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WEAK TYPE INEQUALITY FOR
LOGARITHMIC MEANS OF
WALSH-KACZMARZ-FOURIER SERIES

Abstract

The main aim of this paper is to prove that the Norlund logarithmic
means tp, f of one-dimensional Walsh-Kaczmarz-Fourier series is weak
type (1,1), and this fact implies that ¢, f converges in measure on I for
every function f € L(I) and t}; ,,, f converges in measure on I for every
function f € Lln™ L(I?).

Moreover, the maximal Orlich space such that Noérlund logarithmic
means of two-dimensional Walsh-Kaczmarz-Fourier series for the func-
tions from this space converge in two-dimensional measure is found.

1 Introduction.

In 1948 Sneider [18] showed that the inequality

DKZ
lim sup Dulx) >C>0

n—oo logmn
holds a.e. for the Walsh-Kaczmarz Dirichlet kernel. This inequality shows
that the behavior of the Walsh-Kaczmarz system is worse than the behavior
of the Walsh system in the Paley enumeration. This “spreadness” property of
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the kernel makes it easier to construct examples of divergent Fourier series [1].
On the other hand, Schipp [13] and Young [20] in 1974 proved that the Walsh-
Kaczmarz system is a convergence system. Skvortsov in 1981 [17] showed
that the Fejér means with respect to the Walsh-Kaczmarz system converge
uniformly to f for any continuous function f. For any integrable function
Gat [2] proved that the Fejér means with respect to the Walsh-Kaczmarz
system converge almost everywhere to the function. Recently, Gat’s result
was generalized by Simon [15, 16].

The partial sums S¥(f) of the Walsh-Fourier series of a function f €
L(I), I =10,1) converge in measure on I [5]. The condition f € LIn™ L(I?)
provides convergence in measure on I? of the rectangular partial sums Sy m(f)
of double Walsh-Fourier series [21]. The first example of a function from classes
wider than LIn™ L(I?) with S, (f) divergent in measure on I? was obtained
in [4, 10]. Moreover, in [19] Tkebuchava proved that in each Orlicz space
wider than Lln™ L(I?) the set of functions which quadratic Walsh-Fourier
sums converge in measure on I? is of first Baire category (see Goginava [8] for
Walsh-Kaczmarz series).

The main aim of this paper is to prove that the Norlund logarithmic means
tf f of one-dimensional Walsh-Kaczmarz-Fourier series is weak type (1,1), and
this fact implies that ¢ f converges in measure on I for every function f € L(I)
and ty ,, f converges in measure on [ 2 for every function f € LIn™ L(I?).
On the other hand, the logarithmic means ty; ,, f of the double Fourier series
with respect to Walsh-Kaczmarz system does not improve the convergence
in measure. In particular, we prove that for any Orlicz space, which is not
a subspace of LIn™ L(I?), the set of the functions that quadratic logarithmic
means of the double Fourier series with respect to the Walsh-Kaczmarz system
converge in measure is of first Baire category.

At last, we note that the Walsh-Norlund logarithmic means are closer to
the partial sums than to the classical logarithmic means or the Fejér means.
Namely, it was proved that there exists a function in a certain class of functions
and a set with positive measure, such that the Walsh-Norlund logarithmic
means of the function diverge on the set [3].

2 Definitions and Notations.

We denote the set of non-negative integers by N.

By a dyadic interval in I := [0,1) we mean one of the form |, p;;l) for
some p € N, 0 < p < 2" Givenn € N and z € [0,1), let I,(z) denote the

dyadic interval of length 27" which contains the point x.
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Every point z € I can be written in the following way:

o0

Tk
T = Z ST = (20, X150y Ty ), € {0,1}.
k=0

In the case when there are two different forms we choose the one for which

klim x, = 0.
Denote
1
€= g = ©,...,0,z; =1,0,...)

It is well-know that [5]

p pt+1
I, (zg,...,xpn—1) = I (x) = [Qn, on ) ,

where
n—1
p= E xj2"*1*J.
j=0

We denote by L° = L°(I?) the Lebesgue space of functions that are mea-
surable and finite almost everywhere on I? = [0,1) x [0,1). u(A) is the
Lebesgue measure of the set A C I?. The constants appearing in this article
are denoted by c.

Let Ly = L (I?) be the Orlicz space [11] generated by Young function ®;
i.e. ® is a convex, continuous, even function such that ®(0) = 0 and

P
lim =400, lim ﬂ
u— 400 u u—0 U

=0.

This space is endowed with the norm

Flzagrny =int {5 >0: [ 0@l /0) dody <1}

In particular, if ®(u) = wln(l + u), u > 0, then the corresponding space
will be denoted by L1In L(I?).
Let g (z) be a function defined by

wor={ b HIEB e -no

The Rademacher system is defined by

o (x) =19 (2"2), n>0andx€]0,1).
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Let wg,ws, ... represent the Walsh functions; i.e. wg(x) =1 and if k =
2™t ... 4 27 i a positive integer with nqy > ng > --- > ng > 0 then
wi () =1, (2) -1, (2).
The Walsh-Kaczmarz functions are defined by kg := 1 and for n > 1

ni—1

k(@) = 1oy (@) T (ray—ami (@)™

k=0

For A € N and z € I define the transformation 74 : I — I by

BS

TA(:C) = $A,k,127(k+1) + Z 1’j27(j+1).
0 Jj=A

E
I

By the definition of 74 we have (see [17])
En(x) = 1y (2)wpn—am (Tr, () (n € N,z € 1).

The Dirichlet kernels are defined by

Dy (z) == iak(x),
k=0

where o), = wy, or K.
It is well-known that [5, 17]

Dy () = Dami (x) + wans (2) Doy (T, (2)) (1)

and
Dy (x) = Dam (z) + wom () Dy_gny (2) (2)

Recall that

Dao(o) = Do) = D) = { 20 HEERIT) @)

The Fejér means of the Walsh-(Kaczmarz-)Fourier series of function f is
given by the equality

S5 (f,x),

S|

o (frx) =

n
=0
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where

S5 (f,x) = f (F)ak(@).

T‘FM|

f*(n) :== [ fa, (ne€N) is said to be the nth Walsh-(Kaczmarz-)Fourier

1
coefficient of f.
The Norlund logarithmic (simply we say logarithmic) means and kernels
of one dimensional Walsh-(Kaczmarz-)Fourier series are defined as follows

182 S (f, 1=
tn (fx) = I Z n(jk>’ TZ_:

k=1

where
n—1 1
ln = 7
> %
k=1

The Kronecker product (., : n,m € N) of two Walsh(-Kaczmarz) sys-
tems is said to be the two-dimensional Walsh(-Kaczmarz) system. Thus,

Am,n (.’1?7 y) = Qn (3?) Qn (y) :
If fel (12) , then the number f* (m,n) = [ famn (n,m € N) is said
12
to be the (m, n)th Walsh-(Kaczmarz-)Fourier coefficient of f.

The rectangular partial sums of double Fourier series with respect to the
Walsh(-Kaczmarz) system are defined by

St () = 3 3 77 st ).

The logarithmic means of double Walsh-(Kaczmarz-)Fourier series is de-
fined as follows

tnm(f7x7y) =

It is evident that
1
o (Frasy) / (x @ty ®s)— f (2,y)|FS () F (s) dt ds,
0

where @ denotes the dyadic addition [14].



450 USHANGI GOGINAVA AND KAROLY NAGY

3 Main Results.
The main results of this paper are presented in the following propositions.
Theorem 1. Let A >0 and f € L(I). Then

Apfz e I: |ty (f,x)] > A} <<l fly

and ¢ is an absolute constant independent of n and f.

Corollary 1. Let 0 < p < 1. Then for f € Llnt L(I?)

a)
1/p

/|t (f,2,9)[" dedy gc,,/\f(x,y>|1n+\f(x,y>|dxdy+cp
2 72

b)
/|t (f,z,y) — f(x,y)|pdxdy—>0 as m, m — oo.
12

Corollary 2. Let f € LIn™ L(I?). Then
a)

w{@y) € 2|t (fray) > A < £ /\fxy|1n+|f(xy)ld:vdy+c

b)

|t (f,z,y) — f(x,y)| — 0 in measure on I?, asn,m — oo.

Classical regular summation methods often improve the convergence of
Walsh-Fourier series. For instance, the Fejér means oy, . f of the two-dimen-
sional Walsh-Fourier series of the function f € L(I) converge in L(I) norm to
the function f, as n,m — oco. In [7] the method of Norlund logarithmic means
tv . f was investigated, which is weaker than the Cesaro method of any positive
order and it was proved that the class LIn™ L(I?) provides convergence in
measure of logarithmic means of two-dimensional Walsh-Fourier series. It was
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also proved ([6]) that in each Orlicz space wider than LIn™ L(I?) the set of
functions which quadratic Walsh-Fourier sums converge in measure on I2 is of
first Baire category.

Now, we show that the logarithmic means ¢, . f of the double Fourier series
with respect to the Walsh-Kaczmarz system does not improve the convergence
in measure. In particular, we prove the following theorem

Theorem 2. Let Lg(I?) be an Orlicz space, such that

Lo(I*) € LIn LT (I?).
Then the set of the functions from the Orlicz space Lo (I?) with quadratic

logarithmic means of the Fourier series with respect to the Walsh-Kaczmarz
system converge in measure on I* is of first Baire category in Lg(I?).

Corollary 3. Let ¢ : [0,00[— [0,00[ be a nondecreasing function satisfying
the condition

o(z) = oz log z)
for x — +o0. Then there exists a function f € L(I?) such that

)
| s do dy < o

b) the quadratic logarithmic means of the Walsh-Kaczmarz-Fourier series
of f diverges in measure on I2.

4 Auxiliary Results.

It is well-known [5, 14] for the Dirichlet kernel function that
w 1
‘Dn (l‘)‘ < ;
for any 0 < < 1. Then for these z’s we also get

1
Fw < =,
P2 @) < =
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where n € N is a nonnegative integer. The following lower bound is also well-
known for the Walsh-Paley-Dirichlet kernel functions. Let py = 224 + --- +
22 + 29 (A € N). Then for any 272471 <2 < 1 and A € N we have

1
4z’

This inequality plays a prominent role in the proofs of some divergence
results concerning the partial sums of the Fourier series. Then it seems that
it would be useful to get a similar inequality also for the logarithmic kernels.
In [6] the first author, Gdt and Tkebuchava proved the inequality

log(1/x)

EY > c———=
By @) 2 et L

1Dy, ()] 2

forall 1 < A € N, but not for every x in the interval (0,1). We have an excep-
tional set, such that it is “rare around zero”. For ¢t = tg,tqg + 1,...,24,tg =

L, - 1,
inf{t : L% —215J > 1} set ¢ = L% —215J (where |u]| denotes
the lower integral part of u), and we take a “small part” of the interval
I\ I;41 = [2771,27%). This way we define the intervals

7 - 1 1 1
t | ot1 ot + o+t )

We define the exceptional set as:

J = D Ji.

t=to

The following are proved:

Lemma 1 (Gét, Goginava, Tkebuchava [6]). For z € (272471,1)\ J we have

Fo ()] > (B0/)

zlogpa

Corollary 4 (Gét, Goginava, Tkebuchava [6]). For z € (272471,274) \J we
have the estimation |F)’ (x)] > £.

Lemma 2 (Gét, Goginava, Tkebuchava [6]). Let Lg be an Orlicz space and let
¢ :[0,00) — [0,00) be a measurable function with condition ¢ (x) = o (P (x))
as x — oo. Then there exists an Orlicz space Ly, such that w (z) = o (P (z))
as © — 00, and w (x) > ¢ (x) forx > ¢ > 0.
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Now, for the Walsh-Kaczmarz logarithmic kernels we will prove the follow-
ing:

Lemma 3. Let x € Ioa (1,21,...,204-1,1,1,0,...,0) = I}, .t = 2,3,..., A.
Then
| |>cA22A ¢

PROOF. Set x € I} ,. Let

Gy, (%) =1, B (x)

PA~ pa

for « = w or k. Thus, we have
22A pA*l

D¥ (x Df (x
GZA(w)=Z—jE).+ > 7J£).::I+II. (4)

=1 pa—J je22A 41 pra—1J

First, by the help of (1) we discuss II.
1

PA—1— Dj+22A( )

= Z pPA-1—]

Jj=1

= lpa 1 Do2a (2) + 124 (2) G, (124 (7)) .

If z € I} ,, then (see (3))

D22A (x) =0
and
Toa () =(0,...,0,1, 1,24 1,...,21,20 = 1, 224,...).
Moreover, by Lemma 1 we have
11| = |Gy, (raa (2))] 2 e (24— 1) 2247, (5)

Now, we discuss I. We use the equation (1)

24—12*1 1 D”

=2 2

— ]2’

D22A (.’L’)
pa— ] pPa-1

1
2A-12 lD

?_,_21 ) D22A (2)
N Z Z Pa—J— 2"

=0 j=0 PA-1

2471271 Dy (@) + 74 (x) DY (7i(w))
= Z pa—j—2 .

=0 j=0
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Since, 29 =1, Dy () =0 for all [ > 1. Thus,

1
2A—-12—1 7‘1 Dw (13))

’ (6)
— i _ol
= j=o Pa—J—2
24—
pa—1 Z:
We use Abel’s transformation for I; (I > 1)
2! -2 1 1
I = _ KW
e ; (PA—j—2l pa—j—2 —1)J 7 ()
7] (iL’) (QZ _ ]_) K;ll)_l (Tl(x)) g
A2 41 = A+
‘ 2'—1
1< 55x 3 |KY ()]
j=1
Since, ([14])
n|KY (x Z Z 9i (¥ +e;) for 27t < < 2™, (7)
J=0  i=j
and for I} we can write
2m 1

Ifz1!_24AZ > K (@)

m1j2ml

l m—1 m—1
< 24% Z om <Z 2% Z Doq (Tl(x) + €S)>

s=0 q=s
21 -1 —

< 217 - 2SZD2q () + es)
Since, Don < 2™ and t < A we obtain that

t42 t42

93t
Z 1] < 24A Zle Som <6 (8)
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By the inequality (7) we obtain again

-1 -

1
C S
7] < 52z D20 Dao (mi() +es)
s=0 q=s

and
t+2 t+2

E |12\<L§221<&2t<c (9)
L= 924 = 924 =7
=0 =0

Let t+2 <1 < 2A. Then we have
7(z) =(0,...,0, 1,1, 24—1,...,21,1,0,...,0,294,...).
Hence,

_ 0, ifs>l—tor0<s<l—t—1,g>s,
D20(Tl(l’)+es)—{ 23’ lfogsgl—t—l,qzs,

SO we can write

241 o 2AT1 it
1 1 2
Do <gm > o2 ) 2
I=t+3 I=t+3  s=0
o A .
31-2¢ 6A—2t 24—t
324722 < a2 < 224t (10)
I=t+3
24-1 o ZAZlil
2 2 24-2t 24—t
Z|Il|§22—AZ 2% <2 < 2%t (11)
I1=t+3 I=t+3 s=0
Combining (4)-(11) we complete the proof of Lemma 3. O

During the proof of Theorem 1 we will use the following Lemma:

Lemma 4 (Gat, Goginava, Tkebuchava [7]). Let A > 0 and f € L*(I). Then

Az € L[t (f,x)] > A} <cllfl,

where ¢ is an absolute constant independent of n and f.
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5 Proofs of the Theorems.
PROOF OF THEOREM 1. Define the maximal function f* by

f* = sup |San f|.

nepP

It is well-known that f* is of weak type (1,1). During the proof of Theorem 1
we will use the equation (1) and

5a_;(x) = Doa (@) —waa_1 () DY (Ta—1(z)), j=0,1,...247"  (12)

(see [12]).
For n € P set n; := A € N (that is, 24 < n < 24+1). To prove Theorem
1 we decompose the kernel F¥ in the following way:

n=l e 24-1 1 Dr 241 Dr =l e
Ko ko _ k k k
lnFn_Zn—k_ Z n—kJr Z n—k:Jan—k:
k=1 k=1 k=24-1 k=24

= [, (F™ 4 FR2 4 FrR3),

First, we discuss f x F/*!. The equation (1) and Abel’s transformation imme-
diately give

A—22kt1 A—22F_1 Dr
FK 1 2k 41
=D D D) B P
k=0 [=2k k=0 1=0
A-2 2k_q A—22F_1
1 ’I”ka O Tk
= D - l
2 n—2k—l+zzn—2k—l
k=0 1=0 k=0 1=0
A—2
= DQ’C (lnf2k+1 - ln72k+1+1)
k=0
A—22F_2 1
w
+k0§<n—2’f n—2k—l—1)rlel O Tk

+ Z e 2k+1 n 17“;6](;‘271 o Tk
(R EE g )

This means that
|f * Fyptt <ef*. (13)
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The equation (see [5])
1 (e o) ln < ([ fllallridSe? o melly < I[FIIEG < ell £l

immediately gives

A—22F_
e < W (S L) g,
! T ek A
and s
— 2k 1
Frel3 <C||f||1 < )
7 Bt < =05 ey < el

Second, to discuss f * F'*? we use equation (12).

A—1
lanm _ 22 D3,
" —~ n-— 24 4+ 1
2A71 2A71
_ Z Dya _ Z Woa_1 D’ 0T
— n—24 41 — n—2441

(B2 — F?).

This means that
|+ Fp?t| < cef™.

Abel’s transformation yields

2A71_1 1 1
1, Fr22 = _ — IKY _
" 2 ; (n—2A+l n—2A—|—l+l> LoTas
WoA _ 2’471
;_;A_l K¥i 1 oTa 1.

The equation (see [5])

457

(14)

(15)

| f * (waa_1 K" ota—1)|l1 < || fll1llwaa_1 K o Ta—illn < (IfIIEP ] < el flle

gives again

[FER 2

||fH = 1

C 1

< — E —+4+1] < .
' ln = 24 4] —CHf”l

(17)
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At last, we discuss f x F/©3. The equation (1) implies

n—24-1 DF

A
I Fy? = Z ﬁ =lp_9aDya +71aly 9aF) g2 074.
k=0

l
| % 2725 Dal < cf* (18)

n

means that we have to discuss ¢/, _,.(f,z) := (f * (raF" 51 074))(z). The
transformation 74 : I — I is measure-preserving and such that 74(74(z)) =
(that is, 741 = 74) for all z € I [17]. Thus, Theorem 39.C in [9] allows us to
write

£ pa(f2) / @ 9)ra) P2 pa(ra(y))dy

/ £ ® TA@)rA(TA W) FY_pa (v)dray)

dra(y)
dy

- / F(@® TaW)ra(ra(®) F_on (1) L gy,

Theorem 32.B in [9] and the fact that the transformation 74 : I — I is
measure-preserving give for the Radon-Nikodym derivative dTgy(y) that dT&‘;y) =

1 almost everywhere. Thus,

£ an(f.) / P& ® Ta(W))raW)EY_pa ()dy
and

tan(£7a(@) = ra(o) [ F(ralo @ 1)rale ® 9 FL o1 (i)dy
=ra(@)((rafora) * Fi sa)(x) = ra(@)ty_sa(rafora, x).
Now, by the help of Lemma 4 we show that the operator ¢/, ,, is of weak type
(1,1).
Mdz € 12 [t],_oa(f,2)] > A} = Afz € I 1 [t),_pa(f,7al@))] > A}
=M{z € It |ra(@)ty,_oa(ra(fora), )| > A}
< clfra(fora)ly < ¢l flhs (19)

Summarising our results on (13)-(19) we could complete the proof of Theorem
1. O
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The proof of Corollary 1 and 2 follow from Theorem 1 in the same way as
it was done in [7].
Now, we will prove Theorem 2.

PROOF OF THEOREM 2. The proof of Theorem 2 will be complete if we show

that there exists ¢ > 0 such that (for more details see the proof of Theorem 1
from [6])

" A
,u{(x,y) el*: ’tpA,PA (D22A+1 & D22A+1,{E,y)| > 23A} > 6237. (20)
Denote
24-2 2A-2
Qa=|J | Bt xni
I=A4+2 s=A+2
Since,

t;A (D22A+1,x) = 522A+1 (F"“i .1‘) = F:A (CI’,‘)

paA’

for (z,y) € 1222‘_[ X 1221’2_5 we have the following estimation from Lemma 3 for
quadratic logarithmic means of the function Dyzat1 (x) Doza+1 (y)

|Fy, () Fpy (0)] = [ty pa (Da2ass @ Dypasr, m,y)| > 2145

PAPA

Consequently,

Ju! {(ac,y) el?: ’t;AwA (D22A+1 ® D22A+1,‘T,y)} > CQBA}

24-2 24-2
22A—l22A—s cA
zc >, D THm— Zga
I=A+2 s=3A—1
Hence, (20) is proved and the proof of Theorem 2 is complete. O

The validity of Corollary 3 follows immediately from Theorem 2 and Lemma
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