Brian S. Thomson, Mathematics Department, Simon Fraser University, B.C., Canada V5A 1S6. email: thomson@sfu.ca

CHARACTERIZATIONS OF AN INDEFINITE RIEMANN INTEGRAL

Dedicated to Stefan Schwabik (1941-2009).

Abstract

What are necessary and sufficient conditions in order that a function may be an indefinite integral in the Riemann sense? The problem has been explicitly posed in a short note [3] published by Erik Talvila in 2008 in This Exchange. Since neither Erik nor I have been able to find a solution in the literature I propose the following solution which is the sole subject of the paper.

The easiest route to a conjecture that might work for this problem is to compare it to a similar problem solved by Riesz [2] for functions of bounded variation. In order for a function $F:[a, b] \rightarrow \mathbb{R}$ to be represented in the form

$$
F(x)=C+\int_{a}^{x} f(t) d t \quad(a \leq x \leq b)
$$

for some constant C and for some function f that has bounded variation on $[a, b]$ it is necessary and sufficient that there is a constant K so that

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\frac{F\left(\xi_{i}\right)-F\left(x_{i-1}\right)}{\xi_{i}-x_{i-1}}-\frac{F\left(x_{i}\right)-F\left(\xi_{i}^{\prime}\right)}{x_{i}-\xi_{i}^{\prime}}\right| \leq K \tag{1}
\end{equation*}
$$

for every subdivision $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$ and every choice of points $x_{i-1}<\xi_{i} \leq \xi_{i}^{\prime}<x_{i}$. This property has been labeled bounded slope

[^0]variation and has received some attention by later authors. This is more often expressed by placing a bound on the sums
\[

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left|\frac{F\left(x_{i+1}\right)-F\left(x_{i}\right)}{x_{i+1}-x_{i}}-\frac{F\left(x_{i}\right)-F\left(x_{i-1}\right)}{x_{i}-x_{i-1}}\right| \tag{2}
\end{equation*}
$$

\]

but the equivalent formulation here makes many computations more transparent. For details connecting the two expressions (1) and (2), see Ene [1, p. 719].

This characterization of Riesz, along with Riemann's own characterization of integrability, suggests a solution to the problem. Note that our condition (3) is easily implied by the stronger condition (1).

Theorem 1. A necessary and sufficient condition in order for a function $F:[a, b] \rightarrow \mathbb{R}$ to be representable in the form

$$
F(x)=C+\int_{a}^{x} f(t) d t \quad(a \leq x \leq b)
$$

for some constant C and for some Riemann integrable function f on $[a, b]$ is that, for all $\epsilon>0$, a positive δ can be found so that

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\frac{F\left(\xi_{i}\right)-F\left(x_{i-1}\right)}{\xi_{i}-x_{i-1}}-\frac{F\left(x_{i}\right)-F\left(\xi_{i}^{\prime}\right)}{x_{i}-\xi_{i}^{\prime}}\right|\left(x_{i}-x_{i-1}\right)<\epsilon \tag{3}
\end{equation*}
$$

for every subdivision $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$ that is finer than δ and every choice of associated points $x_{i-1}<\xi_{i} \leq \xi_{i}^{\prime}<x_{i}$.

Proof. For the proof that the condition is necessary let us suppose that F is the indefinite integral of a Riemann integrable function f. Let $\epsilon>0$ and choose $\delta>0$ so that

$$
\sum_{i=1}^{n} \omega_{f}\left(\left[x_{i-1}, x_{i}\right]\right)\left(x_{i}-x_{i-1}\right)<\epsilon
$$

for every subdivision $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$ that is finer than δ. Here

$$
\omega_{f}([c, d])=\sup \{|f(x)-f(y)|: x, y \in[c, d]\}
$$

is used to denote the oscillation of the function f on a closed interval $[c, d]$. Since f is Riemann integrable this is possible (indeed it is one of Riemann's own characterizations of integrability).

Observe that, if $s \leq f(x) \leq t$ on an interval $[c, d]$, then

$$
s-t \leq \frac{F(\xi)-F(c)}{\xi-c}-\frac{F(d)-F\left(\xi^{\prime}\right)}{d-\xi^{\prime}} \leq t-s
$$

for every $c<\xi \leq \xi^{\prime}<d$. It follows that

$$
\left|\frac{F(\xi)-F(c)}{\xi-c}-\frac{F(d)-F\left(\xi^{\prime}\right)}{d-\xi^{\prime}}\right| \leq \omega_{f}([c, d])
$$

Consequently, using a subdivision $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$ that is finer than δ,

$$
\begin{gathered}
\sum_{i=1}^{n}\left|\frac{F\left(\xi_{i}\right)-F\left(x_{i}\right)}{\xi_{i}-x_{i}}-\frac{F\left(x_{i}\right)-F\left(\xi_{i}^{\prime}\right)}{x_{i}-\xi_{i}^{\prime}}\right|\left(x_{i}-x_{i-1}\right) \\
\quad \leq \sum_{i=1}^{n} \omega_{f}\left(\left[x_{i-1}, x_{i}\right]\right)\left(x_{i}-x_{i-1}\right)<\epsilon
\end{gathered}
$$

proving (3) for any choice of associated points $x_{i-1}<\xi_{i} \leq \xi_{i}^{\prime}<x_{i}$.
In the opposite direction we suppose $\epsilon>0$ and that $\delta>0$ has been chosen so that the condition (3) is satisfied for such subdivisions.

First we claim that F is Lipschitz. The argument that bounded slope variation implies Lipschitz is classical (cf. [1, p. 721]); this is closely related but requires some different details. We note that F must be bounded, even continuous, otherwise the condition (3) is easily violated. Suppose then that $|F(x)|<K$ for all $x \in[a, b]$.

Fix a number $0<t<\delta$. We work in the interval $[a, b-t]$. For any $x \in[a, b-t]$ we use the interval $[x, x+t]$ and observe, for any $0<h<t / 2$, that

$$
\left|\frac{F(x+h)-F(x)}{h}-\frac{F(x+t)-F(x+t / 2)}{t / 2}\right|(x+t-x)<\epsilon
$$

because of the condition (3). Consequently

$$
\left|\frac{F(x+h)-F(x)}{h}\right|<\frac{4 K+\epsilon}{t}
$$

This imposes a bound on all the right-hand derived numbers of the continuous function F in the interval $[a, b-t]$. It follows that this bound also serves as a Lipschitz constant for F in $[a, b-t]$. By identical arguments, working on the left side, we can show that this same bound is a Lipschitz constant for F on the interval $[a+t, b]$. It follows that F is Lipschitz on $[a, b]$.

Since F is Lipschitz the derivative $F^{\prime}(x)$ is a bounded function that exists at all points x in a set D having full measure in $[a, b]$ and F is an indefinite integral for F^{\prime} in the Lebesgue sense. We define $f(x)=F(x)$ for $x \in D$ and, at points x not in D, we write

$$
f(x)=\inf _{t>0} \sup \left\{F^{\prime}(y): y \in D,|x-y|<t\right\}
$$

Certainly

$$
\begin{equation*}
F(x)=C+\int_{a}^{x} f(t) d t \quad(a \leq x \leq b) \tag{4}
\end{equation*}
$$

for some constant C, f is bounded and Lebesgue integrable. It remains only for us to prove that f is in fact a Riemann integrable function. To prove this we shall show that f is continuous at almost every point of $[a, b]$. It is enough to check that f is continuous at almost every point of the set D since the remaining points form a set of measure zero.

Let $\omega_{f}(x)$ denote the oscillation of the function f at a point x; i.e.,

$$
\omega_{f}(x)=\inf _{t>0} \sup \{|f(x+h)-f(x)|: x+h \in[a, b],|h|<t\}
$$

The function f is continuous at a point x if and only if $\omega_{f}(x)=0$. Thus the collection of discontinuity points of f can be expressed as the union of an increasing sequence of sets $\left\{E_{m}\right\}$ where

$$
E_{m}=\left\{x \in[a, b]: \omega_{f}(x)>1 / m\right\} \quad(m=1,2,3, \ldots)
$$

We show that each $\left|E_{m}\right|=0$; i.e., that each is a set of Lebesgue measure zero.
For each $x \in D \cap E_{m}$ we may choose a sequence of nonzero numbers $h_{n} \rightarrow 0$ so that

$$
\left|f\left(x+h_{n}\right)-f(x)\right| \geq 1 /(2 m)
$$

By the way in which f was defined we may select these points so that $x+h_{n}$ are in D.

Thus for each point x that is in $D \cap E_{m}$ we may collect all the intervals of the form $[x, y]$ or $[y, x]$ with length smaller than δ and for which $y \in D$ and

$$
|f(y)-f(x)| \geq 1 /(2 m)
$$

This must form a Vitali cover of $D \cap E_{m}$.
By Vitali's theorem there is a disjoint collection $\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right], \ldots,\left[x_{p}, y_{p}\right]$ chosen from the cover with the property that

$$
\left|D \cap E_{m}\right| \leq \sum_{k=1}^{p}\left(y_{k}-x_{k}\right)+\epsilon
$$

and $0<y_{k}-x_{k}<\delta$ and

$$
\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right| \geq 1 /(2 m) \quad(k=1,2, \ldots, p)
$$

For each $k=1,2, \ldots, p$ select points $\xi_{k}, \xi_{k}^{\prime}$ with $x_{k}<\xi_{k} \leq \xi_{k}^{\prime}<y_{k}$ in such a way that

$$
\left|\frac{F\left(\xi_{k}\right)-F\left(x_{k}\right)}{\xi_{k}-x_{k}}-F^{\prime}\left(x_{k}\right)\right|<\epsilon
$$

and

$$
\left|\frac{F\left(y_{k}\right)-F\left(\xi_{k}^{\prime}\right)}{y_{k}-\xi_{k}^{\prime}}-F^{\prime}\left(y_{k}\right)\right|<\epsilon
$$

Now observe that

$$
\begin{gathered}
\frac{1}{2 m}\left(y_{k}-x_{k}\right) \leq\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|\left(y_{k}-x_{k}\right) \leq \\
\left|\frac{F\left(\xi_{k}\right)-F\left(x_{k}\right)}{\xi_{k}-x_{k}}-F^{\prime}\left(x_{k}\right)\right|\left(y_{k}-x_{k}\right)+\left|\frac{F\left(y_{k}\right)-F\left(\xi_{k}\right)}{y_{k}-\xi_{k}^{\prime}}-F^{\prime}\left(y_{k}\right)\right|\left(y_{k}-x_{k}\right) \\
+\left|\frac{F\left(\xi_{k}\right)-F\left(x_{k}\right)}{\xi_{k}-x_{k}}-\frac{F\left(y_{k}\right)-F\left(\xi_{k}\right)}{y_{k}-\xi_{k}^{\prime}}\right|\left(y_{k}-x_{k}\right)
\end{gathered}
$$

But

$$
\sum_{k=1}^{p}\left|\frac{F\left(\xi_{k}\right)-F\left(x_{k}\right)}{\xi_{k}-x_{k}}-\frac{F\left(y_{k}\right)-F\left(\xi_{k}\right)}{y_{k}-\xi_{k}^{\prime}}\right|\left(y_{k}-x_{k}\right)<\epsilon
$$

by the assumed condition (3). (This isn't a full subdivision of $[a, b]$ but the sum remains smaller than ϵ.)

The other inequalities we have imposed then show that

$$
\left|D \cap E_{m}\right| \leq \sum_{k=1}^{p}\left(y_{k}-x_{k}\right)+\epsilon \leq(2 m) \epsilon[2+2(b-a)]
$$

As this argument works for any $\epsilon>0$ it verifies the claim that $\left|D \cap E_{m}\right|=0$ for each m. Thus the set of discontinuities of f in D have been expressed as the union of a sequence of sets of measure zero.

In particular we now know that f is continuous at almost every point of D and hence at almost every point of $[a, b]$. It is certainly bounded since F^{\prime} is bounded by the Lipschitz constant for F. It follows that f is Riemann integrable and the representation in (4) can be interpreted in the Riemann sense.

References

[1] V. Ene, Riesz type theorems for general integrals, Real Anal. Exchange, 22(2) (1997), 714-733.
[2] F. Riesz, Sur certain systèmes singulier d'equations intégrales, Annales de L'École Norm. Sup., Paris (3) 28 (1911), 33-62.
[3] E. Talvila, Characterizing integrals of Riemann integrable functions, Real Anal. Exchange, 33(2) (2007), 487-488.

[^0]: Mathematical Reviews subject classification: Primary: 26A42, 26A16
 Key words: Riemann integral, Lebesgue integral, indefinite integral, bounded slope variation

 Received by the editors January 31, 2010
 Communicated by: Paul Humke

