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Abstract

We give results about almost continuous multi-valued functions and a
characterization of compact almost continuous M-retracts of the Hilbert
cube @, where almost continuity is in the sense of Stallings instead of
Husain. For instance, each connectivity or almost continuous point to
closed-set valued multi-function f : I — I, where I = [0, 1], has a
fixed point; i.e., a point € I such that z € f(z). When Y is a compact
subset of ), a sufficient condition is given for a continuous multifunction
r:Y — Y, with z € r(z) Vz € Y, to have an almost continuous multi-
valued extension r: Q — Y.

Given a metric space (X,d), let S(X), CB(X) and 2% denote, respec-
tively, the collection of all nonempty closed subsets of X, the collection of all
nonempty closed and bounded subsets of X and the collection of all nonempty
compact subsets of X, each with the Hausdorff metric H on it. By definition,

N(A,e)={z € X : d(z,a) <e for some a € A},
and for A, B € CB(X),
H(A,B)=inf{e>0: AC N(B,e) and BC N(A,¢)}.

A single-valued function f : X — Y has a fized point if X is a subset of
Y and there exists x such that z = f(x). Given arbitrary metric spaces X
and Y, a multi-valued function T : X — Y maps each point x of X to a
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unique nonempty subset T'(z) of Y, and if each T'(x) is closed in Y, T can be
treated as a single-valued function T : X — S(Y). A multi-valued function
T:X — X (or its corresponding single-valued function T': X — S(X) when
each T'(X) is closed in X) is said to have a fized point xg if xo € T(xp).
Schauder’s theorem [8] states that every compact convex nonempty subset X
of a normed space has the fixed point property for single-valued continuous
maps T : X — X (abbr. fp.p.), and in [3, Cor. 2|, Girolo shows such a
space X has the fixed point property for single-valued connectivity functions
T :X — X. Strother [10, Thm. 1] shows that I has the fixed point property
for point to closed set continuous multi-functions (abbr. F.p.p.) but gives an
example showing I does not have the F.p.p. His example can be modified
to hold also for I"™, n > 3, by replacing the 90° rotation of the unit circle S
there with the antipodal map of S"~'. Plunkett actually shows that a Peano
continuum has the F.p.p. if and only if it is a dendrite [6]. Also non-Peano
arc-like continua have the F.p.p. [12]. Smithson shows that a biconnected
point-closed multi-valued function F on a tree into itself has a fixed point. (A
multi-valued function F': X — Y is called biconnected if

FO) = J{F@) : vec} and FUD)={re X : FX)nD£0}

are connected sets whenever C' and D are connected subsets of X and Y
respectively.) We show that each connectivity or almost continuous f : I — 27
has a fixed point.

For M C X, M is a retract of X if there exists a single-valued continuous
function f : X — M such that f(z) = ¢ Vo € M. Wojdyslawski [13] proves
that M is a retract of a compact space X implies S(M) is a retract of S(X).
The converse is false. For, in [11], Strother defines M C X to be an M-retract
of X if there exists a continuous multi-valued function F': X — M such that
F(z) = {z} Vo € M and then uses his construction in [10] to show that the
unit circle S! is an M-retract of the unit disc B2 and 25" is a retract of 25
even though S is, of course, not a retract of B2. He also shows in [11, Thm. 8]
that for a metric continuum, these are equivalent:

1) X is a Peano space;

2) X is an MCAR* (i.e., V Hausdorff space Y, closed set Yy C Y, and
continuous multi-valued function F' : Yy — X, 3 continuous extension
F:Y — X);

3) X is homeomorphic to an M-retract of a Tychonoff cube.

We give results about fixed points of connectivity or almost continuous mul-
tifunctions and a characterization of compact almost continuous M-retracts
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of the Hilbert cube @, where the M-retraction F' : Q — M is required to be
almost continuous in place of continuous. We deal with multifunctions obey-
ing Stallings’ definition of almost continuity given below instead of obeying
Husain’s nonequivalent definition.

If A C X, a multifunction F' : X — A is called an e-multi-retraction if
Vo € A, d(z, F(z)) < e and diam F(z) < ¢, and A is called an e-multi-retract
of X. It is well known that if X has the f.p.p. and Y is a retract of X, then
Y has the f.p.p., too. For completeness, we verify the known generalization of
this to e-multi-retracts.

Lemma 1. If A is a compact subset of a metric space (X,d) and T : A — 24
is continuous and if for every € > 0 there is x(e) € A such that

d(az(e) , T(w(e))) <€,

then T has a fized point x.

PROOF. Since T'(A) is compact, there exists a sequence €, — 0 such that
T(z(ey)) — Y € 24, Therefore

H(Y, T(x(en))) — 0 as n— o0, and d(m(en) , T([L’(En))> < €p.
Let y; € Y and yo € T(x(e,)) such that
d(x(en), T(»’U(fn))) = d(x(Gn)a yz) and d(y2,Y)=d(y2, y1)-
Then
d(x(ﬁn), Y) < d(x(en)a yl) (1)

< d(z(en), y2) +d(y2, y1) (2)
= d((en) T((en)) ) +dly2, ) (3)

< d(wlen), T(a(en) ) + H(T(2(e0)) , Y) (4)

Therefore d(w(en), Y) — 0 as n — oo. Since A is compact, some subse-
quence z(€,, ) converges to some x € A . Since Y is closed, € Y, and since
T is continuous, T'(z(e,,)) — T(z) =Y. This shows z € T'(z). O
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Theorem 1. If A is a compact subset of a metric space (X,d), if X has the
F.p.p., and if Ve > 0, 3 a continuous e-multi-retraction r : X — A, then A
has the F.p.p.

PROOF. Suppose T : A — A is a continuous multi-function and ¢ : 24 — 24
is its united extension defined whenever B C A by ¢(B) = UpepT(b). Since
tr : X — X is a continuous multi-valued function and X has the F.p.p., there
exists w € X such that

wetrw)= |J T()

ber(w)

and so w € T'(b) for some b € r(w). There exists b’ € r(w) such that d(w, b') =
d(w, r(w)). Therefore

d(b, T(b)) < d(b, w) < d(b, b') +d(b/ , w) < 2

because w € T(b), b € r(w), d(w, r(w)) < € and diam r(w) < e. By Lemma
1, T has a fixed point. O

For topological spaces X and Y, we define the following “Darboux-like”
classes of functions f : X — Y (where Y could possibly equal S(X), CB(X),
or 2%):

f is Darbouz (abbr. f € D) if f(C) is connected for each connected C' C X.

f is almost continuous (f € AC) if each open subset of X x Y containing the
graph of f also contains the graph of a continuous function g : X — Y.

[ is a connectivity function (f € Conn) if the graph of the restriction fio is a
connected subset of X x Y for each connected subset C' of X.

f is extendable (f € Ext) if there is a connectivity function F': X x I — Y
such that F(x, 0) = f(x) for every z € X.

f is peripherally continuous (f € PC) if for every x € X and for all open sets
U containing 2 and V containing f(z), there exists an open set W containing
z such that W C U and f(bd(W)) C V.

According to [4], if X = I", then Y = 2!" is a Peano space and is
uniformly locally p-connected for all p > 0, which means that for every
€ > 0 there exists a § > 0 such that for each y € Y and for each integer
k =0,1,2,...,p, every continuous ¢ : S¥ — N(y, §) can be extended to
a continuous ® : B¥*1 — N(y, ¢), where S* is the boundary of the closed
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unit ball B¥*! in Euclidean (k + 1)-space R¥*1. This helps to see that for
any n > 1, the relationships given in [2, pp. 496 and 513] between the above
classes of Darboux-like single-valued functions I™ — I™ are exactly the same
for Darboux-like closed-set valued multi-functions I™ — I™. In particular, for
any n > 2, in the class of all functions f : I" — 2!" we have PC C AC.
This follows from Stallings” Theorem 5 in [9] which states that if X is a locally
peripherally connected polyhedron of dimension n, Y is a uniformly locally
(n — 1)-connected metric space, and f : X — Y is a peripherally continuous
function, then f is almost continuous. What is left to verify next is that in
the class of all functions f: I — 27, AC C Conn.

We list these four propositions from [9]:

Stallings’ Proposition 1. If f : X — Y is almost continuous and g : Y — Z
is continuous, then go f : X — Z is almost continuous.

In fact, he shows that for each open set N containing the graph of go f, there
exists a continuous function F': X — Y such that go FF C N.

Stallings’ Proposition 2. If f : X — Y is almost continuous and C is
closed in X, then fic: C —Y is almost continuous.

Stallings’ Proposition 3. If X X Y is a completely normal Ty space, X
is connected, and f : X — Y is almost continuous, then the graph of f is
connected.

Stallings’ Proposition 4. If X is a compact Ty space, Y a Ty space, and Z
a topological space and if f: X — Y is continuous and g :' Y — Z is almost
continuous, then go f : X — Z is almost continuous.

Theorem 2. Each almost continuous function f : I — 21 is a connectivity
function.

PRrROOF. For each closed subinterval K of I, fix is almost continuous and
therefore connected by Stallings’ Propositions 2 and 3. Every subinterval J
of I is the union of a sequence J; C Jy C J3 C ... of closed subintervals of I.
Since each f|;, is connected and f|;, C f);, for i > 1, then

oo
fio = flue, 0 = U IipA
=1

is connected. This shows f is a connectivity function. O
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The next result generalizes Strother’s Theorem 1 in [10] from continuous
functions to connectivity functions, and a referee for an earlier version of my
paper gives this simpler proof.

Theorem 3. Each connectivity function f : I — 2 has a fized point.

PRrROOF. This follows from the fact that if F, g : C — X are continuous func-
tions where F' is onto and C is connected, then there exists x € C such
that F(z) = g(z). Pick F to be the projection from the connected graph C
of the given connectivity function f onto X = I and define g : f — I by
g(x, f(x)) = min f(x). This shows that there exists a point € C such that
x =min f(z) and so z € f(x) . O

Example 1. Let g : I — I be the almost continuous function

1Q+gn5 if 0<zr<1
g(z) =1 2 x
0 if z=0.

Define the almost continuous discontinuous function f : I — 2! by f(z) =
[0, g(z)] for each z € I. (We let [0, 0] = {0}.) Since g has infinitely many
fixed points, so does f. We could have applied either Theorem 3 or Theorem
4 below to conclude that this almost continuous function f has at least one
fixed point.

Next, interior and boundary of a cell are its combinatorial ones.

Lemma 2. [7, Thm. 3] Suppose D1, D, D3, ... are topological n-cells in I™
with pairwise disjoint interiors such that each BdD) is the union of (n—1)-cells
FE; and B; with

B; = Bd(D;) — Int(E;) and E; C BdI".
Let

M:ﬂ—@@ray
i=1

Then there exists an almost continuous retraction v : I™ — I™ of I onto M.
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Example 2. Let g be the function in Example 1, X = I?, and

1 1 1
w=ot0 U (1 J+(3))
cl(g) U ( 2r ' w x 2
M contains a simple closed curve

T (i Hxad)

which is the boundary of a disk D in X. M is not an M-retract of X because
M is not locally connected [11, Thm. 8], and M is not an almost continuous
single-valued retract of X because M separates R? [7, Thm.1]. However, M
is an almost continuous M-retract of X due to the multifunction F : X — M
defined by
Fi(z) if zeD
F(z) =
{FQ(J:)} it xeX\D,

where Fy is a J-retraction of D given by [10] and F5 is an almost continuous
single-valued retraction of X onto M U D given by Lemma 2.

Example 3. We construct an almost continuous function f : I — 27 with
graph dense in I x 27. Let {Fa Ta< c} be a well ordering of all blocking sets
of I x 2T such that each F, has less than c-many predecessors. A blocking set
K of I x 27 is a closed subset of I x 2! that misses the graph of some function
I — 2T but meets the graph of every continuous function I — 27, and as in the
proof of [5, Thm. 5.2] and using 2/ is an AR because of [14], one can show that
the projection p(F,) of each F,, into I contains a nondegenerate interval. A
function f : I — 2! is almost continuous if and only if there exists no blocking
set of I x 27 missing f. For each «, pick a point z, € p(F,) \ {z¢ : £ < a}
and pick f(zo) € 27 such that (24, f(2z,)) € Fo. Define f arbitrarily on
I\ {zo : a < c}. Assume f were not almost continuous. Then there is
an open neighborhood U of f in I x 2! such that each continuous function
g: I — 28 meets (I x 27)\ U. Therefore (I x 2')\ U misses f and is one of
these blocking sets F, for some « < ¢, a contradiction. Therefore f must be
almost continuous and, by construction, is dense in I x 2.

Theorem 4. If the metric space X has the F.p.p. and f : X — CB(X) is
almost continuous, then f has a fixed point.
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PROOF. Assume f has no fixed point. To see that the “diagonal”
A={(z,A) e X xCB(X) : z € A}

is closed in X x CB(X), suppose (2, A4,) € A and (x,, 4,,) — (20, 4p) in
X x CB(X). Then z, € A,, ©, — xo in X, and A, — Ay in CB(X).
For every € > 0, there exists N such that for all n > N, d(z,,79) < § and
H(A,,Ag) < §. Pick n > N. There exists y € Ao such that d(z,,y) < 5.
Therefore

d(y, z0) < d(y,zn) + d(zp, x0) < €.

Since Ag is a closed subset of X, zg € Ay and so (zg, Ag) € A.

The open set (X x CB(X))\ A contains f and therefore contains a continuous
g: X — CB(X). So g has no fixed point, a contradiction to X having the
F.p.p. O

Cornette shows that each single-valued connectivity retract of a unicoher-
ent Peano continuum is again a unicoherent Peano continuum [1, Thm. 3].
According to [5] or Lemma 2, there is a single-valued almost continuous re-
traction r : I?2 — I? of I? onto Knaster’s indecomposable continuum with one
endpoint, but it is an unsolved problem whether there is a single-valued al-
most continuous retraction of I? onto a pseudoarc. Does there exist an almost
continuous M-retraction 7 : I2 — I? of I? onto a pseudoarc M?

A compactum Y is an e AR means that whenever Y is homeomorphic to a
closed subset Y’ of a space X, then Y’ is an e-retract of X; ie., Ve >0, 3
continuous single-valued function r : X — Y’ such that

d(z,r(z)) <e VzeY’.

According to Kellum [5], for single-valued functions, a compactum Y is an
€AR < whenever f': X' — Y is continuous where X' is a closed subset of
a space X, then 3 continuous function f : X — Y such that

d(f(z), f'(z)) <e Vo e X'.
Our final result is based on his arguments given there.

Theorem 5. Suppose a compact subset Y of Q obeys this general Tietze multi-
valued approrimate extension property:

(1) If f/ : X' =Y is a continuous multi-valued function, where X' is a
closed subset of a space X, then for each € > 0 there exists a continuous
multi-valued function f : X — Y such that H(f(z), f'(z)) < eVz € X',
where H is the Hausdorff metric on 2Y .
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Then

(2) each continuous multi-valued function r :' Y — Y, such that x € r(x)
Vz €Y, has an almost continuous multi-valued extensionr:Q — Y.

PROOF. Let © be the collection of all closed subsets S of @ x 2¥ such that
the projection p(S) of S into @) contains c-many points not in Y. So we can
by transfinite induction define r : Q — 2 such that if x € Y then x € r(z)
as already defined, and if S € © then r NS # (). Assume r is not almost
continuous. Then there exists a minimal blocking set K of @ x 2¥ that misses
r, and p(K) is nondegenerate because K meets every constant function from
Q into 2¥. Assume p(K) is not connected. Then p(K) = A U B for some
separated sets A and B.

K=K\ (K mpfl(B)) and K=K \ (Kﬁp’l(A)>

are closed proper subsets of K and so cannot be blocking sets. Therefore
there are continuous functions gi,¢s : Q@ — 2¥ such that g, N Ky = @ and
g2NK =0,p(g1NK)C A, and p(g2NK) C B. Let X = Q and X’ = p(K).
The function

f'=(918) U (9214) : p(K) — 2"

is continuous, and f’ and K are disjoint closed subsets of the compact space
X x 2Y. There exists € > 0 such that if ¢ : X’ — 2Y is continuous and

H(g'(z), f'(z)) <€ Vz e X',

then ¢’ N K = (, too. By hypothesis, for this €, there exists a continuous
function f : Q — 2 such that

H(f(z), f'(z)) <e Vo e X'.

Therefore f N K = (), which is a contradiction. Since p(K) is connected and
K ¢ ©, p(K) CY. Since rN K = (), there exists ¢ > 0 such that if
g:p(K) — 2Y is continuous and

H(g(z), r(z)) <e Vo € p(K),

then g N K = (. By hypothesis for this ¢, there exists a continuous function
f:Q — 2Y such that

H(f(z),r(z)) <€ Vo ep(K).

Therefore f N K = ), a contradiction. So r is almost continuous after all. [
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By letting r(z) = « Vo € Y in Theorem 5, it follows that for a compact
subset Y of @, (1) = (3) Y is an almost continuous M-retract of Q.
A straightforward proof that (3) = (1) for a compact subset Y of @ can be
given based on Kellum'’s proof of sufficiency for Theorem 3.1 in [5] and using
Stallings’” Propositions 1 and 4.
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