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Abstract

What are necessary and sufficient conditions in order that a function
may be an indefinite integral in the Riemann sense? The problem has
been explicitly posed in a short note [3] published by Erik Talvila in
2008 in THIS EXCHANGE. Since neither Erik nor I have been able to
find a solution in the literature I propose the following solution which is
the sole subject of the paper.

The easiest route to a conjecture that might work for this problem is to
compare it to a similar problem solved by Riesz [2] for functions of bounded
variation. In order for a function F': [a,b] — R to be represented in the form

F(x):C’+/xf(t)dt (a<z<b)

for some constant C' and for some function f that has bounded variation on
[a,b] it is necessary and sufficient that there is a constant K so that

| F(&) — Fx— F(x;) — F(&
So|F(E) = Flam) Pl = FIE)| o "
= & — Ti Ti — ﬁi

for every subdivision a = x¢p < 1 < x2 < --- < z, = b and every choice

of points x;_1 < & < & < x;. This property has been labeled bounded slope
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variation and has received some attention by later authors. This is more often
expressed by placing a bound on the sums

e e == ®

but the equivalent formulation here makes many computations more trans-
parent. For details connecting the two expressions (1) and (2), see Ene [1,
p. 719].

This characterization of Riesz, along with Riemann’s own characterization
of integrability, suggests a solution to the problem. Note that our condition (3)
is easily implied by the stronger condition (1).

Theorem 1. A necessary and sufficient condition in order for a function
F :[a,b] — R to be representable in the form

F(x):C+/xf(t)dt (a<z<b)

for some constant C and for some Riemann integrable function f on [a,b] is
that, for all € > 0, a positive § can be found so that

~|F(&) — F(wi—1)  F(x;) — F(&)
_ i (x — i) < € 3
; & —Ti x; — & ( ) ®)
for every subdivision a = xg < 1 < T3 < -+ < x, = b that is finer than ¢

and every choice of associated points x;_1 < & < &} < x;.

PROOF. For the proof that the condition is necessary let us suppose that F'
is the indefinite integral of a Riemann integrable function f. Let ¢ > 0 and
choose § > 0 so that

wa([xz'—h%]) (Ti —wi—1) <e

for every subdivision a = zo < 1 < 3 < -+ < x, = b that is finer than ¢.
Here

wy([e, d]) = sup{[f () = f(y)] : z, y € [c, d]}

is used to denote the oscillation of the function f on a closed interval [, d].
Since f is Riemann integrable this is possible (indeed it is one of Riemann’s
own characterizations of integrability).
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Observe that, if s < f(z) <t on an interval [c, d], then

F) - F(e)  Fd) - F()

s—t< ¢ ¢ <t—s
for every ¢ < £ < & < d. Tt follows that
F(§) —F(c) F(d)—F()
FE=0  HE=EE <.
Consequently, using a subdivision a = z¢p < 1 < T3 < -+ < z, = b that is
finer than ¢,
| F(&) = Fxi)  F(zi) = F(&)
S| HE ) Ao = P oy )

< wa([l“i—l,ﬂﬁi]) (T —xi1) <€

proving (3) for any choice of associated points z;,_1 < & < &} < ;.

In the opposite direction we suppose € > 0 and that 6 > 0 has been chosen
so that the condition (3) is satisfied for such subdivisions.

First we claim that F' is Lipschitz. The argument that bounded slope
variation implies Lipschitz is classical (cf. [1, p. 721]); this is closely related
but requires some different details. We note that F' must be bounded, even
continuous, otherwise the condition (3) is easily violated. Suppose then that
|F(z)| < K for all x € [a, b].

Fix a number 0 < ¢ < 6. We work in the interval [a,b — ¢]. For any
x € [a,b— t] we use the interval [x,x + ¢] and observe, for any 0 < h < t/2,
that

Fx+h)—F(x) Flz+t)—F(x+t/2)
’ Y - 72 ‘(x+tx)<e

because of the condition (3). Consequently

4K + €
< ; .

‘F(x—i—h)—F(x)
h

This imposes a bound on all the right-hand derived numbers of the continuous
function F' in the interval [a, b — ¢]. It follows that this bound also serves as a
Lipschitz constant for F in [a,b — t]. By identical arguments, working on the
left side, we can show that this same bound is a Lipschitz constant for F' on
the interval [a + ¢, b]. It follows that F' is Lipschitz on [a, b].
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Since F is Lipschitz the derivative F’(z) is a bounded function that exists
at all points x in a set D having full measure in [a,b] and F is an indefinite
integral for F’ in the Lebesgue sense. We define f(x) = F(z) for x € D and,
at points x not in D, we write

f(z) = inf sup{F'(y) :y € D, |z —y| < t}.

Certainly .
F(I):C+/ f)dt (a<ax<b) (4)

for some constant C, f is bounded and Lebesgue integrable. It remains only
for us to prove that f is in fact a Riemann integrable function. To prove this
we shall show that f is continuous at almost every point of [a, b]. It is enough
to check that f is continuous at almost every point of the set D since the
remaining points form a set of measure zero.

Let wy(z) denote the oscillation of the function f at a point z; i.e.,

wp(e) = inf sup{| (2 +B) = ()] -+ D € [o,B], [B] < t}.

The function f is continuous at a point z if and only if w¢(z) = 0. Thus
the collection of discontinuity points of f can be expressed as the union of an
increasing sequence of sets {F,, } where

En={z€a,b] :ws(x)>1/m} (m=1,2,3,...).

We show that each |Ey,| = 0; i.e., that each is a set of Lebesgue measure zero.
For each x € DNE,, we may choose a sequence of nonzero numbers h,, — 0
so that

[f (@ + hp) = fz)| 2 1/(2m).
By the way in which f was defined we may select these points so that x + h,,
are in D.
Thus for each point x that is in D N E,,, we may collect all the intervals of
the form [z,y] or [y, z] with length smaller than ¢ and for which y € D and

[f(y) = f(2)| = 1/(2m).

This must form a Vitali cover of D N E,,.
By Vitali’s theorem there is a disjoint collection [z1, y1], [z2,¥2], - - -, [Zp, Yp]
chosen from the cover with the property that

p
DN En| <> (ye — k) + €
k=1
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and 0 < yr — xx < 0 and

For each k =1,2,...,p select points &, &, with z) < & < & < y in such
a way that

F(§k) — Fxr)
‘ fk—xk —F(l’k)‘<€
and
Fyw) — F(&) .
PO =) )| <e
Now observe that
5 — 7)< L) = Flonl e — 72) <
‘w — F'(2p) | (yr — k) + ’w — F'(yk)| (yr — k)
k— Tk Yk — &,
F(&) — Fae)  Fye) — F(&) .
= wo—g |
But
| F(&) — Far)  Fye) — F(&) N
2| a—m wog | TS

k=1
by the assumed condition (3). (This isn’t a full subdivision of [a,b] but the

sum remains smaller than e.)
The other inequalities we have imposed then show that

DN Ep| <Y (ye — k) + € < (2m)e[2+ 2(b — a)].
k=1

As this argument works for any € > 0 it verifies the claim that |D N E,,| =0
for each m. Thus the set of discontinuities of f in D have been expressed as
the union of a sequence of sets of measure zero.

In particular we now know that f is continuous at almost every point of
D and hence at almost every point of [a,b]. It is certainly bounded since F’
is bounded by the Lipschitz constant for F. It follows that f is Riemann
integrable and the representation in (4) can be interpreted in the Riemann
sense. O
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