 +H is B2 on P0 +H.
Since P0 +H is Fσ, f1 is B2 on R.

Let F : 2N × H → R in Bα be as in Lemma 2 for X = H. Define
f2 : R→ R by letting it be F ◦ (ψ′)−1 on P0 +H and 0 on R \ (P0 +H). By
an argument as for f1 we get that f2 is Bα.

Define k = f1 − f2. We claim that for any g : R → R in
⋃
γ<αBγ , k + g

is extendable connectivity. Fix such a g. Then for some a ∈ 2N, F |{a} ×H =
(g ◦ ψ′)|{a} ×H. It follows that

f2|ψ′[{a} ×H] = F ◦ (ψ′)−1|ψ′[{a} ×H] = g|ψ′[{a} ×H].

Now since k + g = f1 + (g − f2), we get

(k + g)|ψ(a) +H = (k + g)|ψ′[{a} ×H] = f1|ψ′[{a} ×H].

By unraveling the definition of f1, we get that for any x ∈ H, (k + g)(ψ(a) +
x) = f ◦φ(x). It follows that any extension of (k+g)|ψ(a)+H can be obtained
from an extension of f |H1 = f |φ[H] by precomposing with a homeomorphism
of R (namely R 3 x 7→ φ(x − ψ(a)) ∈ R); thus, it must be extendable con-
nectivity. It follows that k + g, being such an extension, is an extendable
connectivity function.
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