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Abstract

What are necessary and sufficient conditions in order that a function
may be an indefinite integral in the Riemann sense? The problem has
been explicitly posed in a short note [3] published by Erik Talvila in
2008 in This Exchange. Since neither Erik nor I have been able to
find a solution in the literature I propose the following solution which is
the sole subject of the paper.

The easiest route to a conjecture that might work for this problem is to
compare it to a similar problem solved by Riesz [2] for functions of bounded
variation. In order for a function F : [a, b]→ R to be represented in the form

F (x) = C +
∫ x

a

f(t) dt (a ≤ x ≤ b)

for some constant C and for some function f that has bounded variation on
[a, b] it is necessary and sufficient that there is a constant K so that

n∑
i=1

∣∣∣∣F (ξi)− F (xi−1)
ξi − xi−1

− F (xi)− F (ξ′i)
xi − ξ′i

∣∣∣∣ ≤ K (1)

for every subdivision a = x0 < x1 < x2 < · · · < xn = b and every choice
of points xi−1 < ξi ≤ ξ′i < xi. This property has been labeled bounded slope
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variation and has received some attention by later authors. This is more often
expressed by placing a bound on the sums

n−1∑
i=1

∣∣∣∣F (xi+1)− F (xi)
xi+1 − xi

− F (xi)− F (xi−1)
xi − xi−1

∣∣∣∣ (2)

but the equivalent formulation here makes many computations more trans-
parent. For details connecting the two expressions (1) and (2), see Ene [1,
p. 719].

This characterization of Riesz, along with Riemann’s own characterization
of integrability, suggests a solution to the problem. Note that our condition (3)
is easily implied by the stronger condition (1).

Theorem 1. A necessary and sufficient condition in order for a function
F : [a, b]→ R to be representable in the form

F (x) = C +
∫ x

a

f(t) dt (a ≤ x ≤ b)

for some constant C and for some Riemann integrable function f on [a, b] is
that, for all ε > 0, a positive δ can be found so that

n∑
i=1

∣∣∣∣F (ξi)− F (xi−1)
ξi − xi−1

− F (xi)− F (ξ′i)
xi − ξ′i

∣∣∣∣ (xi − xi−1) < ε (3)

for every subdivision a = x0 < x1 < x2 < · · · < xn = b that is finer than δ
and every choice of associated points xi−1 < ξi ≤ ξ′i < xi.

Proof. For the proof that the condition is necessary let us suppose that F
is the indefinite integral of a Riemann integrable function f . Let ε > 0 and
choose δ > 0 so that

n∑
i=1

ωf ([xi−1, xi]) (xi − xi−1) < ε

for every subdivision a = x0 < x1 < x2 < · · · < xn = b that is finer than δ.
Here

ωf ([c, d]) = sup{|f(x)− f(y)| : x, y ∈ [c, d]}

is used to denote the oscillation of the function f on a closed interval [c, d].
Since f is Riemann integrable this is possible (indeed it is one of Riemann’s
own characterizations of integrability).
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Observe that, if s ≤ f(x) ≤ t on an interval [c, d], then

s− t ≤ F (ξ)− F (c)
ξ − c

− F (d)− F (ξ′)
d− ξ′

≤ t− s

for every c < ξ ≤ ξ′ < d. It follows that∣∣∣∣F (ξ)− F (c)
ξ − c

− F (d)− F (ξ′)
d− ξ′

∣∣∣∣ ≤ ωf ([c, d]).

Consequently, using a subdivision a = x0 < x1 < x2 < · · · < xn = b that is
finer than δ,

n∑
i=1

∣∣∣∣F (ξi)− F (xi)
ξi − xi

− F (xi)− F (ξ′i)
xi − ξ′i

∣∣∣∣ (xi − xi−1)

≤
n∑

i=1

ωf ([xi−1, xi]) (xi − xi−1) < ε

proving (3) for any choice of associated points xi−1 < ξi ≤ ξ′i < xi.
In the opposite direction we suppose ε > 0 and that δ > 0 has been chosen

so that the condition (3) is satisfied for such subdivisions.
First we claim that F is Lipschitz. The argument that bounded slope

variation implies Lipschitz is classical (cf. [1, p. 721]); this is closely related
but requires some different details. We note that F must be bounded, even
continuous, otherwise the condition (3) is easily violated. Suppose then that
|F (x)| < K for all x ∈ [a, b].

Fix a number 0 < t < δ. We work in the interval [a, b − t]. For any
x ∈ [a, b − t] we use the interval [x, x + t] and observe, for any 0 < h < t/2,
that ∣∣∣∣F (x+ h)− F (x)

h
− F (x+ t)− F (x+ t/2)

t/2

∣∣∣∣ (x+ t− x) < ε

because of the condition (3). Consequently∣∣∣∣F (x+ h)− F (x)
h

∣∣∣∣ < 4K + ε

t
.

This imposes a bound on all the right-hand derived numbers of the continuous
function F in the interval [a, b− t]. It follows that this bound also serves as a
Lipschitz constant for F in [a, b− t]. By identical arguments, working on the
left side, we can show that this same bound is a Lipschitz constant for F on
the interval [a+ t, b]. It follows that F is Lipschitz on [a, b].
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Since F is Lipschitz the derivative F ′(x) is a bounded function that exists
at all points x in a set D having full measure in [a, b] and F is an indefinite
integral for F ′ in the Lebesgue sense. We define f(x) = F (x) for x ∈ D and,
at points x not in D, we write

f(x) = inf
t>0

sup{F ′(y) : y ∈ D, |x− y| < t}.

Certainly

F (x) = C +
∫ x

a

f(t) dt (a ≤ x ≤ b) (4)

for some constant C, f is bounded and Lebesgue integrable. It remains only
for us to prove that f is in fact a Riemann integrable function. To prove this
we shall show that f is continuous at almost every point of [a, b]. It is enough
to check that f is continuous at almost every point of the set D since the
remaining points form a set of measure zero.

Let ωf (x) denote the oscillation of the function f at a point x; i.e.,

ωf (x) = inf
t>0

sup{|f(x+ h)− f(x)| : x+ h ∈ [a, b], |h| < t}.

The function f is continuous at a point x if and only if ωf (x) = 0. Thus
the collection of discontinuity points of f can be expressed as the union of an
increasing sequence of sets {Em} where

Em = {x ∈ [a, b] : ωf (x) > 1/m} (m = 1, 2, 3, . . . ).

We show that each |Em| = 0; i.e., that each is a set of Lebesgue measure zero.
For each x ∈ D∩Em we may choose a sequence of nonzero numbers hn → 0

so that
|f(x+ hn)− f(x)| ≥ 1/(2m).

By the way in which f was defined we may select these points so that x+ hn

are in D.
Thus for each point x that is in D ∩Em we may collect all the intervals of

the form [x, y] or [y, x] with length smaller than δ and for which y ∈ D and

|f(y)− f(x)| ≥ 1/(2m).

This must form a Vitali cover of D ∩ Em.
By Vitali’s theorem there is a disjoint collection [x1, y1], [x2, y2], . . . , [xp, yp]

chosen from the cover with the property that

|D ∩ Em| ≤
p∑

k=1

(yk − xk) + ε
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and 0 < yk − xk < δ and

|f(yk)− f(xk)| ≥ 1/(2m) (k = 1, 2, . . . , p).

For each k = 1, 2, . . . , p select points ξk, ξ′k with xk < ξk ≤ ξ′k < yk in such
a way that ∣∣∣∣F (ξk)− F (xk)

ξk − xk
− F ′(xk)

∣∣∣∣ < ε

and ∣∣∣∣F (yk)− F (ξ′k)
yk − ξ′k

− F ′(yk)
∣∣∣∣ < ε.

Now observe that

1
2m

(yk − xk) ≤ |f(yk)− f(xk)|(yk − xk) ≤∣∣∣∣F (ξk)− F (xk)
ξk − xk

− F ′(xk)
∣∣∣∣ (yk − xk) +

∣∣∣∣F (yk)− F (ξk)
yk − ξ′k

− F ′(yk)
∣∣∣∣ (yk − xk)

+
∣∣∣∣F (ξk)− F (xk)

ξk − xk
− F (yk)− F (ξk)

yk − ξ′k

∣∣∣∣ (yk − xk).

But
p∑

k=1

∣∣∣∣F (ξk)− F (xk)
ξk − xk

− F (yk)− F (ξk)
yk − ξ′k

∣∣∣∣ (yk − xk) < ε

by the assumed condition (3). (This isn’t a full subdivision of [a, b] but the
sum remains smaller than ε.)

The other inequalities we have imposed then show that

|D ∩ Em| ≤
p∑

k=1

(yk − xk) + ε ≤ (2m)ε[2 + 2(b− a)].

As this argument works for any ε > 0 it verifies the claim that |D ∩ Em| = 0
for each m. Thus the set of discontinuities of f in D have been expressed as
the union of a sequence of sets of measure zero.

In particular we now know that f is continuous at almost every point of
D and hence at almost every point of [a, b]. It is certainly bounded since F ′

is bounded by the Lipschitz constant for F . It follows that f is Riemann
integrable and the representation in (4) can be interpreted in the Riemann
sense.
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