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ALMOST ISOMETRY-INVARIANT SETS
AND SHADINGS

Abstract

An almost isometry-invariant set A ⊂ R satisfies |gA4 A| < c for
any isometry g acting on R, where c is the cardinality of the continuum.

A shading is any set S ⊆ R in which
µ(S ∩ I)

µ(I)
has the same constant

value for every finite interval I, for any Banach measure µ. (A Ba-
nach measure is a finitely additive, isometry-invariant extension of the
Lebesgue measure to 2R.) In this paper we prove several theorems that
show how these two types of sets are related. We also prove several sum
and difference set results for almost isometry-invariant sets. Finally, we
completely solve a problem involving subsets of Archimedean sets first
posed by R. Mabry and partially solved by K. Neu.

1 Introduction.

In this paper, we use the standard notations S + t = {s + t|s ∈ S}, S + S =
{s1 + s2|s1, s2 ∈ S}, and S − S = {s1 − s2|s1, s2 ∈ S}. We also write A + B
if |A4B| < c.

In [4], R. Mabry first demonstrated the existence of shadings, or sets S ⊆ R

that give the expression
µ(S ∩ I)
µ(I)

the same constant value for every finite in-

terval I and every Banach measure µ. This constant value can be made to
be any number in [0, 1]. Recall that a Banach measure is a finitely additive,
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isometry-invariant extension to 2R of the Lebesgue measure. All of the shad-
ings constructed in Mabry’s paper are built using Archimedean sets. These
are sets that satisfy A+ t = A for densely many t ∈ R. One of the important
results proven in the paper states that for an Archimedean set A, the ratio
µ(A∩I)
µ(I) has the same constant value for every interval I, for a given Banach

measure µ. Note that unlike shadings, in the case of an Archimedean set A,
the value of µ(A∩I)

µ(I) might depend on the Banach measure chosen. Any set in

which µ(A∩I)
µ(I) has the same constant value for every interval I, for a given Ba-

nach measure µ, is called a µ-shading. Thus, Archimedean sets are examples
of µ-shadings. For a µ-shading A, the ratio µ(A∩I)

µ(I) is called the µ-shade of A

and is denoted shµA. For a shading S, the ratio µ(S∩I)
µ(I) is called the shade of

S and is denoted shS.
An almost isometry-invariant set A ⊂ R is any set satisfying |gA4A| < c

for any isometry g of R, where c is the cardinality of the continuum. An almost
translation-invariant set is similar to an almost isometry-invariant set, except
that it is almost invariant under any translation, instead of any isometry. That
is, an almost translation-invariant set A satisfies |A 4 (A + r)| < c for any
r ∈ R. It is important to mention that almost isometry-invariant sets and
almost translation-invariant sets, like Archimedean sets, are µ-shadings for
any Banach measure µ. This result is proven in [5], Theorem 5.3.

2 Almost Isometry-Invariant and Almost Translation-
Invariant Sets.

The next few results involve both almost isometry-invariant and almost trans-
lation-invariant sets and require the following fact, demonstrated in the proof
of Lemma 6.1 of [5].

Lemma 2.1. (Mabry) Let µ be any Banach measure and let A be an almost
isometry-invariant set satisfying shµA 6= 0. Then there exists a Banach mea-
sure ν satisfying ν(E ∩ I) = µ(E∩I∩A)

shµA
for any set E ⊆ R and any bounded

interval I.

Proof. For any bounded set S, define φ(S) = µ(S∩A)
shµA

. For arbitrary sets
X ⊆ R define

ν(X) =
∑
i∈Z

φ(X ∩ [i, i+ 1)).

As shown in the proof of Lemma 6.1 in [5], ν is well-defined, an extension
of the Lebesgue measure, and isometry-invariant. This implies that ν is a
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Banach measure. Since E ∩ I is bounded for any set E ⊂ R and any bounded
interval I,

∑
i∈Z φ(E ∩ I ∩ [i, i+ 1)) is a finite sum, and so the finite additivity

of φ implies the result.

In [5], Mabry introduces the concept of a shade-almost invariant set, or
a set S in which sh(S 4 g(S)) = 0 for every isometry g of R. Since almost
isometry-invariant sets are also shade-almost invariant sets (Lemma 4.5 of [4]
states that |Y | < c implies shY = 0), we can use Lemma 6.2 of [5] to conclude
that almost isometry-invariant sets can have any µ-shade desired, for the right
µ, assuming those sets are not shadings of shade 0 or 1. (A special case of
Lemma 6.2 of [5] states that for any t > 0 and any shade-almost invariant set
B that is not a shading of shade 0 or 1, there exists a Banach measure µ for
which shB = t. The measure given in Lemma 2.1 is an integral part of the
proof.) Because almost isometry-invariant sets that are not shadings of shade
0 or 1 can have any µ-shade desired for the right µ, almost isometry-invariant
sets are only shadings when they are of shade 0 or shade 1. This fact is proven
in a slightly different way in Theorem 2.2.

Theorem 2.2. Let S be an almost isometry-invariant shading. Then shS = 0
or shS = 1.

Proof. Assume shS 6= 0 and let µ be any Banach measure. By Lemma 2.1,
there exists a Banach measure ν satisfying ν(E ∩ [0, 1]) = µ(E∩[0,1]∩S)

shS for any
E ⊂ R. Setting E = S ∩ [0, 1] gives us ν(S ∩ [0, 1]) = µ((S∩[0,1])∩S)

shS . Since S is
a shading, ν(S ∩ [0, 1]) = µ(S ∩ [0, 1]) = shS, hence shS = shS

shS = 1.

Using essentially the same method, we can also show that almost translation-
invariant sets S are only shadings when shS takes on one of three values.

Theorem 2.3. Let S be an almost translation-invariant shading. Then shS =
0, 1, or 1

2 .

Proof. Assume shS 6= 0 or 1 and let µ be any Banach measure. Using a
similar method to the one used in the proof of Lemma 2.1, it can be shown
that there exists a t-Banach measure ν satisfying ν(E∩[0, 1]) = µ(E∩[0,1]∩S)

shS for
any E ⊆ R. (A t-Banach measure is a Banach measure that is only translation-
invariant, as opposed to isometry-invariant.) Define w(E) = 1

2 (ν(E)+ν(−E)).
Clearly w is a Banach measure. Setting E = S ∩ [0, 1] gives us w(S ∩ [0, 1]) =
1
2 (ν(S∩[0, 1])+ν(−(S∩[0, 1])). Since w(S∩[0, 1]) = ν(S∩[0, 1]) = shS, we have

shS = 1
2

(
shS+µ((−(S∩[0,1]))∩S)

shS

)
. This implies 2shS = 1 + µ((−(S∩[0,1]))∩S)

shS , so
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that shS ≥ 1
2 . Since S is a shading, so is Sc. Since S is almost translation-

invariant, so is Sc. Finally, shS 6= 1 means shSc 6= 0, so we can reuse the
above work to conclude shSc ≥ 1

2 . But shS ≥ 1
2 and shSc ≥ 1

2 together imply
that shS = 1

2 .

Note: The existence of an almost translation-invariant shading S satisfying
shS = 1

2 is demonstrated in Example 3.4. That set S is almost translation-
invariant and therefore a µ-shading for any Banach µ. In the example, −S =
Sc, so the reflection-invariance of Banach measures gives us shµS = µ(S ∩
[− 1

2 ,
1
2 ]) = µ(−S ∩ [− 1

2 ,
1
2 ]) = µ(Sc ∩ [− 1

2 ,
1
2 ]) = shµSc for any Banach µ. This

forces shµS = shµSc = 1
2 and so shS = 1

2 .

Corollary 2.4. If S is an almost translation-invariant shading satisfying
shS = 1

2 , then sh(S ∩ (−S)) = 0.

Proof. Clearly S ∩ (−S) is a µ-shading for any Banach µ, because it is
almost translation-invariant. From the above proof we know that 2shS =
1 + µ((−(S∩[0,1]))∩S)

shS and also that shS = 1
2 . This implies µ((−(S ∩ [0, 1])) ∩

S) = µ(S ∩ (−S) ∩ [−1, 0]) = 0, which means sh(S ∩ (−S)) = 0, since µ was
arbitrary.

The following result, also an easy consequence of Lemma 2.1, will be mentioned
again after Theorem 4.5 when we discuss the intersection of an arbitrary µ-
shading and a shading.

Theorem 2.5. Let S be a shading, let A be an almost isometry-invariant set,
and let µ be a Banach measure. Then shµ(S ∩A) = (shS)(shµA).

Proof. If shµA = 0 the conclusion is obvious since S ∩A ⊆ A. Assume then
that shµA 6= 0. Using ν(E ∩ I) = µ(E∩I∩A)

shµA
from Lemma 2.1 and setting E =

S∩I gives us (shS)(µ(I)) = µ(A∩S∩I)
shµA

, which means µ(A∩S∩I)
µ(I) = (shµA)(shS),

so A ∩ S is a µ-shading and shµ(S ∩A) = (shS)(shµA).

3 Sum and Difference Sets.

In [6] it is shown that if µ is a Banach measure and A is an Archimedean set
satisfying shµA > 1

k+1 for some integer k ≥ 1, then shµ(A−A) ≥ 1
k . This re-

sult applies to almost isometry-invariant and almost translation-invariant sets,
because in terms of Banach measure, these sets behave like Archimedean sets.
Their additional invariant properties, however, allow us to more definitively
characterize their sum and difference sets in certain cases.
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Theorem 3.1. Let S be an almost translation-invariant set. Then sh(S +
Sc) = 1.

Proof. The main construction used in this proof is similar to that in the proof
of Lemma 6.3, p. 186, in [8]. Assume S and Sc are both nonempty; otherwise
the conclusion is obvious. Then there exists a real number r satisfying S ∩
(Sc−r) 6= ∅. Define C = [Sc∪(S+r)]+[S∩(Sc−r)] and let a ∈ Sc∪(S+r), b ∈
S∩ (Sc− r). If a ∈ Sc, then clearly a+ b ∈ Sc+S. If a ∈ S+ r, then a = s+ r
for some s ∈ S, and since b ∈ Sc− r, b = sc− r for some sc ∈ Sc. This implies
a + b = s + r + sc − r = sc + s ∈ Sc + S. So in both cases, a + b ∈ Sc + S,
whence C ⊆ S + Sc. It is therefore enough to show shC = 1, which will be
true if sh(Sc ∪ (S + r)) = 1. Observe that |S 4 (S + r)| < c and S ∩ Sc = ∅
together imply |Sc∩ (S+ r)| < c. This implies sh(Sc∩ (S+ r)) = 0 by Lemma
4.5 of [4]. By additivity, we then have shµ(Sc ∪ (S + r)) = shµSc + shµS = 1
for any Banach measure µ, which implies sh(Sc ∪ (S + r)) = 1.

We note that the above result applies to almost isometry-invariant sets
too, because every almost isometry-invariant set is also almost translation-
invariant. (An almost translation-invariant set is not necessarily fully isometry-
invariant however.) Having proven that sh(S+Sc) = 1 for almost translation-
invariant S, what can we say about S + S?

Theorem 3.2. Let S be an almost translation-invariant set with |S∩−S| = c.
Then S + S = R.

Proof. Since S is almost translation-invariant, so is −S, whence |−S∩(−S+
x)| = c for every x ∈ R. Since |S∩−S| = c, |S∩(−S+x)| = c for every x ∈ R;
in particular, so has S ∩ (−S + x) for every x ∈ R; in particular S ∩ (−S + x)
is nonempty, which immediately gives x ∈ S + S.

Note: The proof above is due to one of the anonymous referees. It gener-
alizes an earlier version of the theorem.

Corollary 3.3. Let S be an almost isometry-invariant set with |S| = c. Then
S ± S = R.

Proof. Since S + −S and |S| = c, Theorem 3.2 gives us S+S = R. S−S = R
follows from the fact that S ∩ (S + x) is nonempty for every x ∈ R.
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Note: A similar result is given in Lemma 2.3, p. 1834 in [1].
One might wonder if every almost translation-invariant set S with car-

dinality the continuum satisfies S + S = R, even without the assumption
|S ∩ −S| = c. The answer is ‘no’, as demonstrated in the following example
due to Kharazishvili, mentioned after Corollary 7.7 of [4].

Example 3.4. Let H be a Hamel basis for R over Q, let {hα}α<c be an injec-
tive well-ordering of H, and let Q+ = Q ∩ (0,∞). Define S = {

∑n
i=1 qihαi +

q+hβ : hαi , hβ ∈ H, qi ∈ Q, q+ ∈ Q+, αi < β}. Clearly |S ∩ −S| 6= c and
S + S = R is false.

The following is an example of an almost translation-invariant set satisfying
the hypotheses of Theorem 3.2.

Example 3.5. Again let H be a Hamel basis for R over Q, and let {hα}α<c

be an injective well-ordering of H. Define S = {
∑n
i=1 qihαi + qhβ + (−q)hγ :

hαi , hβ , hγ ∈ H,αi < β < γ, q ∈ Q, q 6= 0}. Clearly S is almost isometry-
invariant and |S| = c. Since S = −S, S + S = R.

The next result is a generalization of Proposition 1, p. 126, by Kharazishvili
[2]. Recall from the proof of Theorem 2.3 that a t-Banach measure is a finitely
additive extension of the Lebesgue measure to 2R that is translation-invariant
(but might not be fully isometry-invariant).

Theorem 3.6. Let I be an interval of finite positive length, and let S and
T be two sets satisfying µ(S ∩ I) + µ(T ∩ I) > λ(I), where µ is a t-Banach
measure. Then (S ∩ I)− (T ∩ I) contains an interval about zero.

Proof. By contradiction. Assume there is no interval about zero in the
difference set (S∩I)−(T ∩I). Let ε > 0 satisfy µ(S∩I)+µ(T ∩I) = λ(I)+ε,
and let r =

ε

2
. Since (S ∩ I) − (T ∩ I) contains no interval about zero, there

exists an r′ satisfying 0 < r′ < r, r′ /∈ (S ∩ I) − (T ∩ I). This implies that
(S ∩ I) and (T ∩ I) + r′ are disjoint. But µ(((T ∩ I) + r′)∩ I) ≥ µ(T ∩ I)− r′,
hence λ(I) ≥ µ(S ∩ I) + µ(((T ∩ I) + r′) ∩ I) ≥ µ(S ∩ I) + µ(T ∩ I) − r′ >
λ(I) + ε− r > λ(I). This contradiction proves the result.

The following related result uses the construction given in the proof of Theorem
6.1, p. 186, of [8].

Theorem 3.7. Let S and T be two µ-shadings satisfying shµS + shµT > 1,
where µ is a t-Banach measure. Then S − T = R.



Almost Isometry-Invariant Sets and Shadings 397

Proof. Assume S − T 6= R and choose r ∈ (S − T )c. Then S and T + r are
disjoint µ-shadings, with µ-shades shµS and shµT , respectively. Disjointness
then implies 1 ≥ shµS + shµT , a contradiction.

Corollary 3.8. Let S and T be two µ-shadings satisfying shµS + shµT > 1,
where µ is a Banach measure. Then S ± T = R.

Proof. Since every Banach measure is a t-Banach measure, S−T = R follows
from Theorem 3.7. Since µ is a Banach measure, −T is a µ-shading with
shµ(−T ) = shµT . Again using Theorem 3.7, we conclude that S − (−T ) =
S + T = R.

4 A Few More Results on Archimedean Sets and Shad-
ings.

In [4], a problem was posed: If A is an Archimedean set of µ-shade a, and
b satisfies 0 < b < a, does there exist an Archimedean subset B ⊆ A such
that shµB = b? In [6], it was shown that the answer is ‘yes,’ provided the
Archimedean set has two rationally independent translators. We now finish
solving the problem by proving this subset result holds for any Archimedean
set.

Theorem 4.1. Let A be an Archimedean set and let µ be a Banach measure.
For every b satisfying 0 < b < shµA, there exists an Archimedean set B ⊆ A
satisfying shµB = b.

Proof. By Theorem 2.1 of [6], the theorem is true whenever τ(A), the group
of translators of A, contains two rationally independent numbers. (A real
number t is a translator of A provided A+ t = A.) So assume τ(A) contains
exactly one rationally independent translator. Then τ(A) is contained in tQ for
some real number t. Choose r so that t and r are rationally independent and
define the following equivalence relation: x ∼ y if and only if x−y ∈ τ(A)+rQ.
Note that every real number has a unique representation in Γ + τ(A) + rQ,
where Γ is a selector set of the equivalence relation. For x ∈ [0, 1] define
Ax = Γ + τ(A) + r(([0, x] + Z) ∩ Q) and f(x) = shµ(A ∩ Ax). (The function
f(x) is well-defined because A ∩ Ax is an Archimedean set with translators
τ(A).) Since A ∩ Ax is an Archimedean subset of A, it is enough to show
that f(x) takes on every value between 0 and shµA. To do this, we use the
Intermediate Value Theorem for continuous functions. Using the same proof
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given in Example 4.7 of [4], it can be shown that shAx = x for every x ∈ [0, 1].
In particular, shA0 = 0 and A1 = R, which implies that f(0) = 0 and f(1) =
shµA. To complete the proof then, we need only show that f is continuous.
This will be true if limx→x0(f(x) − f(x0)) = 0 for every x0 ∈ [0, 1]. We will
prove limx→x+

0
(f(x)−f(x0)) = 0 for x0 ∈ (0, 1). The other one-sided limit, as

well as the special cases x0 = 0 and x0 = 1, can be proven similarly. Clearly for
x > x0, Ax \Ax0 = Γ+τ(A)+r(([x0, x]+Z)∩Q) is a set of shade x−x0. This
implies sh(Ax \Ax0)→ 0 as x→ x+

0 , which implies shµ(A∩(Ax \Ax0))→ 0 as
x→ x+

0 . But shµ(A∩(Ax\Ax0)) = shµ(A∩Ax)−shµ(A∩Ax0) = f(x)−f(x0).
This completes the proof.

Note: The case where τ(A) contains two rationally independent translators
can also be proven using the above method.

A G-measure µ is a countably-additive measure on a sigma-algebra of sets
(the domain of the measure) that is invariant under members of a group G.
That is, µ(g(X)) = µ(X) for any g ∈ G and any set X in the domain. The
sigma-algebra on which µ is defined is invariant, meaning if X is in the sigma-
algebra, so is G(X). A set X is said to have the uniqueness property (see p.
114, [3]) if it is in the domain of some G-measure and if it has the same measure
for everyG-measure containing it in its domain. (That is, µ(X) = ν(X) for any
two G-measures µ, ν with X in their domains.) Kharazishvili proved (p. 110,
[3]) that if a set X has the uniqueness property, then there exist countably
many {gi} ⊆ G satisfying ν(R \ ∪gi(X)) = 0 whenever ν is a G-measure
containing only sets with the uniqueness property in its domain. Shadings are
analogous to sets with the uniqueness property in the sense that they yield
the same measure for all different Banach measures. In the theorem below,
we prove that the union of a finite number of isometries of an Archimedean
shading can have as large a µ-shading as we want, for a given Banach µ.

First we need the following lemma. The main idea used in the construction
of the measure was conveyed to the author by R. Mabry and J. Roberts.

Lemma 4.2. Let G be the group of isometries of R and let µG be a measure
on G. (This means µG is finitely additive, G-invariant, µG(G) = 1, and µG
measures every subset of G. Such a µG exists since G is amenable.) For any
Banach measure µ and any µ-shading S satisfying shµS 6= 0, there exists a
Banach measure ν such that

ν (E) =
1

shµS

∫
G

µ
(
T−1 (E) ∩ S

)
dµG (T ) (1)

for any bounded set E.
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Proof. Many of the ideas used in the construction of the measure are similar
to those given in the proof of Lemma 2.1. For any bounded set E, define
φ(E) = 1

shµS

∫
G
µ
(
T−1 (E) ∩ S

)
dµG (T ). For arbitrary sets X ⊆ R define

ν(X) =
∑
i∈Z

φ(X ∩ [i, i+ 1)). (2)

Since E is bounded, µ
(
T−1 (E) ∩ S

)
≤ µ

(
T−1 (E)

)
= µ (E) < ∞. This

implies that for fixed and bounded E, µ
(
T−1 (E) ∩ S

)
is a bounded function

of T . This boundedness ensures that our integral defining φ is well defined,
and as such is additive and G-invariant (see [7, pp. 146–147]). Toward showing
ν is an extension of the Lebesgue measure, first assume that E is a bounded
Lebesgue measurable set. Then

φ (E) =
1

shµS

∫
G

µ
(
T−1 (E) ∩ S

)
dµG (T )

=
1

shµS

∫
G

(shµS)(λ(E))dµG(T )

=λ(E).

The fact that µ
(
T−1(E) ∩ S

)
= (shµS)(λ(E)) follows from Theorem 3.11 in

[4]. Using (2), we can show that ν is isometry-invariant, additive, and extends
the Lebesgue measure for arbitrary sets. Equation (1) follows from the finite
additivity of µ.

Theorem 4.3. Let A be an Archimedean shading, let 0 < α < shA, and let
µ be a Banach measure. For any β satisfying shA < β < 1, there exist 2n

isometries {Si} satisfying

shµ

(
2n⋃
i=1

Si(A)

)
> β,

where n =
⌈
β − α
α− αβ

⌉
.

Proof. Let µG be a measure on the group G = T of isometries (which is
amenable). By Lemma 4.2, there exists a Banach measure ν satisfying

ν(E) =
1

sh(Ac)

∫
G

µ(T−1(E) ∩Ac)dµG(T )
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for every bounded set E ⊂ R. We have

ν(A ∩ [0, 1]) =
1

sh(Ac)

∫
G

µ(T−1(A ∩ [0, 1]) ∩Ac)dµG(T ),

and since ν is a Banach measure, (shA)(shAc) =
∫
G
µ(T−1(A ∩ [0, 1]) ∩

Ac)dµG(T ) ≤ sup{T}µ(T−1(A ∩ [0, 1]) ∩ Ac), hence α sh(Ac) < µ(T1(A ∩
[0, 1]) ∩ Ac) for some isometry T1. Since µ(T1(A ∩ [0, 1]) ∩ Ac) = µ(T1(A) ∩
Ac ∩ T1([0, 1])) = shµ(T1(A)∩Ac), we have α sh(Ac) < shµ(T1(A)∩Ac). (We
note that T1(A)∩Ac is a µ-shading because T1(A) is an Archimedean set with
the same set of translators as A, and so is Ac. The intersection of these two
sets also has that same set of dense translators and so is a µ-shading.) Now
let A1 = A ∪ (T1(A) ∩ Ac). Since A1 is a µ-shading, there exists a Banach
measure ν1 satisfying ν1(E) = 1

shµ(Ac1)

∫
G
µ(T−1(E) ∩ Ac1)dµG(T ) for every

bounded E ⊂ R. (A1 is a µ-shading because the union of two Archimedean
sets with the same set of translators is also Archimedean with that same set
of translators.) Setting E = A1 ∩ [0, 1] and repeating the steps in the first
paragraph gives us α shµ(Ac1) < shµ(T2(A1)∩Ac1) for some isometry T2. Now
let A2 = A1 ∪ (T2(A1) ∩ Ac1) and continue the process. We can thus create
a sequence of isometries Ti and sets Ai+1 = Ai ∪ (Ti+1(Ai) ∩ Aci ) satisfying
α shµ(Aci ) < shµ(Ti+1(Ai) ∩ Aci ) for i = 0, 1, 2, · · · . (Define A0 = A.) Since
Ti+1(Ai) ∩ Aci is added at every step in the iteration, we can say that after
n =

⌈
β−α
α−αβ

⌉
iterations, we have shµAn > α+α shµAc+α shµAc1 +α shµAc2 +

· · · + α shµAcn−1. If shµAci = 0 for any i ≤ n − 1, then we are done be-
cause then shµAi = 1. If shµAcn−1 < 1 − β, then we are done because then
shµAn−1 > β. So assume shµAcn−1 ≥ 1 − β. Since shµAci is a non-increasing
sequence, shµAci ≥ 1 − β for i = 0, 1, 2, · · · , n − 1. This implies shµAn >

α+ αn(1− β) = α+ α
⌈
β−α
α−αβ

⌉
(1− β) ≥ α+ α β−α

α−αβ (1− β) = α+ β − α = β.
Each of the n iterations doubles the number of isometries on A (which may
not be distinct), so An is formed by 2n isometries Si of A, including the
identity.

Corollary 4.4. If A is an Archimedean shading of positive shade, µ is a
Banach measure, and β satisfies shA < β < 1, then there exist a finite number
of isometries Ti of R satisfying shµ (∪Ti(A)) > β.

The question of what happens when two arbitrary shadings are intersected
is discussed in Example 5.3 and Example 5.6 of [4]. The answer is anything but
straightforward. In those examples Mabry demonstrates that the intersection
of two shadings need not even be a µ-shading, let alone have any nice formula
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or pattern. However, in Corollary 4.6 below, we show that if we are allowed
to translate and/or reflect one of the shadings, then the µ-measure of their
intersection is very nearly the product of the two shades. Theorem 4.5 is a
more general result.

Theorem 4.5. Let S1 be a shading, let S2 be a µ-shading for some Banach
µ, and let I be a bounded interval. Then if T is an isometry of R,

inf{T}
µ (S1 ∩ T (S2) ∩ I)

µ (I)
≤ (shS1) (shµS2) ≤ sup{T}

µ (S1 ∩ T (S2) ∩ I)
µ (I)

.

Proof. If shµS2 = 0, then the conclusion is obvious, since shµT (S2) = 0 for
any isometry T of R. So assume shµS2 6= 0. From Lemma 4.2, there exists
a Banach measure ν satisfying ν (E) = 1

shµS2

∫
G
µ
(
T−1 (E) ∩ S2

)
dµG (T ) for

any bounded set E. Letting E = S1 ∩ I gives us

ν (S1 ∩ I) =
1

shµS2

∫
G

µ
(
T−1 (S1 ∩ I) ∩ S2

)
dµG (T ) ,

which implies

inf{T}µ
(
T−1 (S1 ∩ I) ∩ S2

)
≤ (shS1) (shµS2)µ (I)

≤ sup{T}µ
(
T−1 (S1 ∩ I) ∩ S2

)
,

hence

inf{T}µ (S1 ∩ I ∩ T (S2)) ≤ (shS1) (shµS2)µ (I)
≤ sup{T}µ (S1 ∩ I ∩ T (S2)) .

The inequality is tight, because if S1 is a shading and S2 is an almost
isometry-invariant set, then µ(S1∩T (S2)∩I)

µ(I) = µ(S1∩S2∩I)
µ(I) for any isometry T of

R. This forces the upper and lower bounds to be the same. It also implies
µ(S1∩S2∩I)

µ(I) = (shS1)(shµS2), the conclusion of Theorem 2.5. Also, the in-
equality will not always reduce to an equality because setting S1 = S2, where

−S1 = Sc1 and shS1 =
1
2

, gives us a strict inequality on both the infimum and

supremum. (Such a set S1 is given in Example 3.4.)

Because every shading is also a µ-shading for any fixed Banach µ, we have the
following corollary.
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Corollary 4.6. If S1 and S2 are shadings, µ is a Banach measure, I is a
bounded interval, and T is an isometry of R, then

inf{T}
µ(S1 ∩ T (S2) ∩ I)

µ (I)
≤ (shS1) (shS2) ≤ sup{T}

µ(S1 ∩ T (S2) ∩ I)
µ (I)

.
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