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Abstract

The goal of this note is to construct a uniformly antisymmetric func-
tion f : R → R with a bounded countable range. This answers Prob-
lem 1(b) of Ciesielski and Larson [6]. (See also the list of problems in
Thomson [9] and Problem 2(b) from Ciesielski’s survey [5].) A problem
of existence of uniformly antisymmetric function f : R → R with finite
range remains open.

A function f : R→ R is said to be uniformly antisymmetric [6] (or nowhere
weakly symmetrically continuous [9]) provided for every x ∈ R the limit
limn→∞(f(x+ sn)− f(x− sn)) equals 0 for no sequence {sn}n<ω converging
to 0. Uniformly antisymmetric functions have been studied by Kostyrko [7],
Ciesielski and Larson [6], Komjáth and Shelah [8], and Ciesielski [1, 2]. (A
connection of some of these results to the paradoxical decompositions of the
Euclidean space Rn is described in Ciesielski [3].) In particular in [6] the au-
thors constructed a uniformly antisymmetric function f : R → N and noticed
that the existence of a uniformly antisymmetric function cannot be proved
without an essential use of the axiom of choice.

The terminology and notation used in this note is standard and follows [4].
In particular for a set X we will write |X| for its cardinality and P(X) for its
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power set. Also 2ω will stand for the set of all functions from ω = {0, 1, 2, . . .}
into 2 = {0, 1}. We consider 2ω as ordered lexicographically.

Theorem 1. There exists a function f : R→ R with countable bounded range
such that for every x ∈ R there exists an εx > 0 with the property that the set

Sx = {s ∈ R : |f(x− s)− f(x+ s)| < εx}

is finite. In particular f is uniformly antisymmetric.

Proof. First notice that it is enough to find a compact zero-dimensional
metric space 〈T, d〉 and a function g from R into a countable subset T0 of T
such that for every x ∈ R there is a δx > 0 for which the set

Ŝx = {s ∈ R : d(g(x− s), g(x+ s)) < δx}

is finite.
To see this assume that such a function g : R→ T exists and take a home-

omorphic embedding h of T into R. We claim that f = h ◦ g : R → R is as
desired. Indeed, f [R] = h[g[R]] is countable, as it is a subset of a countable
set h[T0], and it is bounded, since it is a subset of a compact set h[T ]. So take
x ∈ R and δx > 0 for which Ŝx is finite. Since h−1 : h[T ] → T is uniformly
continuous, we can find an εx > 0 such that

|y1 − y2| < εx implies d(h−1(y1), h−1(y1)) < δx

for every y1, y2 ∈ h[T ]. But for such a choice of εx we have

Sx = {s ∈ R : |h(g(x− s))− h(g(x+ s))| < εx} ⊂ Ŝx

proving that Sx is finite.
Thus, we proceed to construct a function g described above. The value

of g(x) will be defined with help of a representation of x in a Hamel basis;
i.e., a linear basis of R over Q. For this we will use the following notation.
Let {yη : η ∈ 2ω} be a one-to-one enumeration of a Hamel basis H. For every
x ∈ R let

∑
η∈2ω qx,ηyη, with qx,η ∈ Q for η ∈ 2ω, be the unique representation

of x in basis H and let wx = {η ∈ 2ω : qx,η 6= 0}. Thus wx is finite and

x =
∑
η∈wx

qx,ηyη.

The definition of the space T is considerably more technical since it reflects
several different cases of the proof that the sets Ŝx are indeed finite. To this
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end let {qj : j < ω} be a one-to-one enumeration of Q with q0 = 0. For i < ω
let Pi = P({qj : j < i}) and put Pi = P(2i×{0, 1}×Pi×Pi). Note that each
Pi is finite; so T =

∏
i<ω Pi, considered as the standard product of discrete

spaces, is compact zerodimensional. We equip T with a distance function d
defined between different s, t ∈ T by d(s, t) = 2−min{i<ω : s(i)6=t(i)} and let

T0 = {t ∈ T : (∃n < ω)(∀i ≥ n) t(i) = ∅} .

Clearly T0 is countable.
Now we are ready to define g : R → T0 ⊂ T . For this, however, we will

need few more definitions. For x ∈ R, q ∈ Q, i < ω, and ζ ∈ 2i such that
ζ ∈ {(η � i) : η ∈ wx} we define:

• p(i) ∈ {0, 1} as the parity of i; i.e., p(i) = i mod 2;

• ki(q) = {qj ∈ Q : qj < q & j < i} ∈ Pi;

• η(x, ζ) to be the minimum of {η ∈ wx : ζ ⊂ η} (in the lexicographical
order);

• ξ(x, ζ) to be the minimum of {η ∈ wx : ζ ⊂ η} \ {η(x, ζ)} provided
|{η ∈ wx : ζ ⊂ η}| 6= 1; otherwise we put ξ(x, ζ) = η(x, ζ);

• nx < ω to be the smallest number n > 0 such that

(i) η � n 6= ξ � n for any different η, ξ ∈ wx, and

(ii) qx,η ∈ {qj : j < n} for every η ∈ wx.

Consider the function g : R → T0 defined as follows. For every x ∈ R and
i < ω we define g(x)(i) ∈ Pi as{
〈ζ, p(|{η ∈ wx : ζ ⊂ η}|), ki(qx,η(x,ζ)), ki(qx,ξ(x,ζ))〉 : ζ ∈ {(η � i) : η ∈ wx}

}
provided i ≤ nx and we put g(x)(i) = ∅ for nx < i < ω. In the argument below
the key role will be played by the function ki in general, and the coordinate
ki(qx,η(x,ζ)) in particular.

The key step in the proof that g has the desired property is that for every
x ∈ R and s 6= 0

if nx ≤ max{nx−s, nx+s} then g(x− s)(nx) 6= g(x+ s)(nx). (1)

To see (1) assume that nx ≤ nx+s. If nx−s < nx, then g(x− s)(nx) = ∅ 6=
g(x + s)(nx), where g(x + s)(nx) 6= ∅ since wx+s 6= ∅ as nx−s < nx ≤ nx+s
implies x+ s 6= 0. Thus, we can assume that nx ≤ min{nx−s, nx+s}. Take an
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η̂ ∈ wx−s ∪ wx+s such that qx−s,η̂ 6= qx+s,η̂ and let ζ = η̂ � nx. Note that, by
the definition of nx, the set S = {η ∈ wx : ζ ⊂ η} has at most one element.

If S = ∅, then {η ∈ wx−s : ζ ⊂ η} = {η ∈ wx+s : ζ ⊂ η} 6= ∅ and so
η(x−s, ζ) = η(x+s, ζ) /∈ wx while qx−s,η(x−s,ζ) +qx+s,η(x+s,ζ) = 0. Thus q0 =
0 separates qx−s,η(x−s,ζ) and qx+s,η(x+s,ζ) implying that knx

(qx−s,η(x−s,ζ)) 6=
knx

(qx+s,η(x+s,ζ)). Therefore g(x− s)(nx) 6= g(x+ s)(nx).
So, assume that S 6= ∅ and let η′ be the only element of S. Then η′ ∈

wx−s ∪ wx+s. If η′ belongs to precisely one of the sets wx+s and wx−s, say
wx+s, then {η ∈ wx+s : ζ ⊂ η} = {η ∈ wx−s : ζ ⊂ η} ∪ {η′}. In particular,
p(|{η ∈ wx+s : ζ ⊂ η}|) 6= p(|{η ∈ wx−s : ζ ⊂ η}|) implying that g(x−s)(nx) 6=
g(x+ s)(nx).

So, we can assume that η′ ∈ wx−s ∩ wx+s. Then {η ∈ wx−s : ζ ⊂ η} =
{η ∈ wx+s : ζ ⊂ η} and η(x− s, ζ) = η(x+ s, ζ). We will consider three cases.

Case 1: η′ 6= η(x−s, ζ) = η(x+s, ζ). Then qx−s,η(x−s,ζ) +qx+s,η(x+s,ζ) =
0; so q0 = 0 separates qx−s,η(x−s,ζ) and qx+s,η(x+s,ζ). Thus knx

(qx−s,η(x−s,ζ)) 6=
knx

(qx+s,η(x+s,ζ)) and g(x− s)(nx) 6= g(x+ s)(nx).

Case 2: η′ = η(x − s, ζ) = η(x + s, ζ) and qx−s,η(x−s,ζ) 6= qx+s,η(x+s,ζ).
Then qx−s,η(x−s,ζ) + qx+s,η(x+s,ζ) = 2qx,η′ and, by the definition of nx, qx,η′ ∈
{qj : j < nx}. Since qx,η′ separates qx−s,η(x−s,ζ) and qx+s,η(x+s,ζ), we conclude
that knx(qx−s,η(x−s,ζ)) 6= knx(qx+s,η(x+s,ζ)) and g(x− s)(nx) 6= g(x+ s)(nx).

Case 3: η′ = η(x − s, ζ) = η(x + s, ζ) and qx−s,η(x−s,ζ) = qx+s,η(x+s,ζ).
Then Z = {η ∈ wx−s : ζ ⊂ η}\{η(x−s, ζ)} = {η ∈ wx+s : ζ ⊂ η}\{η(x+s, ζ)}
is non-empty, since it contains η̂, and so ξ(x − s, ζ) = ξ(x + s, ζ) /∈ wx.
Therefore, as in Case 1, qx−s,ξ(x−s,ζ) + qx+s,ξ(x+s,ζ) = 0; so q0 = 0 separates
qx−s,ξ(x−s,ζ) and qx+s,ξ(x+s,ζ). Thus knx

(qx−s,ξ(x−s,ζ)) 6= knx
(qx+s,ξ(x+s,ζ))

and g(x− s)(nx) 6= g(x+ s)(nx).
This finishes the proof of (1).

Next, for every x ∈ R put δx = 2−nx . To finish the proof of the theorem it
is enough to show that every Ŝx defined for such a choice of δx is a subset of
a finite set

Zx = {s ∈ R : wx+s ⊂ wx & nx+s < nx} =

{∑
η∈wx

pηyη : pη ∈ {qj : j < nx}

}
.

Indeed, take an s ∈ Ŝx. Then, by (1) and the definition of the distance
function d, we have max{nx−s, nx+s} < nx. Notice also that if nx−s 6= nx+s,
say nx−s < nx+s, then g(x − s)(nx+s) = ∅ 6= g(x + s)(nx+s) implying that
d(g(x + s), g(x − s)) ≥ 2−nx+s > 2−nx = δx, which contradicts s ∈ Ŝx. So,
we have nx−s = nx+s. To prove that s ∈ Zx it is enough to show that
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wx+s ⊂ wx. But if it is not the case, then there exists an η ∈ wx+s \ wx.
Moreover, qx+s,η = −qx−s,η 6= 0 and η = η(x + s, ζ) = η(x − s, ζ), where
ζ = η � nx+s. In particular, q0 = 0 separates qx+s,η(x+s,ζ) and qx−s,η(x−s,ζ).
Therefore knx+s

(qx−s,η(x−s,ζ)) 6= knx+s
(qx+s,η(x+s,ζ)) and g(x − s)(nx+s) 6=

g(x+ s)(nx+s). So d(g(x+ s), g(x− s)) ≥ 2−nx+s > 2−nx = δx again contra-
dicting s ∈ Ŝx. Thus, wx+s ⊂ wx and s ∈ Zx.
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