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P. Holický∗, Department of Math. Anal., Charles University, Sokolovská 83,
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M. Zelený‡, Department of Math. Anal., Charles University, Sokolovská 83,
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STRUCTURE OF THE SET OF
CONTINUOUS FUNCTIONS WITH LUZIN’S

PROPERTY (N)

Abstract

We prove that the set of all continuous mappings of [0, 1]n to Rn with
Luzin’s property (N) with respect to Lebesgue measure is a coanalytic
non-Borel and first category subset of the space of all continuous map-
pings. Some generalizations, e.g. to cases of other Radon or Hausdorff
measures are given.

1 Introduction

Let X and Y be measure spaces equipped with measures µ and ν, respectively,
and let f : X → Y be a mapping. We say that f has (Luzin’s) property (N) if

ν(f(E)) = 0 whenever µ(E) = 0.

We shall investigate descriptive properties of the set of all mappings with
property (N) in some topological spaces of continuous mappings of X to Y if
X and Y are Hausdorff topological spaces.
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If Y is a metric space, Cb(X,Y ) stands for the space of all bounded continu-
ous mappings endowed with the supremum metric. On Cb(X,Rn) we consider
the norm induced by the Euclidean norm in Rn. If (X,µ) and (Y, ν) are mea-
sure spaces, then Nb((X,µ), (Y, ν)), or simply Nb(X,Y ), stands for the set of
all elements of Cb(X,Y ) with Luzin’s property (N).

The space Cb([a, b]n,Rn) will be also denoted by C([a, b]n). The n-dimen-
sional Lebesgue measure is denoted by λn. Unless specified otherwise we
consider λn on Rn and [a, b]n. We denote by N ([a, b]n) the set of all f ∈
C([a, b]n) which have property (N).

We shall prove, in Theorem 3.1, that N ([a, b]) is a coanalytic non-Borel
subset of C([a, b]) and give several generalizations of this result.

Note that it was proved in [14] that the set of all functions f with the N−1-
property (i.e. λ1(f−1(E)) = 0 whenever λ1(E) = 0) is an Fσδ first category
subset of C([a, b]).

The crucial observation for the proof of the coanalyticity of N ([a, b]) is the
following fact due to N. Luzin ([7]).

If f ∈ C([a, b]) \ N ([a, b]), then there exists a compact set K ⊂ [a, b] such
that λ1(K) = 0 and λ1(f(K)) > 0.

This fact and its generalizations are easy consequences of the Choquet
capacity theorem; this is the reason why we suppose that X is an analytic
space in our generalizations of the result on coanalyticity of N ([a, b]).

We prove that N ([a, b]) is a non-Borel subset of C([a, b]) by showing that
it is even a complete coanalytic subset. (See Section 3 below for the definition
and needed facts about C([a, b].) The proof of the complete coanalyticity of
N ([a, b]) in C([a, b]) is based on the well-known fact that “well-founded” trees
(i.e. trees without infinite branches) form a complete coanalytic subset of the
space of all trees on N and on a construction of a suitable embedding of the
space of trees into C([a, b]). The generalizations are proved by reduction to
this simplest one-dimensional case.

We consider also the (topological) magnitude of the set of continuous map-
pings with property (N). The fact that N ([a, b]) is a subset of the first category
in C([a, b]) follows easily from the fact that each function from N ([a, b]) has
a derivative (finite or infinite) at all points of an uncountable set (cf. [18],
Chapter IX., Theorems 6.6. and 7.3.) and the well-known fact (cf. [1], Chap-
ter 13, p. 143) that the set of all f ∈ C([a, b]) which have a derivative (finite
or infinite) at a point form a first category subset of C([a, b]). We generalize
the result on “category” of N ([a, b]) using the Banach-Mazur game.
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2 Mappings with Property (N) Form a Co-Suslin set

We say that X is analytic if it is a metrizable space which is the image of
a Polish (i.e. separable and completely metrizable) space P by a continuous
surjection ϕ : P → X.

In this section, X will be always an analytic space and P , ϕ (ϕ : P → X)
will be as above. We will also suppose that Y is a fixed Hausdorff topological
space. Further, we suppose that X and Y are equipped with measures µ and
ν, respectively, which have the following properties.

µ and ν are completions of Borel measures. (1)

µ(K) = inf{µ(G) : K ⊂ G,G is open} if K ⊂ X is compact. (2)

ν(K) = inf{ν(G) : K ⊂ G,G is open} <∞ if K ⊂ Y is compact. (3)

Of course, if µ and ν are Radon measures (we consider only complete Radon
measures), they satisfy the above conditions; we can use, as far as we know,
any existing definition of a complete Radon measure on a topological space
(cf. [19]).

Lemma 2.1. Let (X,µ), (Y, ν) and ϕ : P → X be as above and let f : X → Y
be a continuous mapping. Then f does not have property (N) iff there exists
a compact set K ⊂ P such that µ(ϕ(K)) = 0 and ν(f(ϕ(K))) > 0.

Proof. The sufficiency is obvious. To prove the necessity, we suppose that f
does not have property (N). Then there exists a set A ⊂ X such that µ(A) = 0
and ν∗(f(A)) > 0. According to (1), we may and will suppose that A is a Borel
set. It is easy to verify that the outer measure ν∗ is a capacity on Y . (We use
here the definition of capacity given e.g. in [6], Definition 30.1.) Indeed, ν∗ is
clearly a regular outer measure and thus we can use 2.1.5 of [5]. Then also the
function γ defined on exp(P ) by the equation γ(T ) = ν∗(f(ϕ(T ))) is clearly
a capacity (cf. [6], Example 2 of 30.B). Since γ(ϕ−1(A)) > 0 and ϕ−1(A) is
Borel, the Choquet capacity theorem ([6], Theorem 30.13) implies that there
exists a compact set K ⊂ ϕ−1(A) such that γ(K) = ν(f(ϕ(K))) > 0. Clearly
µ(ϕ(K)) ≤ µ(A) = 0.

In the following we shall work with the hyperspace K of all compact subsets
of P equipped with the Hausdorff metric. The induced topology on K coincides
with the Vietoris topology ([6], 4.F, p. 24), in particular the set {K ∈ K :
K ⊂ U} is open if U ⊂ P is open.

Lemma 2.2. The set {K ∈ K : µ(ϕ(K)) = 0} is a Gδ subset of K.
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Proof. It is sufficient to prove that, for each α > 0, the set Hα := {K ∈
K : µ(ϕ(K)) < α} is open. Let K0 ∈ Hα be fixed. Choose by (2) an open set
G ⊃ ϕ(K0) such that µ(G) < α. Then {K ∈ K : K ⊂ ϕ−1(G)} is an open
subset of Hα containing K0.

Let us recall that a subset S of a topological space T is a Suslin set if it is
the result of the Suslin operation (originally called the A-operation) applied
to (a Suslin scheme of) closed subsets of T (cf. [6], Definition 25.4). If T is
a Polish space, then S ⊂ T is a Suslin set iff it is an analytic subset (i.e. an
analytic subspace) of T ([6], p. 199). A subset of T is called co-Suslin if it is
the complement of a Suslin set.

As we will investigate sets in several topological spaces of continuous map-
pings, we prove first the following general proposition.

Proposition 2.3. Let X and Y be as above. Let E be a set of continuous map-
pings of X to Y equipped with a topology τ such that the following condition
holds.

(*) If C ⊂ X is a compact set, G ⊂ Y is an open set, f ∈ E and
f(C) ⊂ G, then there exists an open set V ⊃ C such that {g ∈ E : g(V ) ⊂ G}
is a τ -neighborhood of f .

Then the set NE of all mappings f ∈ E with property (N) is a co-Suslin
subset of E.

Proof. Let P , ϕ and K be as above. Consider the topological product space
E × K and the projection π of this space onto E . By Lemma 2.1 we have
E \ NE = π(M), where

M = {(f,K) ∈ E × K : µ(ϕ(K)) = 0 and ν(f(ϕ(K))) > 0}.

We prove first that M is an Fσδ subset of E × K.
Since K is a metric space, Lemma 2.2 easily implies that

M1 := {(f,K) ∈ E × K : µ(ϕ(K)) = 0}

is an Fσδ set. Thus it is sufficient to prove that the set

M2 :={(f,K) ∈ E × K : ν(f(ϕ(K))) > 0}

=
∞⋃
n=1

{(f,K) ∈ E × K : ν(f(ϕ(K))) ≥ 1/n}

is an Fσ set. So it is clearly sufficient to show that the set

Sn := {(f,K) ∈ E × K : ν(f(ϕ(K))) < 1/n}
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is open. To this end, choose an arbitrary (f0,K0) ∈ Sn. Choose by (3) an
open set G ⊃ f0(ϕ(K0)) such that ν(G) < 1

n and an open set V ⊃ C := ϕ(K0)
by the condition (*). Let Z := {K ∈ K : K ⊂ ϕ−1(V )}. Then T := {g ∈ E :
g(V ) ⊂ G} × Z is a neighborhood of (f0,K0) and clearly T ⊂ Sn. Since M is
an Fσδ (and therefore a Suslin) subset of E × K and K is a Polish space (cf.
[6], p. 26), we obtain (cf. [16], Theorem 2.6.6) that E \NE = π(M) is a Suslin
subset of E and we are done.

As a consequence of Proposition 2.3 we easily obtain the following theo-
rem which deals with three more concrete topological spaces E of continuous
mappings.

Theorem 2.4. Let X be an analytic space and let Y be a Hausdorff topological
space. Let E be one of the topological spaces of continuous mappings of X to
Y described in one of the following three cases:

(i) Y is a metric space and E = Cb(X,Y ) is the space of all bounded con-
tinuous mappings f : X → Y equipped with the supremum metric.

(ii) X is locally compact and E = C(X,Y ) is the set of all continuous map-
pings f : X → Y equipped with the compact-open topology; i.e. with the
topology with a subbase

{{f ∈ E : f(K) ⊂ G} : K ⊂ X compact, G ⊂ Y open }.

(iii) E = C(X,Y ) is equipped with the “closed-open” topology with a subbase
formed by the sets of the form

{f ∈ E : f(F ) ⊂ G},

where F ⊂ X is closed and G ⊂ Y is open.

Let µ and ν be Radon measures on X and Y , respectively, or more gener-
ally, measures which satisfy conditions (1), (2), (3) from the beginning of this
section. Then the set NE of all f ∈ E which have Luzin’s property (N) is a
co-Suslin subset of E.

Proof. By Proposition 2.3 it is sufficient to check that E satisfies the con-
dition (∗) in all three cases. To this end suppose that a compact set C ⊂ X,
an open set G ⊂ Y and f ∈ E such that f(C) ⊂ G are given. Assign to each
x ∈ C an open neighborhood Ux such that

(a) diam f(Ux) < ε
2 , where ε := dist(f(C), Y \G) in the case (i),

(b) Ux ⊂ f−1(G) and Ux is compact in the case (ii) and
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(c) Ux ⊂ f−1(G) in the case (iii).

Since C is compact, we can find a finite set F ⊂ C such that V :=
⋃
x∈F Ux ⊃

C. Since clearly

f ∈ {g ∈ E : g(V ) ⊂ G} ⊂ E := {g ∈ E : g(V ) ⊂ G},

we see that E is a neighborhood of f in the cases (ii) and (iii). In the case
(i) the ε

2 -neighborhood of f is clearly a subset of E. Thus the condition (*) is
satisfied and we are done.

Corollary 2.5. N ([a, b]n,Rk) is a coanalytic subset of C([a, b]n,Rk) for all
n, k ∈ N.

3 The Set of Functions with Luzin’s Property (N) Need
Not be Borel

We consider the set N = N ([0, 1]) of continuous functions with Luzin’s prop-
erty (N) as a subset of the space C = C([0, 1]). By Corollary 2.5 we know
that N is a coanalytic subset of C. We are going to prove that N is complete
coanalytic. Let us recall that C is a complete coanalytic subset of a Polish
space P if C is coanalytic in P and given any coanalytic set D ⊂ NN, there
is a continuous map f : NN → P such that D = f−1(C). Let us remark that
the definition is not identical with Definition 22.9 in [6]. However, we may
easily notice that these definitions are equivalent realizing that every zero-
dimensional Polish space is homeomorphic to some closed subspace of NN ([6],
Theorem 7.8).

We also use the two following facts. The first follows easily from the
definition of complete coanalytic sets. The other uses also the well-known
facts that there is a coanalytic subset of NN which is not Suslin, that every
Borel subset of a metric space is Suslin and that continuous preimages of Suslin
sets are Suslin.

(A) Let C be a Polish space and N be a coanalytic subset of C. Further,
let L be a complete coanalytic subset of a Polish space T , F : T → C be
continuous and let F−1(N) = L. Then N is complete coanalytic in C.

(B) Every complete coanalytic subset of a Polish space P is not Suslin and
thus not Borel in P .

Theorem 3.1. The set N is complete coanalytic and so it is not Borel nor
Suslin in C.
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We do first some auxiliary considerations and constructions. We shall
construct a suitable continuous (even homeomorphic) mapping to C of the
compact metric space T of trees on N with the root ∅, i.e. the space of sets

T ⊂ S =
∞⋃
k=1

Nk∪{∅} such that (n1, . . . , nk+1) ∈ T implies that (n1, . . . , nk) ∈

T and ∅ ∈ T , endowed with the compact metrizable topology induced by the
topology of pointwise convergence of the characteristic functions χT : S →
{0, 1} of T ’s from T . As we already mentioned, we are going to use the
following fact.

(C) The set L of “well founded” trees, i.e. the trees which have finite
branches only, is complete coanalytic in T (cf. [6], Theorem 27.1).

First of all we construct one particular function s : [0, 1]→ [0, 1] which will
be the crucial tool to built up suitable fT ∈ C for every T ∈ T at the end.
Let D be a closed nowhere dense subset of [0, 1] which has positive Lebesgue
measure. The starting point of the construction of s is the function s0 defined

by s0(x) =
1

λ1(D)

x∫
0

χD(y)dy, where χD is the characteristic function of D.

Notice that s0 is Lipschitz (with constant 1
λ1(D) ), s0(0) = 0, s0(1) = 1 and

s0([0, 1] \D) is dense in [0, 1].
We shall get s by modifications of s0 done separately on a disjoint sequence

of closed intervals in [0, 1]\D which we choose first. Since s0([0, 1]\D) is dense
in [0, 1], we can choose (pairwise distinct) yn(k) ∈ [0, 1] and pairwise disjoint
closed intervals J in(k) ⊂ [0, 1] \ D for n ∈ N, k ∈ {1, . . . , 2n−1} and i = 0, 1,
such that∣∣∣yn(k)− 2k − 1

2n

∣∣∣ < 1
2n+1

and s0(J0
n(k)) = s0(J1

n(k)) = {yn(k)}.

Let Lin(k) be the closed left half, and Rin(k) the closed right half, of J in(k).
We define s by s0 on [0, 1] \

⋃
{J in(k);n ∈ N, k = 1, . . . , 2n−1, i = 0, 1}. We

define s to be an affine function on Lin(k), and also on Rin(k), such that

s(x) =


yn(k) if x is an endpoint of J in(k)
2k−2
2n if x is the midpoint of J0

n(k)
2k
2n if x is the midpoint of J1

n(k).

We see immediately that s(
⋃
Ln) = [0, 1], where Ln = {Lin(k); i = 0, 1, k =

1, . . . , 2n−1} for every n ∈ N. Also s(0) = 0 and s(1) = 1. Now s is a
continuous function on [0, 1] due to the fact that it is the uniform limit of
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the continuous functions sn defined such that sn equals s on
n⋃

m=1

⋃
Lm and sn

equals s0 otherwise. By the definition of s, we have that sup
x∈[0,1]

|s(x)−sn(x)| ≤

3
2n+1 . Also s has Luzin’s property (N) because s0 is Lipschitz and s is Lipschitz

on each of the countably many intervals J in(k). Put L =
⋃ ∞⋃
n=1
Ln. The

Lebesgue measure λ(L) of L is less than 1
2 because L consists of the left halves

of J in(k) only.
We have proved the following lemma. It describes all properties of s which

will be used below.

Lemma 3.2. There are a continuous function s : [0, 1] → [0, 1] with Luzin’s
property (N) and finite families Ln of closed subintervals of [0, 1] such that

(i)
⋃
n∈N
Ln is a disjoint family;

(ii) q = λ(
⋃⋃∞

n=1 Ln) < 1;

(iii) s(0) = 0, s(1) = 1;

(iv) s is affine on elements of Ln;

(v) |s(max I)− s(min I)| ≤ 3
2n+1 ≤ 3

4 for I ∈ Ln;

(vi) s(
⋃
Ln) = [0, 1] for every n ∈ N.

Now we modify s by some similarity transformations.

Definition 3.3. For a, b, c, d ∈ [0, 1], a < b, we put

scdab(x) = c+ (d− c) s
(
x− a
b− a

)
and ∆cd

ab(x) = scdab(x)− [c+ (d− c)x−ab−a ] for x ∈ [a, b].

Notice that scdab(a) = c, scdab(b) = d, ‖∆cd
ab‖ ≤ |d − c|, ∆cd

ab(a) = ∆cd
ab(b) = 0

and ∆cd
ab(x) 6= 0 for some x ∈ (a, b).

Let Ln(a, b) be the family obtained from Ln using the natural similarity
transformation of [0, 1] onto [a, b]. For a fixed sequence (n1, . . . , nk) ∈ S
we shall define a disjoint family In1,...,nk

of closed intervals. Then we put
Fn1,...,nk

=
⋃
In1,...,nk

and define a function hn1,...,nk
on Fn1,...,nk

. First of all,
we put I∅ = {[0, 1]}, F∅ = [0, 1] and h∅ = s.
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Let hn1,...,nk
and In1,...,nk

be already defined. We define In1,...,nk,nk+1

to be the family
⋃
{Lnk+1(A,B); [A,B] ∈ In1,...,nk

}. For x ∈ [a, b], [a, b] ∈
In1,...,nk,nk+1 , using the notation c = hn1,...,nk

(a), d = hn1,...,nk
(b), we put

hn1,...,nk,nk+1(x) = hn1,...,nk
(x) + ∆cd

ab(x) = scdab(x).

The last equality follows by the linearity of hn1,...,nk
on [a, b]. We observe that

‖∆cd
ab‖ ≤

3
2nk+1+1

|hn1,...,nk
(A)− hn1,...,nk

(B)|

by (v) of Lemma 3.2, with [A,B] ∈ In1,...,nk
and [a, b] ∈ Lnk+1([A,B]). We

note that our construction yields the following lemma.

Lemma 3.4. There are disjoint families {Fn1,...,nk
; (n1, . . . , nk) ∈ Nk}, k =

0, 1, . . . , of compact subsets of [0, 1] and continuous functions hn1,...,nk
on

Fn1,...,nk
such that the following hold. (We use here that hn1,...,n0 ≡ h∅ and

Fn1,...,n0 ≡ F∅.)

(a) F∅ = [0, 1], h∅ = s.

(b) λ(Fn1,...,nk
) ≤ qk for some q < 1.

(c) Fn1,...,nk+1 ⊂ Fn1,...,nk
.

(d) hn1,...,nk
has Luzin’s property (N).

(e) hn1,...,nk
(Fn1,...,nk

) = [0, 1].

(f) hn1,...,nk,nk+1(x) = hn1,...,nk
(x) for x ∈ ∂Fn1,...,nk+1 .

(g) |hn1,...,nk,nk+1(x) − hn1,...,nk
(x)| ≤ 3k+1

2n1+···+nk+1+k+1 ≤ ( 3
4 )k+1 for x ∈

Fn1,...,nk+1 .

Proof. The points (a) to (f) are obvious by the above construction.
The estimate (g) can be verified using Lemma 3.2 (v) inductively. Let

x ∈ Fn1,...,nk+1 . Then, there is only one interval [ak+1, bk+1] ∈ In1,...,nk+1 with
x ∈ [ak+1, bk+1]. Let [al, bl] ∈ In1,...,nl

, l = 0, . . . , k + 1 be such that [a0, b0] =
[0, 1] ⊃ [a1, b1] ⊃ · · · ⊃ [ak+1, bk+1]. We estimate ∆cldl

albl
(x) for x ∈ [al, bl]

inductively for l = 0, 1, . . . , k+ 1. Here cl = hn1,...,nl
(al), dl = hn1,...,nl

(bl) and
we use the fact that ‖∆cldl

albl
‖ ≤ |cl − dl| and |cl − dl| ≤ 3

2nl+1 |cl−1 − dl−1|. It
follows from Lemma 3.2 (v), the observation preceding Lemma 3.4 and the
fact that ‖∆cl−1dl−1

al−1bl−1
‖ ≤ |cl−1 − dl−1|.

We still need one more observation for the proof of Theorem 3.1.



644 P. Holický, S. P. Ponomarev, L. Zaj́ıček and M. Zelený

Lemma 3.5. Let Fk, k ∈ N, be a nonincreasing sequence of compact spaces,
fk, k ∈ N, be a sequence of continuous maps of F1 to a metric space which
converges uniformly to f . Then

∞⋂
k=1

fk(Fk) ⊂ f(
∞⋂
k=1

Fk).

Proof. Let y /∈ f(
⋂∞
k=1 Fk). Since f is continuous and since the Fk’s are

compact, the set f(
⋂∞
k=1 Fk) is compact and there is a δ > 0 such that the

closed ball B(y, δ) does not intersect f(
⋂∞
k=1 Fk). By continuity of f there is

an open G ⊃
⋂∞
k=1 Fk such that f(G) ∩ B(y, δ) = ∅. The compactness and

monotonicity of the sequence Fk, k ∈ N, ensures the existence of some k0 ∈ N
with Fk0 ⊂ G. Thus f(Fk) ∩B(y, δ) = ∅ for k ≥ k0. For k ≥ k0 large enough
we have ‖fk − f‖ < δ and so y /∈ fk(Fk). So y /∈

⋂∞
k=1 fk(Fk) and the lemma

is proved.

Proof of Theorem 3.1. Let Fn1,...,nk
and hn1,...,nk

be as in Lemma 3.4. We
define, for a fixed T ∈ T , a function fTk on [0, 1] so that fTk (x) = hn1,...,nk

(x)
for x ∈ Fn1,...,nk

if (n1, . . . , nk) ∈ T and by fTk = fTk−1 otherwise. Due
to (a) and the fact that each hn1,...,nk

is defined on Fn1,...,nk
⊂ [0, 1] and

{Fn1,...,nk
; (n1, . . . , nk) ∈ Nk}, k = 0, 1, . . . are disjoint families, the function

is well defined on the interval [0, 1]. Notice that, by (a), (f) and (g) for fixed
k, each fTk is continuous. Define fT = lim

k→∞
fTk . By (g), the limit is uniform.

Hence fT ∈ C.
If T ∈ L, i.e. T ∈ T and there are only finite branches in T , and if

x ∈ [0, 1], there is an (n1, . . . , nk) ∈ Nk such that fT (x) = hn1,...,nk
(x). Since

all these countably many functions hn1,...,nk
have Luzin’s property (N) by (d),

fT has Luzin’s property (N), too.
If T ∈ P, i.e. if there is some sequence (n1, n2, . . . ) ∈ NN such that

(n1, n2, . . . , nk) ∈ T for every k ∈ N, then fTk (Fn1,...,nk
) = [0, 1] by (e) and the

definition of fTk .
As the sets Fn1,...,nk

are compact, fTk are continuous functions which uni-
formly converge, we get, using (c) and (e) above, that fT (

⋂
Fn1,...,nk

) = [0, 1]

by Lemma 3.5. Since λ(Fn1,...,nk
) ≤ qk by (b), we have that λ(

∞⋂
k=1

Fn1,...,nk
) =

0 and so fT does not have Luzin’s property (N).
Now we show that the map is continuous. Suppose that two trees T1, T2 ∈

T have the same intersection with {1, . . . , N0}k0 . Let x ∈ [0, 1] be arbi-
trary. Let S(x) = {(n1, . . . , nk);x ∈ Fn1,...,nk

}. We notice that there is a
unique, finite or infinite, sequence n1(x), n2(x), . . . such that the set S(x) is
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the set of the finite initial subsequences of n1(x), n2(x), . . . by the facts that
{Fn1,...,nk

; (n1, . . . , nk) ∈ Nk} is disjoint and Fn1,...,nk+1 ⊂ Fn1,...,nk
for every

k ∈ N.
If T1 ∩ S(x) = T2 ∩ S(x), then fT1(x) = fT2(x). If T1 ∩ S(x) 6= T2 ∩ S(x),

then either there is k1 ≤ k0 such that nk1(x) ≥ N0 and (n1(x), . . . , nk1−1(x)) ∈
T1 ∩ T2, or (n1(x), . . . , nk0(x)) ∈ T1 ∩ T2 and there is k1 > k0 such that
(n1(x), . . . , nk1(x)) ∈ (T2 \ T1) ∪ (T1 \ T2). So, either |fT1(x) − fT2(x)| ≤
∞∑
k=0

3
2N0+1 ( 3

4 )k, or |fT1(x)− fT2(x)| ≤
∞∑

k=k0

( 3
4 )k by (g). So, for any positive ε,

|fT1(x) − fT2(x)| < ε if k0 and N0 are sufficiently large and the map defined
by F (T ) = fT is continuous on T . Hence, we have that F : T → C is a
continuous mapping such that F−1(N ) = L. As L is complete coanalytic in
T by (C), we conclude that N is complete coanalytic in C by (A). Thus N is
not Borel in C by (B).

Remark 3.6. We may easily notice that the map T ∈ T 7→ fT ∈ C from
the previous proof is a homeomorphic embedding. As we proved that it is
continuous, it is enough to show that it is one-to-one.

Notice first that hn1,...,nk+1(x) 6= hn1,...,nk
(x) for some x ∈ Fn1,...,nk+1 \⋃

n∈N
Fn1,...,nk+1,n, where the functions hn1,...,nk

and the sets Fn1,...,nk
are those

constructed in Lemma 3.4. Indeed, given any [a, b] ∈ In1,...,nk+1 , hn1,...,nk
is

affine on [a, b] and the corresponding function ∆cd
ab is not monotone on [a, b].

The injectivity is now obvious from our construction. If (n1, . . . , nk) be-
longs to one tree T and not to the other tree T ′, then the functions fT , fT

′

differ at some point of Fn1,...,nk
\
⋃
n∈N

Fn1,...,nk,n.

Now we extend the result of Theorem 3.1 to several more general situations.
Before coming to more interesting cases, we make an easy observation.

Corollary 3.7. The set N ([0, 1]n,Rn) is a complete coanalytic subset of
C([0, 1]n,Rn). In particular, it is not Suslin in C([0, 1]n,Rn).

Proof. By Theorem 2.4 the set N ([0, 1]n,Rn) is coanalytic. For each
g ∈ C([0, 1]) put T (g) = f , where f(x1, x2, . . . , xn) = (g(x1), x2, . . . , xn).
Obviously, T is a homeomorphic embedding of C([0, 1]) into C([0, 1]n,Rn) and
T (g) ∈ N ([0, 1]n,Rn) if and only if g ∈ N ([0, 1]) by the Fubini theorem. Hence,
by Theorem 3.1 and the fact (A), N ([0, 1]n,Rn) is complete coanalytic. Ac-
cording to the fact (B), N ([0, 1]n,Rn) is not Suslin in C([0, 1]n,Rn).

The next lemma will be used to transfer the study of general situations to
simpler ones. In Theorems 3.15 and 3.17 below we study Nb((X,µ),Rn) for
several cases of (X,µ) and n ∈ N. We reduce those cases using Lemma 3.8 to
the study of Nb([0, 1]n,Rn).
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Lemma 3.8. Let (I, ν) and (X,µ) be analytic spaces equipped with Radon
measures such that there exists a continuous mapping h of X onto I satisfying

(i) for every A ⊂ I with ν(A) = 0, there exists B ⊂ X such that h(B) = A
and µ(B) = 0;

(ii) ν(h(B)) = 0 whenever µ(B) = 0, B ⊂ X.

Let n ∈ N. If the set Nb(I,Rn) is not Suslin in Cb(I,Rn), then the set
Nb(X,Rn) is not Suslin in Cb(X,Rn).

Proof. We define a mapping T of Cb(I,Rn) into Cb(X,Rn) by

T : f 7→ f ◦ h.

The mapping T is clearly continuous and, according to (ii), T (f) ∈ Nb(X,Rn)
whenever f ∈ Nb(I,Rn). Now we show that T−1(g) ⊂ Nb(I,Rn) whenever
g ∈ Nb(X,Rn). Suppose to the contrary that there exist g ∈ Nb(X,Rn) and
f ∈ Cb(I,Rn) \ Nb(I,Rn) with T (f) = g. Then there exists a Borel set A ⊂ I
such that ν(A) = 0 and λn(f(A)) > 0. Due to (i) there exists B ⊂ X such
that µ(B) = 0 and h(B) = A. Thus we have λn(g(B)) > 0, a contradiction.
Now we can conclude that Nb(X,Rn) is not Suslin since continuous preimages
of Suslin sets are Suslin and Nb(I,Rn) = T−1(Nb(X,Rn)).

In applications of the preceding lemma, we use the following easy observa-
tion.

Remark 3.9. Let n ∈ N and M be an analytic space with a Radon measure
µ. Suppose that µ has a non-zero continuous part ν. It is easy to see that
Nb((M,µ),Rn) = Nb((M,ν),Rn).

When looking for the map h of Lemma 3.8, we use the following well-known
properties of the distribution function of a non-atomic probability measure
concentrated on a compact set F ⊂ R.

Lemma 3.10. Let µ be a non-zero non-atomic Radon measure on R and F
be a compact subset of R with µ(F ) > 0. Put h(x) = 1

µ(F )µ((−∞, x) ∩ F ) for
x ∈ R. Then h is continuous and

(i) h(R) = h(F ) = [0, 1],

(ii) µ(h−1(A) ∩ F ) = 0 whenever λ1(A) = 0,

(iii) λ1(h(B)) = 0 whenever µ(B) = 0,

(iv) λ1(h(R \ F )) = 0.
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Proof. It is well-known (cf. [17], pp. 163–164) that h is non-decreasing,
continuous (since µ is a non-atomic measure), and λ1|[0,1] is the image of
µ|F under the function h|F . Therefore h satisfies conditions (i) and (ii). Let
K = supp(µ|F ). Obviously, K ⊂ F and (iv) follows from the fact that h(R\F )
is a subset of the countable set h(R \K). To prove (iii), we may suppose that
B is Borel and notice that h is injective on K \ L, where L is the set of left
endpoints of intervals contiguous to K. Thus λ1(h(B)) = µ|F (h−1(h(B)) ∩
K) ≤ µ|F ((B ∪ L) ∩K) = 0.

Lemma 3.11. Let n ∈ N and X be an analytic space with a non-zero non-
atomic Radon measure µ. Then there exist a compact set K ⊂ X homeomor-
phic to the Cantor set with µ(K) > 0 and a continuous mapping ψ of K onto
[0, 1]n with property (N) and property (N−1), i.e. µ(ψ−1(A)) = 0 whenever
λn(A) = 0.

Proof. Let Ir = [0, 1] \ Q. Fix a non-empty zero-dimensional compact set
D ⊂ Ir such that λ1(D∩V ) > 0 for every open subset V of Ir intersecting D.
Put D̃ =

∏n
j=1D.

For every x ∈ X, the set {r > 0; µ(∂B(x, r)) = 0} is dense in (0,∞)
since µ is a Radon measure. Thus there exists a countable open basis B
of the topology of X consisting of open balls with µ-zero boundaries. Put
X̃ = X \

⋃
{∂B; B ∈ B}. The set X̃ is zero-dimensional and µ(X̃) = µ(X).

Now we can find a non-empty compact set L ⊂ X̃ such that µ(L∩G) > 0 for
every open set G ⊂ X intersecting L. The set L is zero-dimensional. Take a
countable set C ⊂ L dense in L and put H = L \ C. The sets Irn and H are
homeomorphic to Ir (see [20], Theorem 1.2.5). The Oxtoby theorem from [9]
says that, for a topological space Z with a Radon measure ν, there exists a
homeomorphism ρ of Z onto Ir with ρ(ν) = λ1|Ir if and only if

• Z is homeomorphic to Ir,

• ν(Z) = 1,

• ν(V ) > 0 for every non-empty open subset of Z,

• ν is non-atomic.

It is not difficult to verify that this theorem gives that there exist a home-
omorphism τ1 of H onto Ir such that τ1( 1

µ(H)µ|H) = λ1|Ir and a homeomor-
phism τ2 of Ir onto Irn such that τ2(λ1|Ir) = λn|Irn . Put τ = τ2 ◦ τ1. The
mapping τ is a homeomorphism of H onto Irn such that τ( 1

µ(H)µ|H) = λn|Irn .
Define g : R→ [0, 1] by g(x) = 1

λ1(D)λ1((−∞, x)∩D). Using Fubini’s theorem
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and Lemma 3.10, it is not difficult to show that the mapping G : D̃ → [0, 1]n

defined by

G(x1, . . . , xn) = (g(x1), . . . , g(xn)), (x1, . . . , xn) ∈ D̃,

maps D̃ onto [0, 1]n, has property (N) and property (N−1). The desired com-
pact K and the mapping ψ can be defined by K = τ−1(D̃) and ψ = G ◦ τ |K.
Since the zero-dimensional compact set D̃ satisfies λn(D̃ ∩ V ) > 0 for ev-
ery open set V ⊂ Rn intersecting D̃, D̃ is dense in itself and therefore D̃ is
homeomorphic to the Cantor set (see [20] Theorem 1.3.1). Thus the set K is
homeomorphic to the Cantor set.

We need the following notation. If A and B are elements of Rn, then the
closed segment with endpoints A and B is denoted by [A,B].

Lemma 3.12. Let P be a metric space. Let n ∈ N and G, G0, G1 be
nonempty open subsets of P such that G0 ∪ G1 ⊂ G, G0 ∩ G1 = ∅. Let
A, A0, A1 be points in Rn. Then there exists a continuous mapping T of
D = G \ (G0 ∪G1) to Rn such that

(i) T (D) ⊂ [A,A0] ∪ [A,A1],

(ii) T (∂G) ⊂ {A},

(iii) T (∂Gi) ⊂ {Ai}, i = 0, 1.

Proof. The assertion follows immediately from the fact that [A,A0]∪ [A,A1]
is homeomorphic to an interval [−K,K], K ≥ 0, and from the Tietze theorem.

The set of all finite (possibly empty) sequences of 0’s and 1’s will be denoted
by Y.

The construction of h, which is presented below, was influenced by [8]
(where the idea of construction is attributed to L. Cesari, [2]).

Lemma 3.13. Let µ be a non-zero non-atomic Radon measure on an analytic
space X. Let n ∈ N, n ≥ 2. Then there exists a continuous mapping h of X
onto [0, 1]n such that

(i) for every A ⊂ [0, 1]n with λn(A) = 0, there exists B ⊂ X such that
h(B) = A and µ(B) = 0;

(ii) λn(h(B)) = 0 whenever µ(B) = 0, B ⊂ X.

Proof. According to Lemma 3.11 there exist a compact set K ⊂ X home-
omorphic to the Cantor set with µ(K) > 0 and a continuous mapping ψ of
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K onto [0, 1]n satisfying property (N) and property (N−1). Now the desired
mapping h can be constructed as an arbitrary continuous extension of ψ de-
fined on X with values in [0, 1]n and having property (N), i.e. property (ii).
Such a mapping h clearly satisfies property (i) automatically.

Since K is homeomorphic to the Cantor set we can easily find a scheme

{Gs1,...,sk
; k ∈ N ∪ {0}, (s1, . . . , sk) ∈ Y}

of open sets satisfying

(S1) G∅ = X,

(S2) K ⊂
⋃
{Gs1,...,sk

; (s1, . . . , sk) ∈ Y} for every k ∈ N ∪ {0},

(S3) Gs1,...,sk,0 ∪Gs1,...,sk,1 ⊂ Gs1,...,sk
,

(S4) Gs1,...,sk,0 ∩Gs1,...,sk,1 = ∅,

(S5) Gs1,...,sk
∩K 6= ∅ for every k ∈ N ∪ {0}, (s1, . . . , sk) ∈ Y,

(S6) limk→+∞ diamGν1,...,νk
= 0 for every ν ∈ {0, 1}N.

We pick an arbitrary point xs1,...,sk
in Gs1,...,sk

∩K for every (s1, . . . , sk) ∈
Y. Fix (s1, . . . , sk) ∈ Y. Lemma 3.12 shows that there exists a continuous
mapping fs1,...,sk

defined on Ds1,...,sk
= Gs1,...,sk

\(Gs1,...,sk,0∪Gs1,...,sk,1) with
values in Rn such that

(P1) fs1,...,sk
(Ds1,...,sk

) ⊂ [ψ(xs1,...,sk
), ψ(xs1,...,sk,0)]

∪[ψ(xs1,...,sk
), ψ(xs1,...,sk,1)],

(P2) fs1,...,sk
(∂Gs1,...,sk

) ⊂ {ψ(xs1,...,sk
)},

(P3) fs1,...,sk
(∂Gs1,...,sk,i) ⊂ {ψ(xs1,...,sk,i)}, i = 0, 1.

We define a mapping h : X → [0, 1]n by

h(x) =

{
fs1,...,sk

(x), x ∈ Ds1,...,sk
, k ∈ N ∪ {0}, (s1, . . . , sk) ∈ Y,

ψ(x), x ∈ K.

The definition is correct. Indeed, K ∩Ds1,...,sk
= ∅ for every (s1, . . . , sk) ∈ Y

and if a ∈ Du1,...,ul
∩Dv1,...,vm

for l ≥ m, then (u1, . . . , ul) = (v1, . . . , vm) or
l = m+ 1 and (u1, . . . , ul) = (v1, . . . , vm, i) for some i ∈ {0, 1}. In the second
case (P2) and (P3) give fu1,...,ul

(a) = fv1,...,vm(a).
The mapping h is continuous at each point of X \K by the continuity of

each map fs1,...,sk
, (P2), (P3), and by the fact that for every a ∈ X \K there
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exist (v1, . . . , vk) ∈ Y and i ∈ {0, 1} such that a ∈ int(Dv1,...,vk
∪Dv1,...,vk,i).

The continuity at points of K follows from the fact that ψ is continuous on K
and from the condition (S6) and (P1).

Observe that

h(X \K) ⊂
⋃
{[ψ(xs1,...,sk

), ψ(xs1,...,sk,i)]; k ∈ N ∪ {0},

(s1, . . . , sk) ∈ Y, i ∈ {0, 1}}.

This gives that λn(h(X \K)) = 0. (Here we have used the assumption n ≥ 2
which ensures that each segment is λn-null.) Thus h has property (N) and we
are done.

Remark 3.14. The previous lemma answers positively the following question
(posed by P. Holický and L. Zaj́ıček at 26th Winter School on Abstract Anal-
ysis). Does there exist a continuous mapping f : R3 → R2 with property (N)
such that λ2(f(R3)) > 0?

Now we are prepared to generalize Theorem 3.1 and its Corollary 3.7.

Theorem 3.15. Let n ∈ N, n ≥ 2, X be an analytic space, and µ be a Radon
measure on X with a non-zero continuous part. Then Nb(X,Rn) is a co-Suslin
subset of Cb(X,Rn) which is not Suslin. In particular, Nb(X,Rn) is not Borel.

Proof. Theorem 2.4 gives that Nb(X,Rn) is co-Suslin. According to Remark
3.9 we may assume that µ is a non-zero non-atomic Radon measure. Using
Lemma 3.13, we obtain a mapping h of X onto [0, 1]n satisfying the assump-
tions of Lemma 3.8. Therefore Nb(X,Rn) is not Suslin since N ([0, 1]n,Rn) is
not Suslin by Corollary 3.7.

Remark 3.16. The assumption n ≥ 2 in Theorem 3.15 cannot be omitted.
Indeed, the set Nb(R2,R) contains only constant functions (Each non-constant
function maps some segment onto a non-degenerate interval.) and therefore
Nb(R2,R) is a closed subset of Cb(R2,R). Nevertheless, in Theorem 3.17, we
prove that Nb(X,R) is not Suslin under some additional requirements on X
and µ.

Theorem 3.17. Let X be an analytic space with a measure µ satisfying one
of the following conditions

(i) X ⊂ R and µ is a Radon measure with a non-zero continuous part;

(ii) µ is a non-zero locally finite 1-dimensional Hausdorff measure;

(iii) X is a zero-dimensional space and µ is a Radon measure with a non-zero
continuous part.
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Then Nb(X,R) is a co-Suslin subset of Cb(X,R) which is not Suslin. In par-
ticular, Nb(X,R) is not Borel.

Proof. Theorem 2.4 gives that Nb(X,Rn) is co-Suslin in all cases above.
Indeed, in the cases (i) and (iii) the considered measures are Radon. In the
case (ii) we use separability of X and the fact that every analytic space is a
Radon space ([19], Chap. II, Theorem 10) to prove that µ is a Radon measure.

Now we prove that Nb(X,R) is not Suslin in each of cases (i)–(iii) sepa-
rately.

(i) There exists a compact set F ⊂ X with µ(F ) > 0. We define a measure
τ on R by τ(B) = µ(B ∩ F ) for every Borel subset B of R. Let σ be a
completion of the measure τ . The measure σ is a Radon measure on R and
Lemma 3.10 ensures the existence of a continuous mapping h : R → [0, 1]
satisfying (i) – (iv) in Lemma 3.10, where µ is replaced by σ. The restricted
mapping h|X of X onto [0, 1] satisfies the assumptions of Lemma 3.8, where
(I, ν) = ([0, 1], λ1). Now Lemma 3.8 and Theorem 3.1 give that Nb(X,R) is
not Suslin in Cb(X,R).

(ii) According to Lemma 3.11 there exist a compact set K ⊂ X and a
continuous mapping ψ of K onto [0, 1] with property (N) and property (N−1).
There exists a continuous extension h : X → [0, 1], which is locally Lipschitz
on X \ K. Indeed, this follows from Dugundji’s construction of Φ from [4],
Theorem 5.1. Notice that λU ’s used in the construction (defined on page 355)
are locally Lipschitz. Lipschitz mappings map sets with zero 1-dimensional
Hausdorff measure onto sets with zero 1-dimensional Hausdorff measure (cf.
[15], p. 53). We can easily deduce that h has the same property since X is
separable. We can conclude that h satisfies the assumptions of Lemma 3.8
with (I, ν) = ([0, 1], λ1). Now Theorem 3.1 gives the conclusion.

(iii) The assertion follows from the case (i) above and from the fact that
each zero-dimensional analytic space can be homeomorphically embedded into
R (see [6], Theorem 7.8).

4 The Category

In this section by a simplex we mean a closed (geometrical) n-simplex in Rn.
We suppose that n and a simplex S ⊂ Rn are fixed. By a figure we mean a
finite disjoint union of n-simplexes. If a geometrical complex K is a subdivision
of S, we denote by ν(K) the maximum of diameters of n-simplexes from K and
by VK the set of all vertices of simplexes from K. If a mapping p : VK → Rn is
given, we denote by fp : S → Rn the unique (simplicial) extension of p which
is affine on each n-simplex from K. The set of all mappings of the form fp
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(i.e. of “piecewise affine mappings of S to Rn”) will be denoted by A. The
Lebesgue measure of a set A ⊂ Rn will be denoted by |A| in this section. We
need several simple lemmas.

Lemma 4.1. Let f ∈ C(S,Rn) and ε > 0 be given. Then there exists a ϕ ∈ A
such that ‖f − ϕ‖ < ε and |ϕ(S)| > 0.

Proof. We can clearly choose a subdivision K of S such that diam f(T ) < ε
2

for every n-simplex T ∈ K and a mapping p : VK → Rn such that ‖f(v) −
p(v)‖ < ε

2 for every v ∈ VK and the set {p(v) : v ∈ T0} is affinely independent
for some n-simplex T0 ∈ K. It is easy to see that ϕ := fp satisfies the assertion
of the lemma.

Lemma 4.2. Let ϕ ∈ A, a figure F ⊂ S, c > 0 and ε > 0 be given so that
|ϕ(F )| > c. Then there exist g ∈ A and a figure F ∗ ⊂ F such that ‖ϕ−g‖ < ε,
|F ∗| < ε and |g(F ∗)| > c.

Proof. Consider a complex K∗ which is a subdivision of S and ν(K∗) = δ.
Let {S1, . . . , Sk} be the set of all n-simplexes S∗ ∈ K∗ such that S∗ ⊂ F and
ϕ is affine on S∗. It is easy to see that

∑k
i=1 |ϕ(Si)| > c and diamϕ(Si) <

ε, i = 1, . . . k, if δ is sufficiently small. Fix a K∗ which corresponds to such
a δ. Now consider a subdivision K of K∗. If ν(K) is sufficiently small, we
can clearly choose pairwise disjoint n-simplexes T1, . . . , Tk from K such that
Ti ⊂ Si and

∑k
i=1 |Ti| < ε. Let VK be the set of all vertices of simplexes from

K. Choose a p : VK → Rn such that

(i) p(v) = ϕ(v) if v is vertex of no simplex Ti, i = 1, . . . , k, and

(ii) p(VTi) = ϕ(VSi), i = 1, . . . , k, where VTi and VSi are the sets of all
vertices of Ti and Si, respectively.

It is easy to verify that the corresponding simplicial mapping g := fp and
F ∗ = T1 ∪ · · · ∪ Tk satisfy the assertion of the lemma.

Lemma 4.3. Let g ∈ A, c > 0 and a figure F ⊂ S be given so that |g(F )| > c.
Then there exists δ > 0 such that |f(F )| > c whenever f ∈ C(S,Rn) and
‖f − g‖ < δ.

Proof. We can clearly find n-simplexes T1, . . . , Tm such that F = T1 ∪ · · · ∪
Tm, the sets intTi, i = 1, . . .m, are pairwise disjoint and g is affine on each
Ti. Let 1 ≤ i ≤ m be fixed; put Ω = intTi. If |g(Ω)| > 0, then the topological
degree d(g,Ω, y) = sgnJg(g−1(y)) 6= 0 for each y ∈ int g(Ti) = g(Ω) (cf. [3],
Definition 2.1). Let now δ > 0, f ∈ C(S,Rn) such that ‖f − g‖ < δ and
y ∈ int g(Ω) such that dist(y, g(∂Ω)) > δ be given. Then Theorem 3.1 (d5)
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of [3] implies that d(f,Ω, y) 6= 0 and therefore y ∈ f(Ti) by Theorem 3.1,(d4)
of [3]. Now it is easy to see that the assertion of the lemma holds for any
sufficiently small δ.

The main tool of this section is the Banach–Mazur game. It is the following
infinite game between two players.

Let P be a metric space and let M ⊂ P be given. In the first step the first
player chooses an open ball B(f1, ε1). In the second step the second player
chooses an open ball B(g1, δ1) ⊂ B(f1, ε1), in the third step the first player
chooses an open ball B(f2, ε2) ⊂ B(g1, δ1) and so on. If

∞⋂
i=1

B(fi, εi) ∩M = ∅,

then the second player wins. In the opposite case the first player wins.
We shall need the following result essentially due to Banach.
(BM) The second player has a winning strategy in the Banach–Mazur

game if and only if M is of the first category in P .
A proof of this theorem can be found in [10] for the case P = (0, 1); the

proof for the general case (cf. [11]) is essentially the same.

Proposition 4.4. The set Nb(S,Rn) of all mappings from C(S,Rn) having
property (N) is a first category subset of C(S,Rn).

Proof. By (BM) it is sufficient to find a winning strategy for the second
player of the Banach-Mazur game in the space C(S,Rn) corresponding to the
set M := Nb(S,Rn).

We are now going to describe such a strategy. Suppose that the first player
chose the ball U1 = B(f1, ε1) in his first move. Then the second player will
choose a function g1 ∈ U1 ∩ A such that c := |g1(S)| > 0 in his first move; it
exists by Lemma 4.1. Further, he will put F1 := S and by Lemma 4.3 choose
a number δ1 > 0 such that V1 := B(g1, δ1) ⊂ U1 and |f(F1)| > c for each
f ∈ V1.

In its m-th move, the second player will construct not only a ball Vm =
B(gm, δm) but also a figure Fm such that

|Fm| ≤
1
m
|S|, (4)

|f(Fm)| > c whenever f ∈ Vm, and (5)

Fm ⊂ Fm−1 if m > 1. (6)

The conditions (4),(5) and (6) are clearly satisfied for m = 1.
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Suppose now that k > 1 is given and Um = B(fm, εm) are constructed for
all 1 ≤ m ≤ k and Vm = B(gm, δm), Fm are constructed for all 1 ≤ m < k so
that

U1 ⊃ V1 ⊃ · · · ⊃ Vk−1 ⊃ Uk
and conditions (4),(5) and (6) hold for each 1 ≤ m ≤ k. Our aim is to construct
Vk = B(gk, δk) and a figure Fk such that Vk ⊂ Uk and such that conditions
(4),(5) and (6) hold for m = k. To this end, we choose an arbitrary ϕ ∈ Uk∩A
by Lemma 4.1. Since (5) holds for k − 1, we have |ϕ(Fk−1)| > c. Now we
use Lemma 4.2 with F = Fk−1 and ε > 0 so small that B(ϕ, ε) ⊂ Uk and
ε ≤ 1

k |S|. We obtain a function g = gk ∈ A∩Uk and a figure F ∗ = Fk ⊂ Fk−1

such that |gk(Fk)| > c and |Fk| < 1
k |S|. Further we use Lemma 4.3 with

g = gk, F = Fk and obtain δ > 0 such that |f(Fk)| > c whenever f ∈ B(gk, δ).
We put Vk := B(gk, δk), where 0 < δk ≤ δ is chosen so small that Vk ⊂ Uk.

Thus the strategy for the second player is now well defined. To prove that
it is a winning strategy, suppose that f ∈

⋂∞
k=1 Vk is given. Since conditions

(4),(5) and (6) hold for every k, we obtain by Lemma 3.5 that |f(
⋂
Fk)| ≥

|
⋂
gk(Fk)| ≥ c > 0 and therefore f /∈ Nb(S,Rn).
Now we can prove the main result of this section.

Theorem 4.5. Let m ≤ n be natural numbers and let X be a metric space
equipped with a non-atomic Radon measure µ such that there exists an open set
G ⊂ X such that G is homeomorphic to Rn and G ⊂ suppµ. Then Nb(X,Rm)
is a first category subset of the space Cb(X,Rm).

Proof. Using the Oxtoby-Ulam theorem (cf. [12]) we easily see that there
exists a closed n-simplex S ⊂ Rn and a homeomorphism h of S onto an F ⊂ G
such that h(λn) = µ|F .

Suppose first that m = n. Then Proposition 4.4 implies that the set
Nb(F,Rn) of all mappings from C(F,Rn) with property (N) is of the first
category in C(F,Rn). Now consider the restriction mapping R : Cb(X,Rn)→
C(F,Rn), R(f) = f |F . Since R is continuous, linear and surjective, the open
mapping theorem implies that R is an open mapping. Thus it is easy to
see that R−1(Nb(F,Rn)) is of the first category in Cb(X,Rn). Since clearly
Nb(X,Rn) ⊂ R−1(Nb(F,Rn)), the case m = n is settled.

In the case m < n it is sufficient to observe that the canonical “projection”
mapping P : Cb(X,Rn)→ Cb(X,Rm) is a continuous and open surjection and
therefore the P -image of the residual set Cb(X,Rn) \ Nb(X,Rn) is residual as
well (see [13], Lemma 4.25). By Fubini’s theorem, this image is clearly disjoint
with Nb(X,Rm) and we are done.

Remark 4.6. (a) Some analogues of Theorem 4.5 in spaces of unbounded
continuous mappings also hold. For example, it is easy to prove that the set
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of all continuous mappings of Rn to Rn with Luzin’s property (N) is of the
first category in the space of all continuous mappings of Rn to Rn with the
compact-open topology.

(b) In some cases, it is easy to see that the analogue of Theorem 4.5
does not hold. For example, Nb(X,Y ) is residual in the space Cb(X,Y ) in
the following cases. (We suppose that X,Y are metric spaces equipped with
Radon measures µ, ν, respectively.)

(i) X is a compact null-dimensional metric space and ν is non-atomic.

(ii) X is a compact subset of Rn, Y = Rm, m > n and µ = λn, ν = λm are
Lebesgue measures.

In fact, in these cases it is not difficult to prove that

Z := {f ∈ Cb(X,Y ) : ν(f(X)) = 0}

is a dense Gδ subset of Cb(X,Y ).
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